Chicago Journal of Theoretical Computer Science the MIT Press

Total Page:16

File Type:pdf, Size:1020Kb

Chicago Journal of Theoretical Computer Science the MIT Press Chicago Journal of Theoretical Computer Science The MIT Press Volume 1999, Article 2 Complements of Multivalued Functions ISSN 1073–0486. MIT Press Journals, Five Cambridge Center, Cambridge, MA 02142-1493 USA; (617)253-2889; [email protected], journals- [email protected]. Published one article at a time in LATEX source form on the Internet. Pagination varies from copy to copy. For more information and other articles see: http://mitpress.mit.edu/CJTCS/ • http://www.cs.uchicago.edu/publications/cjtcs/ • ftp://mitpress.mit.edu/pub/CJTCS • ftp://cs.uchicago.edu/pub/publications/cjtcs • Fenner, et al. Complements of Multivalued Functions (Info) The Chicago Journal of Theoretical Computer Science is abstracted or indexed in R R R Research Alert, SciSearch, Current Contents /Engineering Computing & Tech- R nology, and CompuMath Citation Index. c 1999 The Massachusetts Institute of Technology. Subscribers are licensed to use journal articles in a variety of ways, limited only as required to ensure fair attribution to authors and the journal, and to prohibit use in a competing commercial product. See the journal’s World Wide Web site for further details. Address inquiries to the Subsidiary Rights Manager, MIT Press Journals; (617)253-2864; journals- [email protected]. The Chicago Journal of Theoretical Computer Science is a peer-reviewed scholarly journal in theoretical computer science. The journal is committed to providing a forum for significant results on theoretical aspects of all topics in computer science. Editor-in-chief: Janos Simon Consulting Editors: Joseph Halpern, Stuart A. Kurtz, Raimund Seidel Editors: Martin Abadi Greg Frederickson John Mitchell Pankaj Agarwal Andrew Goldberg Ketan Mulmuley Eric Allender Georg Gottlob Gil Neiger Tetsuo Asano Vassos Hadzilacos David Peleg Laszlo´ Babai Juris Hartmanis Andrew Pitts Eric Bach Maurice Herlihy James Royer Stephen Brookes Ted Herman Alan Selman Jin-Yi Cai Stephen Homer Nir Shavit Anne Condon Neil Immerman Eva Tardos Cynthia Dwork Howard Karloff Sam Toueg David Eppstein Philip Klein Moshe Vardi Ronald Fagin Phokion Kolaitis Jennifer Welch Lance Fortnow Stephen Mahaney Pierre Wolper Steven Fortune Michael Merritt Managing Editor: Michael J. O’Donnell Electronic Mail: [email protected] [ii] Chicago Journal of Theoretical Computer Science 1999-3 Complements of Multivalued Functions Stephen Fenner Frederic Green Steven Homer Alan L. Selman Thomas Thierauf Heribert Vollmer 19 March, 1999 Abstract We study the class coNPMV of complements of NPMV functions. Though defined symmetrically to NPMV, this class exhibits very different properties. We clarify the complexity of coNPMV by showing that it is es- sentially the same as that of NPMVNP. Complete functions for coNPMV are exhibited and central complexity-theoretic properties of this class are stud- ied. We show that computing maximum satisfying assignments can be done in coNPMV, which leads us to a comparison of NPMV and coNPMV with Krentel’s classes MaxP and MinP. The difference hierarchy for NPMV is related to the query hierarchy for coNPMV. Finally, we examine a func- tional analogue of Chang and Kadin’s relationship between a collapse of the Boolean hierarchy over NP and a collapse of the polynomial-time hierarchy. 1 Introduction 1-1 Consider the complexity class NPMV of partial multivalued functions that are com- puted nondeterministically in polynomial time. As this class captures the complex- ity of computing witnesses of sets in NP,by studying this class, and more generally, by studying relations among complexity classes of partial multivalued functions, we directly contribute to understanding the complexity of computing witnesses. It is well known that a partial multivalued function f belongs to NPMV if and only if it is polynomial length-bounded and graph(f)= x;y : y is a value of f(x) belongs to NP. {h i } 1-2 Now consider the class coNPMV. We will give a formal definition in the pre- liminaries section below. It will follow from the definition that a partial multivalued 1 Chicago Journal of Theoretical Computer Science 1999-3 Fenner, et al. Complements of Multivalued Functions 1 § function f belongs to coNPMV if and only if it is polynomial length-bounded and graph(f) belongs to coNP. Given this symmetry, graphs of functions in NPMV are in NP while graphs of functions in coNPMV are in coNP, and given what we know about NP and coNP, one might expect that coNPMV has essentially the same complexity as NPMV. Indeed, it is easy to see that coNPMV = NPMV if and only if NP = coNP. However, the point of this paper is to show that in many ways coNPMV is a more powerful class than is NPMV. One can derive more information from computing the complement of a function in NPMV than from computing the function. For one example of this phenomenon, we prove here that coNPMV is not included in FPNPMV unless the polynomial hierarchy collapses. (This is an extension of a result of Fenner et al [FHOS97].) Thus, a coNPMV oracle provides more information than an NPMV oracle. This is surprising since function oracles, just as set oracles, provide knowledge about both their domains and their co-domains. 1-3 We will define many-one reductions between multivalued functions. This will be a straightforward adaptation of the many-one metric reducibility of Krentel [Kre88]. In Section 3, we will consider many-one complete functions for coNPMV. 1-4 Consider the partial multivalued function sat, defined so that y is a value of sat(') if and only if y is a satisfying assignment of Boolean formula '. The function sat is complete for NPMV. Nevertheless, in Section 4 we will see that sat and similar functions belong to coNPMV. Even the seemingly more powerful FPNP-complete function maxsat, that gives the maximum satisfying assignment of a formula, is contained in coNPMV. However, we will see that neither NPMV nor FPNP are contained in coNPMV, and hence coNPMV is not closed under metric many-one reductions, unless the polynomial-time hierarchy collapses. Clearly, these function classes have strange closure properties, which we describe below. 1-5 As an upper bound on the complexity of coNPMV,we show that, for any k 2, ≥ coNPMV NPMV(2) NPMV(k) ⊆ ⊆ ⊆ NPMV(k +1) NPMV(Poly) NPMVNP; ⊆ ⊆ where NPMV(k) is the k-th level of the difference hierarchy for NPMV as defined by Fenner et al. [FHOS97]. 1-6 On the other hand, even though there is an infinite hierarchy of complexity classes between coNPMV and NPMVNP (the difference hierarchy over NPMV does not collapse unless the polynomial-time hierarchy collapses [FHOS97]), our results suggest that the complexity of coNPMV is essentially the same as the complexity 2 Chicago Journal of Theoretical Computer Science 1999-3 Fenner, et al. Complements of Multivalued Functions 2 § NP NP 1 1 of NPMV : We prove in Section 5 that NPMV = π2 coNPMV (where π2 is the projection function that maps a pair of strings to its first◦ component). It follows that NPMVNP is the closure of coNPMV under metric many-one reductions. 1-7 In Section 6, we show that if the difference hierarchy for NPMV collapses, then the NPMV oracle hierarchy collapses. This is the functional analogue of the well-known result by Chang and Kadin relating a collapse of the Boolean hierarchy over NP to a collapse of the polynomial-time hierarchy. 1-8 Finally, we remark that the phenomenon that universal quantification seems to lead to larger function classes was previously observed by Toda. We show in Section 7 how this observation follows from our results. 2 Preliminaries 2-1 We fix Σ to be the finite alphabet 0;1 . Let < denote the standard lexicographic { n } order on Σ∗.Forn 0 we define Σ = x Σ∗ x = n .By ; we denote a standard pairing function≥ on Σ Σ . { ∈ || | } h· ·i ∗ × ∗ 2-2 We use the standard complexity classes P and NP for (nondeterministic) poly- p p p Σk 1 nomial time, Σk and ∆k = P − for the levels of the polynomial-time hierarchy, and NP(k) for the levels of the Boolean hierarchy, for k 1. ≥ 2-3 Let f be a relation on Σ Σ . We will call f a (partial) multivalued function ∗ × ∗ from Σ∗ to Σ∗.Byf(x) y we denote that (x;y) f and say that f maps x to y. By set-f(x) we denote the7→ set of outcomes of f on ∈x, set-f(x)= y : f(x) y . The graph of f is graph(f)= x;y : f(x) y . The domain of{ f, dom(7→f),is} the set of x where set-f(x) is{h nonempty.i We7→ will} say that f is undefined at x if x dom(f). The domain of a class of functions is dom( )= dom(f) f . 2-4 6∈ F F { | ∈F} 2-5 Given partial multivalued functions f and g, define g to be a refinement of f if dom(g) = dom(f) and graph(g) graph(f). Let and be classes of partial multivalued functions. Purely as⊆ a convention, if f Fis a partialG multivalued function, we define f c if contains a refinement of f, and we define c if, for every f , f∈ G .G This notation is consistent with our intuitionF⊆ thatG ∈F ∈c G c should entail that the complexity of computing values of functions in is notF⊆ greaterG than the complexity of computing values of functions in . F G 2-6 A transducer T is a nondeterministic Turing machine with a read-only input tape, a write-only output tape, read-write work tapes, and accepting states in the usual manner. T computes a value y on an input string x if there is an accepting computation of T on x for which y is the final content of T ’s output tape.
Recommended publications
  • FOCS 2005 Program SUNDAY October 23, 2005
    FOCS 2005 Program SUNDAY October 23, 2005 Talks in Grand Ballroom, 17th floor Session 1: 8:50am – 10:10am Chair: Eva´ Tardos 8:50 Agnostically Learning Halfspaces Adam Kalai, Adam Klivans, Yishay Mansour and Rocco Servedio 9:10 Noise stability of functions with low influences: invari- ance and optimality The 46th Annual IEEE Symposium on Elchanan Mossel, Ryan O’Donnell and Krzysztof Foundations of Computer Science Oleszkiewicz October 22-25, 2005 Omni William Penn Hotel, 9:30 Every decision tree has an influential variable Pittsburgh, PA Ryan O’Donnell, Michael Saks, Oded Schramm and Rocco Servedio Sponsored by the IEEE Computer Society Technical Committee on Mathematical Foundations of Computing 9:50 Lower Bounds for the Noisy Broadcast Problem In cooperation with ACM SIGACT Navin Goyal, Guy Kindler and Michael Saks Break 10:10am – 10:30am FOCS ’05 gratefully acknowledges financial support from Microsoft Research, Yahoo! Research, and the CMU Aladdin center Session 2: 10:30am – 12:10pm Chair: Satish Rao SATURDAY October 22, 2005 10:30 The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics Tutorials held at CMU University Center into `1 [Best paper award] Reception at Omni William Penn Hotel, Monongahela Room, Subhash Khot and Nisheeth Vishnoi 17th floor 10:50 The Closest Substring problem with small distances Tutorial 1: 1:30pm – 3:30pm Daniel Marx (McConomy Auditorium) Chair: Irit Dinur 11:10 Fitting tree metrics: Hierarchical clustering and Phy- logeny Subhash Khot Nir Ailon and Moses Charikar On the Unique Games Conjecture 11:30 Metric Embeddings with Relaxed Guarantees Break 3:30pm – 4:00pm Ittai Abraham, Yair Bartal, T-H.
    [Show full text]
  • Sok: Tools for Game Theoretic Models of Security for Cryptocurrencies
    SoK: Tools for Game Theoretic Models of Security for Cryptocurrencies Sarah Azouvi Alexander Hicks Protocol Labs University College London University College London Abstract form of mining rewards, suggesting that they could be prop- erly aligned and avoid traditional failures. Unfortunately, Cryptocurrencies have garnered much attention in recent many attacks related to incentives have nonetheless been years, both from the academic community and industry. One found for many cryptocurrencies [45, 46, 103], due to the interesting aspect of cryptocurrencies is their explicit consid- use of lacking models. While many papers aim to consider eration of incentives at the protocol level, which has motivated both standard security and game theoretic guarantees, the vast a large body of work, yet many open problems still exist and majority end up considering them separately despite their current systems rarely deal with incentive related problems relation in practice. well. This issue arises due to the gap between Cryptography Here, we consider the ways in which models in Cryptog- and Distributed Systems security, which deals with traditional raphy and Distributed Systems (DS) can explicitly consider security problems that ignore the explicit consideration of in- game theoretic properties and incorporated into a system, centives, and Game Theory, which deals best with situations looking at requirements based on existing cryptocurrencies. involving incentives. With this work, we offer a systemati- zation of the work that relates to this problem, considering papers that blend Game Theory with Cryptography or Dis- Methodology tributed systems. This gives an overview of the available tools, and we look at their (potential) use in practice, in the context As we are covering a topic that incorporates many different of existing blockchain based systems that have been proposed fields coming up with an extensive list of papers would have or implemented.
    [Show full text]
  • Nondeterministic Direct Product Reducations and the Success
    Nondeterministic Direct Product Reductions and the Success Probability of SAT Solvers [Preliminary version] Andrew Drucker∗ May 6, 2013 Last updated: May 16, 2013 Abstract We give two nondeterministic reductions which yield new direct product theorems (DPTs) for Boolean circuits. In these theorems one assumes that a target function f is mildly hard against nondeterministic circuits, and concludes that the direct product f ⊗t is extremely hard against (only polynomially smaller) probabilistic circuits. The main advantage of these results compared with previous DPTs is the strength of the size bound in our conclusion. As an application, we show that if NP is not in coNP=poly then, for every PPT algorithm attempting to produce satisfying assigments to Boolean formulas, there are infinitely many instances where the algorithm's success probability is nearly-exponentially small. This furthers a project of Paturi and Pudl´ak[STOC'10]. Contents 1 Introduction 2 1.1 Hardness amplification and direct product theorems..................2 1.2 Our new direct product theorems.............................4 1.3 Application to the success probability of PPT SAT solvers...............6 1.4 Our techniques.......................................7 2 Preliminaries 9 2.1 Deterministic and probabilistic Boolean circuits..................... 10 2.2 Nondeterministic circuits and nondeterministic mappings............... 10 2.3 Direct-product solvers................................... 12 2.4 Hash families and their properties............................ 13 2.5 A general nondeterministic circuit construction..................... 14 ∗School of Mathematics, IAS, Princeton, NJ. Email: [email protected]. This material is based upon work supported by the National Science Foundation under agreements Princeton University Prime Award No. CCF- 0832797 and Sub-contract No. 00001583.
    [Show full text]
  • Chicago Journal of Theoretical Computer Science the MIT Press
    Chicago Journal of Theoretical Computer Science The MIT Press Volume 1997, Article 2 3 June 1997 ISSN 1073–0486. MIT Press Journals, Five Cambridge Center, Cambridge, MA 02142-1493 USA; (617)253-2889; [email protected], [email protected]. Published one article at a time in LATEX source form on the Internet. Pag- ination varies from copy to copy. For more information and other articles see: http://www-mitpress.mit.edu/jrnls-catalog/chicago.html • http://www.cs.uchicago.edu/publications/cjtcs/ • ftp://mitpress.mit.edu/pub/CJTCS • ftp://cs.uchicago.edu/pub/publications/cjtcs • Kann et al. Hardness of Approximating Max k-Cut (Info) The Chicago Journal of Theoretical Computer Science is abstracted or in- R R R dexed in Research Alert, SciSearch, Current Contents /Engineering Com- R puting & Technology, and CompuMath Citation Index. c 1997 The Massachusetts Institute of Technology. Subscribers are licensed to use journal articles in a variety of ways, limited only as required to insure fair attribution to authors and the journal, and to prohibit use in a competing commercial product. See the journal’s World Wide Web site for further details. Address inquiries to the Subsidiary Rights Manager, MIT Press Journals; (617)253-2864; [email protected]. The Chicago Journal of Theoretical Computer Science is a peer-reviewed scholarly journal in theoretical computer science. The journal is committed to providing a forum for significant results on theoretical aspects of all topics in computer science. Editor in chief: Janos Simon Consulting
    [Show full text]
  • The Power of Algorithmic Approaches to the Graph Isomorphism Problem
    The Power of Algorithmic Approaches to the Graph Isomorphism Problem Von der Fakult¨atf¨urMathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Daniel Neuen, Master of Science aus Dormagen Berichter: Universit¨atsprofessorDr. Martin Grohe Universit¨atsprofessorDr. Pascal Schweitzer Universit¨atsprofessorDr. L´aszl´oBabai Tag der m¨undlichen Pr¨ufung:17. Dezember 2019 Diese Dissertation ist auf den Internetseiten der Universit¨atsbibliothek online verf¨ugbar. ii Abstract The Graph Isomorphism Problem asks, given two input graphs, whether they are structurally the same, that is, whether there is a renaming of the vertices of the first graph in order to transform it to the second graph. By a recent breakthrough result of Babai (STOC 2016), this problem can be solved in quasipolynomial time. However, despite extensive research efforts, it remains one of only few natural problems in NP that are neither known to be solvable in polynomial time nor known to be NP- complete. Over the past five decades several powerful techniques tackling the Graph Isomor- phism Problem have been investigated uncovering various surprising links between different approaches. Also, the situation has led to a number of algorithms solving the isomorphism problem on restricted classes of input graphs. In this thesis, we continue the investigation of various standard approaches to the Graph Isomorphism Problem to further broaden our understanding on the power and limits of such approaches. In particular, this leads to several improved algorithms solving the isomorphism problem for important restricted classes of graphs. One of the most fundamental methods in the context of graph isomorphism test- ing is the Weisfeiler-Leman algorithm, which iteratively computes an isomorphism- invariant coloring of vertex-tuples.
    [Show full text]
  • Self-Sorting SSD: Producing Sorted Data Inside Active Ssds
    Foreword This volume contains the papers presentedat the Third Israel Symposium on the Theory of Computing and Systems (ISTCS), held in Tel Aviv, Israel, on January 4-6, 1995. Fifty five papers were submitted in response to the Call for Papers, and twenty seven of them were selected for presentation. The selection was based on originality, quality and relevance to the field. The program committee is pleased with the overall quality of the acceptedpapers and, furthermore, feels that many of the papers not used were also of fine quality. The papers included in this proceedings are preliminary reports on recent research and it is expected that most of these papers will appear in a more complete and polished form in scientific journals. The proceedings also contains one invited paper by Pave1Pevzner and Michael Waterman. The program committee thanks our invited speakers,Robert J. Aumann, Wolfgang Paul, Abe Peled, and Avi Wigderson, for contributing their time and knowledge. We also wish to thank all who submitted papers for consideration, as well as the many colleagues who contributed to the evaluation of the submitted papers. The latter include: Noga Alon Alon Itai Eric Schenk Hagit Attiya Roni Kay Baruch Schieber Yossi Azar Evsey Kosman Assaf Schuster Ayal Bar-David Ami Litman Nir Shavit Reuven Bar-Yehuda Johan Makowsky Richard Statman Shai Ben-David Yishay Mansour Ray Strong Allan Borodin Alain Mayer Eli Upfal Dorit Dor Mike Molloy Moshe Vardi Alon Efrat Yoram Moses Orli Waarts Jack Feldman Dalit Naor Ed Wimmers Nissim Francez Seffl Naor Shmuel Zaks Nita Goyal Noam Nisan Uri Zwick Vassos Hadzilacos Yuri Rabinovich Johan Hastad Giinter Rote The work of the program committee has been facilitated thanks to software developed by Rob Schapire and FOCS/STOC program chairs.
    [Show full text]
  • Combinatorial Topology and Distributed Computing Copyright 2010 Herlihy, Kozlov, and Rajsbaum All Rights Reserved
    Combinatorial Topology and Distributed Computing Copyright 2010 Herlihy, Kozlov, and Rajsbaum All rights reserved Maurice Herlihy Dmitry Kozlov Sergio Rajsbaum February 22, 2011 DRAFT 2 DRAFT Contents 1 Introduction 9 1.1 DecisionTasks .......................... 10 1.2 Communication.......................... 11 1.3 Failures .............................. 11 1.4 Timing............................... 12 1.4.1 ProcessesandProtocols . 12 1.5 ChapterNotes .......................... 14 2 Elements of Combinatorial Topology 15 2.1 Theobjectsandthemaps . 15 2.1.1 The Combinatorial View . 15 2.1.2 The Geometric View . 17 2.1.3 The Topological View . 18 2.2 Standardconstructions. 18 2.3 Chromaticcomplexes. 21 2.4 Simplicial models in Distributed Computing . 22 2.5 ChapterNotes .......................... 23 2.6 Exercises ............................. 23 3 Manifolds, Impossibility,DRAFT and Separation 25 3.1 ManifoldComplexes ....................... 25 3.2 ImmediateSnapshots. 28 3.3 ManifoldProtocols .. .. .. .. .. .. .. 34 3.4 SetAgreement .......................... 34 3.5 AnonymousProtocols . .. .. .. .. .. .. 38 3.6 WeakSymmetry-Breaking . 39 3.7 Anonymous Set Agreement versus Weak Symmetry Breaking 40 3.8 ChapterNotes .......................... 44 3.9 Exercises ............................. 44 3 4 CONTENTS 4 Connectivity 47 4.1 Consensus and Path-Connectivity . 47 4.2 Consensus in Asynchronous Read-Write Memory . 49 4.3 Set Agreement and Connectivity in Higher Dimensions . 53 4.4 Set Agreement and Read-Write memory . 59 4.4.1 Critical States . 63 4.5 ChapterNotes .......................... 64 4.6 Exercises ............................. 64 5 Colorless Tasks 67 5.1 Pseudospheres .......................... 68 5.2 ColorlessTasks .......................... 72 5.3 Wait-Free Read-Write Memory . 73 5.3.1 Read-Write Protocols and Pseudospheres . 73 5.3.2 Necessary and Sufficient Conditions . 75 5.4 Read-Write Memory with k-Set Agreement .
    [Show full text]
  • On the Probabilistic Closure of the Loose Unambiguous Hierarchy
    Electronic Colloquium on Computational Complexity, Report No. 50 (2014) On the probabilistic closure of the loose unambiguous hierarchy Edward A. Hirsch∗ Dmitry Sokolovy March 21, 2014 Abstract Unambiguous hierarchies [NR93, LR94, NR98] are defined similarly to the polyno- mial hierarchy; however, all witnesses must be unique. These hierarchies have subtle differences in the mode of using oracles. We consider a \loose" unambiguous hierarchy prUH• with relaxed definition of oracle access to promise problems. Namely, we allow to make queries that miss the promise set; however, the oracle answer in this case can be arbitrary (a similar definition of oracle access has been used in [CR08]). We prove that the first part of Toda's theorem PH ⊆ BP · ⊕P ⊆ PPP can be rectified to PH = BP · prUH•, that is, the closure of our hierarchy under Sch¨oning's BP operator equals the polynomial hierarchy. It is easily seen that BP · prUH• ⊆ BP · ⊕P. The proof follows the same lines as Toda's proof, so the main contribution of the present note is a new definition. 1 Introduction Around 1990, there was a burst of results about interactive protocols [GMR89, Bab85, GS86, BOGKW88, BM88, LFKN92, BFL91, Sha90]. In the same time, Seinosuke Toda proved that PH ⊆ BP · ⊕P ⊆ PPP [Tod91]. The first part of his result can be viewed as an Arthur-Merlin game (recall that AM = BP · NP); however, Merlin must have an odd number of correct proofs. One can describe its proof as follows. We depart from a relativized version of Valiant-Vazirani's lemma and turn the polynomial hierarchy, level by level, into a multi-round Arthur-Merlin game where Merlin always has a unique witness.
    [Show full text]
  • The Complexity of Verifying Loop-Free Programs As
    The Complexity of Verifying Loop-Free Programs as Differentially Private Marco Gaboardi Boston University, USA Kobbi Nissim Georgetown University, USA David Purser University of Warwick, UK MPI-SWS, Germany Abstract We study the problem of verifying differential privacy for loop-free programs with probabilistic choice. Programs in this class can be seen as randomized Boolean circuits, which we will use as a formal model to answer two different questions: first, deciding whether a program satisfies a prescribed level of privacy; second, approximating the privacy parameters a program realizes. We show that the problem of deciding whether a program satisfies ε-differential privacy is coNP#P-complete. In fact, this is the case when either the input domain or the output range of the program is large. Further, we show that deciding whether a program is (ε, δ)-differentially private is coNP#P-hard, #P and in coNP#P for small output domains, but always in coNP#P . Finally, we show that the problem of approximating the level of differential privacy is both NP-hard and coNP-hard. These results complement previous results by Murtagh and Vadhan [35] showing that deciding the optimal composition of differentially private components is #P-complete, and that approximating the optimal composition of differentially private components is in P. 2012 ACM Subject Classification Security and privacy; Theory of computation Probabilistic → computation Keywords and phrases differential privacy, program verification, probabilistic programs Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.129 Category Track B: Automata, Logic, Semantics, and Theory of Programming Related Version A full version of the paper is available at https://arxiv.org/abs/1911.03272 Funding M.
    [Show full text]
  • Download This PDF File
    T G¨ P 2012 C N Deadline: December 31, 2011 The Gödel Prize for outstanding papers in the area of theoretical computer sci- ence is sponsored jointly by the European Association for Theoretical Computer Science (EATCS) and the Association for Computing Machinery, Special Inter- est Group on Algorithms and Computation Theory (ACM-SIGACT). The award is presented annually, with the presentation taking place alternately at the Inter- national Colloquium on Automata, Languages, and Programming (ICALP) and the ACM Symposium on Theory of Computing (STOC). The 20th prize will be awarded at the 39th International Colloquium on Automata, Languages, and Pro- gramming to be held at the University of Warwick, UK, in July 2012. The Prize is named in honor of Kurt Gödel in recognition of his major contribu- tions to mathematical logic and of his interest, discovered in a letter he wrote to John von Neumann shortly before von Neumann’s death, in what has become the famous P versus NP question. The Prize includes an award of USD 5000. AWARD COMMITTEE: The winner of the Prize is selected by a committee of six members. The EATCS President and the SIGACT Chair each appoint three members to the committee, to serve staggered three-year terms. The committee is chaired alternately by representatives of EATCS and SIGACT. The 2012 Award Committee consists of Sanjeev Arora (Princeton University), Josep Díaz (Uni- versitat Politècnica de Catalunya), Giuseppe Italiano (Università a˘ di Roma Tor Vergata), Mogens Nielsen (University of Aarhus), Daniel Spielman (Yale Univer- sity), and Eli Upfal (Brown University). ELIGIBILITY: The rule for the 2011 Prize is given below and supersedes any di fferent interpretation of the parametric rule to be found on websites on both SIGACT and EATCS.
    [Show full text]
  • The Complexity of Verifying Loop-Free Programs As
    The Complexity of Verifying Loop-Free Programs as Differentially Private Marco Gaboardi Boston University, MA, USA Kobbi Nissim Georgetown University, Washington, DC, USA David Purser University of Warwick, Coventry, UK Max Planck Institute for Software Systems, Saarbrücken, Germany Abstract We study the problem of verifying differential privacy for loop-free programs with probabilistic choice. Programs in this class can be seen as randomized Boolean circuits, which we will use as a formal model to answer two different questions: first, deciding whether a program satisfies a prescribed level of privacy; second, approximating the privacy parameters a program realizes. We show that the problem of deciding whether a program satisfies ε-differential privacy is coNP#P-complete. In fact, this is the case when either the input domain or the output range of the program is large. Further, we show that deciding whether a program is (ε, δ)-differentially private is coNP#P-hard, #P and in coNP#P for small output domains, but always in coNP#P . Finally, we show that the problem of approximating the level of differential privacy is both NP-hard and coNP-hard. These results complement previous results by Murtagh and Vadhan [35] showing that deciding the optimal composition of differentially private components is #P-complete, and that approximating the optimal composition of differentially private components is in P. 2012 ACM Subject Classification Security and privacy; Theory of computation → Probabilistic computation Keywords and phrases differential privacy, program verification, probabilistic programs Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.129 Category Track B: Automata, Logic, Semantics, and Theory of Programming Related Version A full version of the paper is available at https://arxiv.org/abs/1911.03272.
    [Show full text]
  • Chicago Journal of Theoretical Computer Science the MIT Press
    Chicago Journal of Theoretical Computer Science The MIT Press Volume 1998, Article 2 16 March 1998 ISSN 1073–0486. MIT Press Journals, Five Cambridge Center, Cambridge, MA 02142-1493 USA; (617)253-2889; [email protected], [email protected]. Published one article at a time in LATEX source form on the Internet. Pag- ination varies from copy to copy. For more information and other articles see: http://mitpress.mit.edu/CJTCS/ • http://www.cs.uchicago.edu/publications/cjtcs/ • ftp://mitpress.mit.edu/pub/CJTCS • ftp://cs.uchicago.edu/pub/publications/cjtcs • Kupferman and Vardi Verification of Systems (Info) The Chicago Journal of Theoretical Computer Science is abstracted or in- R R R dexed in Research Alert, SciSearch, Current Contents /Engineering Com- R puting & Technology, and CompuMath Citation Index. c 1998 The Massachusetts Institute of Technology. Subscribers are licensed to use journal articles in a variety of ways, limited only as required to insure fair attribution to authors and the journal, and to prohibit use in a competing commercial product. See the journal’s World Wide Web site for further details. Address inquiries to the Subsidiary Rights Manager, MIT Press Journals; (617)253-2864; [email protected]. The Chicago Journal of Theoretical Computer Science is a peer-reviewed scholarly journal in theoretical computer science. The journal is committed to providing a forum for significant results on theoretical aspects of all topics in computer science. Editor in chief: Janos Simon Consulting editors: Joseph Halpern,
    [Show full text]