Diversity of Subterranean Termites in South India Based on COI Gene
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Termite, Odontotermes Formosanus Shiraki (Termitidae: Isoptera), in Camphor, Cinnamomum Camphora (L.) (Lauraceae)
Hindawi Publishing Corporation Psyche Volume 2012, Article ID 123102, 5 pages doi:10.1155/2012/123102 Research Article Observations of the Biology and Ecology of the Black-Winged Termite, Odontotermes formosanus Shiraki (Termitidae: Isoptera), in Camphor, Cinnamomum camphora (L.) (Lauraceae) Arthur G. Appel,1 Xing Ping Hu,1 Jinxiang Zhou,2 Zhongqi Qin,2 Hongyan Zhu,2 Xiangqian Chang,3 Zhijing Wang,2 Xianqin Liu,2 and Mingyan Liu2 1 Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849-5413, USA 2 Fruit and Tea Institute, Hubei Academy of Agricultural Sciences, Wuhan 430209, China 3 Plant Protection and Fertilizer Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China Correspondence should be addressed to Arthur G. Appel, [email protected] Received 2 October 2011; Revised 15 January 2012; Accepted 30 January 2012 Academic Editor: Deborah Waller Copyright © 2012 Arthur G. Appel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Aspects of the biology and ecology of the black-winged termite, Odontotermes formosanus Shiraki, were examined in a grove of camphor trees, Cinnamomum camphora (L.), located at the Fruit and Tea Institute, Wuhan, China. Of the 90 trees examined, 91.1% had evidence of termite activity in the form of exposed mud tubes on the bark. There was no relationship between tree diameter and mud tube length. Mud tubes faced all cardinal directions; most (60%) trees had multiple tubes at all directions. However, if a tree only had one tube, 22.2% of those tubes faced the south. -
Evaluation of the Chemical Defense Fluids of Macrotermes Carbonarius
www.nature.com/scientificreports OPEN Evaluation of the chemical defense fuids of Macrotermes carbonarius and Globitermes sulphureus as possible household repellents and insecticides S. Appalasamy1,2*, M. H. Alia Diyana2, N. Arumugam2 & J. G. Boon3 The use of chemical insecticides has had many adverse efects. This study reports a novel perspective on the application of insect-based compounds to repel and eradicate other insects in a controlled environment. In this work, defense fuid was shown to be a repellent and insecticide against termites and cockroaches and was analyzed using gas chromatography-mass spectrometry (GC– MS). Globitermes sulphureus extract at 20 mg/ml showed the highest repellency for seven days against Macrotermes gilvus and for thirty days against Periplaneta americana. In terms of toxicity, G. sulphureus extract had a low LC50 compared to M. carbonarius extract against M. gilvus. Gas chromatography–mass spectrometry analysis of the M. carbonarius extract indicated the presence of six insecticidal and two repellent compounds in the extract, whereas the G. sulphureus extract contained fve insecticidal and three repellent compounds. The most obvious fnding was that G. sulphureus defense fuid had higher potential as a natural repellent and termiticide than the M. carbonarius extract. Both defense fuids can play a role as alternatives in the search for new, sustainable, natural repellents and termiticides. Our results demonstrate the potential use of termite defense fuid for pest management, providing repellent and insecticidal activities comparable to those of other green repellent and termiticidal commercial products. A termite infestation could be silent, but termites are known as destructive urban pests that cause structural damage by infesting wooden and timber structures, leading to economic loss. -
Under Serratia Marcescens Treatment Kai Feng1,2, Xiaoyu Lu1,2, Jian Luo1,2 & Fang Tang1,2*
www.nature.com/scientificreports OPEN SMRT sequencing of the full‑length transcriptome of Odontotermes formosanus (Shiraki) under Serratia marcescens treatment Kai Feng1,2, Xiaoyu Lu1,2, Jian Luo1,2 & Fang Tang1,2* Odontotermes formosanus (Shiraki) is an important pest in the world. Serratia marcescens have a high lethal efect on O. formosanus, but the specifc insecticidal mechanisms of S. marcescens on O. formosanus are unclear, and the immune responses of O. formosanus to S. marcescens have not been clarifed. At present, genetic database resources of O. formosanus are extremely scarce. Therefore, using O. formosanus workers infected by S. marcescens and the control as experimental materials, a full-length transcriptome was sequenced using the PacBio Sequel sequencing platform. A total of 10,364 isoforms were obtained as the fnal transcriptome. The unigenes were further annotated with the Nr, Swiss-Prot, EuKaryotic Orthologous Groups (KOG), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Ortholog public databases. In a comparison between the control group and a Serratia marcescens-infected group, a total of 259 diferentially expressed genes (DEGs) were identifed, including 132 upregulated and 127 downregulated genes. Pathway enrichment analysis indicated that the expression of the mitogen-activated protein kinase (MAPK) pathway, oxidative stress genes and the AMP-activated protein kinase (AMPK) pathway in O. formosanus may be associated with S. marcescens treatment. This research intensively studied O. formosanus at the high-throughput full-length transcriptome level, laying a foundation for further development of molecular markers and mining of target genes in this species and thereby promoting the biological control of O. -
Complementary Symbiont Contributions to Plant Decomposition in a Fungus-Farming Termite
Complementary symbiont contributions to plant decomposition in a fungus-farming termite Michael Poulsena,1,2, Haofu Hub,1, Cai Lib,c, Zhensheng Chenb, Luohao Xub, Saria Otania, Sanne Nygaarda, Tania Nobred,3, Sylvia Klaubaufe, Philipp M. Schindlerf, Frank Hauserg, Hailin Panb, Zhikai Yangb, Anton S. M. Sonnenbergh, Z. Wilhelm de Beeri, Yong Zhangb, Michael J. Wingfieldi, Cornelis J. P. Grimmelikhuijzeng, Ronald P. de Vriese, Judith Korbf,4, Duur K. Aanend, Jun Wangb,j, Jacobus J. Boomsmaa, and Guojie Zhanga,b,2 aCentre for Social Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark; bChina National Genebank, BGI-Shenzen, Shenzhen 518083, China; cCentre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark; dLaboratory of Genetics, Wageningen University, 6708 PB, Wageningen, The Netherlands; eFungal Biodiversity Centre, Centraalbureau voor Schimmelcultures, Royal Netherlands Academy of Arts and Sciences, NL-3584 CT, Utrecht, The Netherlands; fBehavioral Biology, Fachbereich Biology/Chemistry, University of Osnabrück, D-49076 Osnabrück, Germany; gCenter for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark; hDepartment of Plant Breeding, Wageningen University and Research Centre, NL-6708 PB, Wageningen, The Netherlands; iDepartment of Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria SA-0083, South Africa; and jDepartment of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark Edited by Ian T. Baldwin, Max Planck Institute for Chemical Ecology, Jena, Germany, and approved August 15, 2014 (received for review October 24, 2013) Termites normally rely on gut symbionts to decompose organic levels-of-selection conflicts that need to be regulated (12). -
Thèse Herbert J. GUEDEGBE
UNIVERSITE PARIS EST ECOLE DOCTORALE SCIENCE DE LA VIE ET DE LA SANTE N° attribué par la bibliothèque THESE Présentée pour l’obtention du grade de DOCTEUR DE L’UNIVERSITE PARIS EST Par Herbert Joseph GUEDEGBE Diversité, Origine et Caractérisation de la Mycoflore des Meules de Macrotermitinae (Isoptera, Termitidae) Spécialité Ecologie Microbienne Soutenue le 25 Septembre 2008 devant le jury composé de : Rapporteur Robin Duponnois (IRD) Rapporteur Pascal Houngnandan (Université d’Abomey-Calavi) Directeur de thèse Corinne Rouland-Lefèvre (IRD) Examinateur Evelyne Garnier-Zarli (Université Paris Est) Examinateur Céline Roose-Amsaleg (Université Paris VI) A mes parents A ma famille A mes amis A Samir 1 Cette thèse a été réalisée au Laboratoire d’Ecologie des Sols Tropicaux (LEST) de l’UMR IRD 137 Biosol. J’exprime donc en tout premier lieu ma profonde gratitude à Madame Corinne Rouland- Lefèvre, Directrice du LEST pour avoir accepté de diriger ce travail malgré ses multiples occupations et pour l’enthousiasme dont elle a fait preuve tout au long de cette thèse. Je remercie également Monsieur Pascal Houngnandan qui m’a ouvert les portes de son laboratoire d’écologie microbienne, offert de nombreuses facilités lors des missions d’échantillonnage, conseillé sur ma thèse en général et surtout pour avoir accepté d’en être rapporteur. Mes sincères remerciements vont ensuite à l’Institut de Recherche pour le Développement qui m’a octroyé une bourse de thèse de Doctorat à travers son programme de soutien de Doctorants. Un remerciement particulier à Laure Kpenou du DSF pour ses multiples conseils et pour son entière disponibilité. J’exprime ma profonde reconnaissance à Monsieur Robin Duponnois pour avoir accepté d’être rapporteur de cette thèse ainsi qu’à Mesdames Evelyne Garnier-Zarli & Céline Roose-Amsaleg pour avoir accepté de porter dans leur domaine respectif, un regard sur ce travail. -
Telling Time with Termite Mounds: Termite Mound Declination, Azimuth, and Structure in Tarangire National Park
Telling Time with Termite Mounds: Termite mound declination, azimuth, and structure in Tarangire National Park Erin Frankson St. Olaf College Macrotermes michaelseni termites are found in savannah habitats throughout sub-Saharan Africa. Macrotermes michaelseni differ from other species of termites in that they construct chimney-shaped mounds in order to house their colonies (Turner 2001). These mounds are com- plex structures which utilize the sun as a tool for thermoregulation. By building their mounds at an angle, Macrotermes michaelseni are able to control air flow and regulate temperature within the inner chambers of their mounds. This study examined the zenith (heading on the hori- zon to which the mound points) and azimuth (the angle of tilt from ver- tical) of Macrotermes michaelseni termite mounds in Northern Tanza- nia. A total of 62 termite mounds were studied in and around Tarangi- re National Park during the month of October. Overall, the average zenith of Macrotermes michaelseni mounds was found to be 29.4 °, how- ever, average angle decreased as termite mound height increased. Of the 62 mounds studied, 59 faced northwest, with an average azimuth of 61.7 ° west of north. These results suggest that one can indeed use a termite mound in order to tell time. We tested this idea by constructing a sundial which mimicked the average angle and direction of the Ma- crotermes michaelseni termite mounds. We recorded the shadow cast by the mound for every hour of daylight and ultimately produced a chart which can be used to determine time using a Macrotermes michaelseni termite mound. Overall, termites provide vital ecosystem services for the surrounding environment. -
Morphometric Analysis of Coptotermes Spp. Soldier Caste (Blattodea: Rhinotermitidae) in Indonesia and Evidence of Coptotermes Gestroi Extreme Head-Capsule Shapes
insects Article Morphometric Analysis of Coptotermes spp. Soldier Caste (Blattodea: Rhinotermitidae) in Indonesia and Evidence of Coptotermes gestroi Extreme Head-Capsule Shapes Bramantyo Wikantyoso 1,2,*, Shu-Ping Tseng 3, Setiawan Khoirul Himmi 2 , Sulaeman Yusuf 2 and Tsuyoshi Yoshimura 1 1 Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan; [email protected] 2 Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI) Jl. Raya Bogor km 46 Cibinong, Bogor 16911, Indonesia; [email protected] (S.K.H.); [email protected] (S.Y.) 3 Department of Entomology, University of California, 900 University Avenue, Riverside, CA 92521, USA; [email protected] * Correspondence: [email protected] Simple Summary: The morphological characteristics of the soldier caste in termites provide valuable taxonomic information at the species level. Head-shape variation in soldiers was often used as an indicative characteristic in some genera. While species with egg-shaped and waterdrop-shaped head capsule (HC), Coptotermes gestroi and C. curvignathus, respectively, are familiar in Indonesia, neither a measurement nor head index may avoid the subjectivity of shape interpretation. We conducted linear Citation: Wikantyoso, B.; Tseng, S.-P.; and geometric morphometrics analyses of soldiers’ HC of Coptotermes spp. obtained from various Himmi, S.K.; Yusuf, S.; Yoshimura, T. locations in Indonesia. Although subtle differences were observed, the posterior parts of the HC Morphometric Analysis of laterally expanded in a gradual manner in C. gestroi, C. sepangensis, and C. curvignathus in that order. Coptotermes spp. Soldier Caste Furthermore, three extreme head-shape variations of C. -
Management of Odontotermes Obesus (Ramb.) Through Bio-Control Agents
Journal of Entomology and Zoology Studies 2018; 6(5): 662-664 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Management of Odontotermes obesus (Ramb.) JEZS 2018; 6(5): 662-664 © 2018 JEZS through bio-control agents in preserved setts of Received: 12-07-2018 Accepted: 13-08-2018 sugarcane Himangshu Mishra Senior Research Fellow, AINP on Soil Arthropod Pests, Himangshu Mishra, Badal Bhattacharyya, Dhanalakhi Gogoi, Sudhansu Department of Entomology, Bhagawati and Snigdha Bhattacharjee Assam Agricultural University, Jorhat, Assam, India Abstract Badal Bhattacharyya An investigation was carried out during 2015-16 and 2016-17 using five biocontrol agents along with AINP on Soil Arthropod Pests, chlorpyriphos 20 EC @ 2ml/lit as insecticidal check, against O. obesus in preserved setts of sugarcane in Department of Entomology, Jorhat, Assam. All the treatments were significantly superior over untreated control which recorded the Assam Agricultural University, highest level of infestation and poor germination percentage. Among the biocontrol agents, Metarhizium Jorhat, Assam, India anisopliae @ 1012 spore/lit treated setts gave promising results and recorded lowest mean number (21.25 and 19.06%) and portion of setts (22.62 and 23.59%) infestation with germination percentage of 67.86 Dhanalakhi Gogoi and 67.81 during 2015-16 and 2016-17 respectively. Insecticidal check chlorpyriphos treated preserved AINP on Soil Arthropod Pests, setts maintained its superiority by registering least mean number (15.16 and 14.84%) and portion of setts Department of Entomology, Assam Agricultural University, (14.81 and 16.10%) infestation coupled with a marked increase in per cent germination (78.02 and Jorhat, Assam, India 76.82%) during both the years. -
On the Ecology and Evolution of Microorganisms Associated with Fungus-Growing Termites
On the ecology and evolution of microorganisms associated with fungus-growing termites Anna A. Visser Propositions 1 Showing the occurrence of a certain organism in a mutualistic symbiosis does not prove a specific role of this organism for that mutualism, as is illustrated by Actinobacteria species occurring in fungus-growing termite nests. (this thesis) 2 Instead of playing a role as mutualistic symbiont, Pseudoxylaria behaves like a weed, competing for the fungus-comb substrate and forcing termites to do regular gardening lest it overgrows their Termitomyces monoculture. (this thesis) 3 Citing colleagues who are no longer active must be considered as an act of true altruism. 4 The overload of literature on recent ‘discoveries’ blinds us from old literature, causing researchers to neglect what was already known and possibly duplicate investigations. 5 Keys to evolution of knowledge lie in recognizing the truth of one’s intuition, and extending the limits of one’s imagination. 6 The presumed creative superiority of left-handed people (Newland 1981), said to be the result of more communication between both sides of the brain, might rather be the result of lifelong selection on finding creative solutions to survive in a right-hand biased environment. 7 An understanding of ‘why good ideas usually come by the time time is running out and how to manage this’, would greatly improve people’s intellectual output and the condition in which they perform. Propositions accompanying the thesis “On the ecology and evolution of microorganisms associated with fungus-growing termites” Anna A. Visser Wageningen, 15th June 2011 Reference Newland GA, 1981. -
Activity of Mound-Building Macrotermes Bellicosus
Animal Research International (2018) 15(1): 2918 – 2925 2918 ACTIVITY OF MOUND - BUILDING MACROTERMES BELLICOSUS (ISOPTERA: TERMITIDAE) AROUND KWARA STATE UNIVERSITY CAMPUS GUINEA SAVANNAH ECOZONE, NIGERIA 1 AJAO, Adeyemi Mufutau, 2 OLADIMEJI, Yusuf Usman, 1 OLADIPO, Segun Olayinka and 1 ADEPOJU, Suraju Adeshina 1 Department of Bioscience and Biotechnology, Kwara State University, Malete, Kwara State, Nigeria. 2 Department of Agricultural Economics and Rural Sociology, Ahmadu Bello University, PMB 1044 , Zaria, Kaduna State, Nigeria . Corresponding Author: Ajao, A. M. Department of Bioscience and Biotechnology, Kwara State University, Malete, Kwara State, Nigeria. Email : [email protected] Phone: +234 8035058904 ABSTRACT This study was designed to investigate Macrotermes bellicosus , nes ting mounds, abundance and activity in the savannah ecological zone of Kwara State, North - Central, Nigeria. The research was conducted at four randomly selected villages around and including Kwara S tate U niversity. A systematic survey of visible mounds of M. bellicosus was carried out over the entire study area. Also, the heights of mounds were measured using a measuring tape. M. bellicosus collection was conducted using bait ed traps consisting of cardboard, toilet tissue, wooden stakes and wood shaving . These were embedded or placed on ground within plots at a regular distance of 10 m and checked twice weekly. The samples collected per bait ed trap per plot per location were pre served in 90 % ethanol and identified. Similarly, survey of physically damaged items was conducted and recorded to observe termite activity. The result from the four diff erent locations of the study show ed that the number of M. -
Encyclopedia of Social Insects
G Guests of Social Insects resources and homeostatic conditions. At the same time, successful adaptation to the inner envi- Thomas Parmentier ronment shields them from many predators that Terrestrial Ecology Unit (TEREC), Department of cannot penetrate this hostile space. Social insect Biology, Ghent University, Ghent, Belgium associates are generally known as their guests Laboratory of Socioecology and Socioevolution, or inquilines (Lat. inquilinus: tenant, lodger). KU Leuven, Leuven, Belgium Most such guests live permanently in the host’s Research Unit of Environmental and nest, while some also spend a part of their life Evolutionary Biology, Namur Institute of cycle outside of it. Guests are typically arthropods Complex Systems, and Institute of Life, Earth, associated with one of the four groups of eusocial and the Environment, University of Namur, insects. They are referred to as myrmecophiles Namur, Belgium or ant guests, termitophiles, melittophiles or bee guests, and sphecophiles or wasp guests. The term “myrmecophile” can also be used in a broad sense Synonyms to characterize any organism that depends on ants, including some bacteria, fungi, plants, aphids, Inquilines; Myrmecophiles; Nest parasites; and even birds. It is used here in the narrow Symbionts; Termitophiles sense of arthropods that associated closely with ant nests. Social insect nests may also be parasit- Social insect nests provide a rich microhabitat, ized by other social insects, commonly known as often lavishly endowed with long-lasting social parasites. Although some strategies (mainly resources, such as brood, retrieved or cultivated chemical deception) are similar, the guests of food, and nutrient-rich refuse. Moreover, nest social insects and social parasites greatly differ temperature and humidity are often strictly regu- in terms of their biology, host interaction, host lated. -
Termite Alates (Odontotermes Obesus) Used As Food for Koya Tribes in Pakhal Wildlife Sanctuary, Warangal, Telangana
IMPACT: International Journal of Research in Humanities, Arts and Literature (IMPACT: IJRHAL) ISSN (P): 2347-4564; ISSN (E): 2321-8878 Vol. 7, Issue 3, Mar 2019, 491-496 © Impact Journals TERMITE ALATES (ODONTOTERMES OBESUS) USED AS FOOD FOR KOYA TRIBES IN PAKHAL WILDLIFE SANCTUARY, WARANGAL, TELANGANA 1 2 3 4 Thirupathi. K , Mamatha. G , Narayana E & Venkaiah. Y 1,4 Animal Physiological Research Lab, Department of Zoology, Kakatiya University, Warangal, Telangana, India 2,3 Environmental Biology Research Lab, Department of Zoology, Kakatiya University, Warangal, Telangana, India Received: 27 Feb 2019 Accepted: 21 Mar 2019 Published: 31 Mar 2019 ABSTRACT Termites, especially Odontotermes sp. were playing an important role in ecology, entomophagy and other contexts such as Zootherapy around the world including Indian ethnic people. By food, value termites have a rich source of proteins, lipids, carbohydrates, enzymes, and minerals. The termites Odontotermes obesus had high levels of biochemical constituents such as proteins 66mg/ 100mg; carbohydrates 35mg/100mg; lipids 6.80mg/100mg and other enzymes. The results that Odontotermes obesus have more proteins followed by carbohydrates, lipids, and enzymes. In addition to their ecological importance, termites are a source of food and medicinal resources to ethnic people of Koya tribes from Pakhal Wildlife sanctuary, Telangana state. Therefore, there is an urgent need to focus on entomological research to the documentation of the utility of insects. KEYWORDS: Odontotermes Obesus, Biochemical Constituents, Carbohydrates, Proteins, Entomophagy, Zootherapy, Koya Tribes, Pakhal Wild Life Sanctuary INTRODUCTION India is a tropical country, the diversity of insects is greater. So, a potential land for insect resource to be utilized their vast potential.