Meemannia Eos, a Basal Sarcopterygian Fish from the Lower Devonian of China – Expanded Description and Significance

Total Page:16

File Type:pdf, Size:1020Kb

Meemannia Eos, a Basal Sarcopterygian Fish from the Lower Devonian of China – Expanded Description and Significance Morphology, Phylogeny and Paleobiogeography of Fossil Fishes D. K. Elliott, J. G. Maisey, X. Yu & D. Miao (eds.): pp. 199-214, 8 figs. © 2010 by Verlag Dr. Friedrich Pfeil, München, Germany – ISBN 978-3-89937-122-2 Meemannia eos, a basal sarcopterygian fish from the Lower Devonian of China – expanded description and significance Min Zhu, Wei Wang and Xiaobo Yu Abstract Additional morphological and histological features of a stem-group sarcopterygian fish Meemannia eos (Zhu et al. 2006) are provided, including dermal bone features, endocranial structures in the oto-occipital region, and details of the superimposed enamel + odontode layers bearing on the stepwise origin of cosmine in crown- group sarcopterygians. A lower jaw characterized by six infradentary foramina, a relatively straight dentary profile, and absence of parasymphysial tooth whorls is tentatively assigned to Meemannia. The distribution and phylogenetic significance of the lateral cranial canal, the endolymphatic duct of supraotic cavity, the horizontally-positioned coronoid-supporting face of the Meckelian bone, and the pore-canal network in dermal bone surface (integration of pore-canal network with multi-layered odontodes) are discussed in the context of the sequential acquisition of characters leading from stem-group osteichthyans to basal sarcopterygians. The histological condition in Meemannia indicates that stem-group sarcopterygians share two important histologi- cal features with stem-group osteichthyans and basal actinopterygians, i. e., the ability of an earlier generation of odontodes to induce the formation of future odontodes, and the absence of resorption. The multi-layered odontodes coexisting with the pore-canal network bring cosmine into alignment with surface covering in stem osteichthyans and actinopterygians. Introduction Recent studies on basal actinopterygians (e. g., Dialipina and Ligulalepis ) (Basden & Young 2001, Basden et al. 2000, Schultze & Cumbaa 2001) and basal sarcopterygians (e. g., Psarolepis, Achoania, and Styloichthys) (Zhu & Yu 2002; Zhu et al. 1999, 2001), have greatly improved our understanding of the origin and early diversification of osteichthyans. The earlier report of Meemannia eos, combining an actinopterygian-like skull roof and a cosmine-like dermal surface, outlined a possible morphotype for the common ancestor of actinopterygians and sarcopterygians, and highlighted its phylogenetic position as the most basal sarcopterygian fish so far known (Zhu et al. 2006). Due to space limitation, the earlier report focused on major features such as the actinopterygian-like dermal skull roof and the unique histological condition of the dermal covering. The present paper provides additional morphological and histological information such as endocranial features in the oto-occipital region and details of the surface covering, and describes a lower jaw specimen tentatively assigned to Meemannia. The paper discusses the implications of the unique histological condition in Meemannia and other features in the context of the stepwise acquisition of characters underlying the diversification of early sarcopterygians from their actinopterygian relatives. Material and faunal assemblage. The Meemannia material described here is housed in the Institute of Vertebrate Paleontology and Paleoanthropology (IVPP), Beijing. The specimens were collected from the middle part of the Xitun Formation (late Lochkovian, Early Devonian) at a locality close to Xitun village in the suburb of Qujing, Yunnan, southwestern China (Fig. 1). The material occurs in association with galeaspids Microholonaspis microthyris, Hyperaspis acclivis (Pan 1992), antiarchs Yunnanolepis chii, Y. parvus, Y. porifera, Phymolepis cuifengshanensis, P. guoruii, Chuchinolepis gracilis, C. qujingensis, C. sulcata, C. robusta, 199 D2 0 500 km 1000 m 0 m shale conglomerate mudstone muddy limestone siltstone limestone sandstone dolomite Fig. 1. Locality map and stratigraphic position of the fossil bed yielding Meemannia eos. Zhanjilepis aspratilis (Zhu 1996), arthrodire Szelepis yunnanensis (Liu 1979), and sarcopterygians Youngolepis praecursor, Diabolepis speratus, Psarolepis romeri, Achoania jarviki and Styloichthys changae (Chang & Yu 1981, 1984; Yu 1998; Zhu & Yu 2002; Zhu et al. 2001). The vertebrate microremains from the Xitun Formation include thelodonts Parathelodus scitulus, P. asiatica, P. catalatus, P. trilobatus, P. cornuformis, acanthodians Nostolepis sp., Youngacanthus gracilis, and chondrichthyans Gualepis elegans, Changolepis tricuspidus, Peilepis solida, and Ohiolepis? xitunensis (Wang 1984, 1997). From the Xitun Formation of neighboring localities were described other galeaspids including Polybranchiaspis liaojiaoshanensis, Nanpanaspis microculus, Laxaspis qujingensis, ‘L ’. rostrata, Cyclodiscaspis ctenus (Liu 1965, 1975) and Siyingia altuspinosa (Wang & Wang 1982). All these findings, together with Meemannia as the most basal sarcopterygian, suggest that during the beginning of the Devonian, early vertebrates were highly diversified in the restricted coastal embayment along the coast of the Upper Yangtze Paleocontinent in South China (Wang 1991). Description Skull roof General features. As briefly mentioned in the earlier report (Zhu et al. 2006), the three skull roof speci- mens only preserved the portion behind the rostral region (Figs. 2, 3B), suggesting a loose connection between the unpreserved anterior rostral unit (rostral and nasal bones) and the dermal bones behind it. In this feature, Meemannia resembles Dialipina (Schultze 1992) and many placoderms (Goujet 1984, 2001), suggesting that the ‘loose nose’ condition may be characteristic of ancestral osteichthyans. The 200 pi Pros p.soc n.orb p.soc n.orb ptoc pl.m pl.m n.spir St pl.p AB Fig. 2. Meemannia eos Zhu et al. 2006, reproduced at higher magnification for clarity in morphological details. Dorsal view of skull roof. A, holotype, IVPP V14536.1; B, IVPP V14536.2. Scale bars = 5 mm. Abbreviations: n.orb, orbital notch; n.spir, spiracular notch; pi, pineal opening; pl.m, pl.p, middle and posterior pit-lines; Pros, postrostral; ptoc, postorbital corner; soc, supraorbital canal; St, supratemporal. post-rostral unit of the skull roof is long and narrow, with the orbital notch (n.orb, Fig. 2A,B) relatively large and anteriorly positioned. Behind the postorbital corners (ptoc, Fig. 2A), the lateral margins run in parallel to the level of the spiracular notches (n.spir, Fig. 2A). The skull roof reaches its maximum width in the otico-occipital region, and presents an embayed posterior margin. No dermal intracranial joint exists between the parietal (P, Fig. 3A) and postparietal (Pp, Fig. 3A) shields which can barely be distinguished by vague indications of incomplete sutures. Dermal bone pattern. Meemannia has a large shield-shaped postrostral bone, whose sutures with neigh- boring bones are clearly detectable. The postrostral bone bears a round pineal opening (Fig. 2A) close to its posterior margin. The pineal opening is present in V14536.1 (Fig. 2A) and V14536.3 (Fig. 3B), but absent in V14536.2 (Fig. 2B), suggesting the variable distribution of this feature. Two series of dermal bones can be identified on the skull roof, the parietal-postparietal in the middle and the dermosphenotic-supratemporal along the lateral margin (Fig. 3A). The parietal is very long and narrow, with its length nearly 3.8 times its width. Anteriorly, the parietals are separated by the postros- tral (Figs. 2, 3A,B). The postparietal is also rectangular, about half as long as the parietal. The parietal is flanked by an elongate longitudinal bone which is referred to the dermosphenotic (Dsp, Fig. 3A). Along the lateral margin of the postparietal is a single bone which is attributed to the supratemporal (St, Figs. 2B, 3A). Anteriorly the supratemporal is narrow and constitutes the upper margin of the spiracular opening. Behind the spiracular opening, the supratemporal is postero-laterally expanded, with its posterior margin forming the lateral portion of the embayed posterior margin of skull roof. Sensory canals. On the skull roof, two pairs of sensory canals and two pairs of pit-lines are detectable. The supraorbital canal (soc, Fig. 3A) extends posteromedially and traverses the anterior portion of the parietal without contacting the otic portion of main lateral line canal (lc, Fig. 3A). After passing through the center of the supratemporal, the main lateral line canal proceeds anteriorly along the lateral margin of the elongated dermosphenotic and exits at a point close to the posterior corner of the shallow orbital margin (Figs. 2, 3A). The trajectory of these two canals can be confirmed by the thin sections from V14534.3 (Fig. 3). The middle (horizontal) pit-line (pl.m, Figs. 2, 3A) and curved posterior (oblique) pit-line (pl.p, Figs. 2, 3A) are situated close to the median line of the skull roof, as in Dialipina. In other basal sarcopterygians such as Psarolepis and Achoania, these two pit-lines have more lateral positions. 201 Pros n.orb pi S14 n.orb S15 soc S12 S13 p.soc ptoc S10 S11 S8 S9 P S6 S7 Dsp S4 n.spir S5 pl.m S2 S3 Pp lc pl.p S1 St 5 mm B A soc S15 e lc S12 S9 lc d S6 lc b c f lc S4 a 1 mm S1 lc C g Fig. 3. Meemannia eos Zhu et al. 2006. A, reconstruction of skull roof; B, dorsal view of skull roof, IVPP V14534.3, a speci- men sectioned at positions marked S1-S15; C, sketch drawings of six selected thin sections (S1, S4, S6, S9, S12, S15) of V14534.3. Histological details in boxed areas a-f are shown in Figure 6A-F;
Recommended publications
  • Cambridge University Press 978-1-107-17944-8 — Evolution And
    Cambridge University Press 978-1-107-17944-8 — Evolution and Development of Fishes Edited by Zerina Johanson , Charlie Underwood , Martha Richter Index More Information Index abaxial muscle,33 Alizarin red, 110 arandaspids, 5, 61–62 abdominal muscles, 212 Alizarin red S whole mount staining, 127 Arandaspis, 5, 61, 69, 147 ability to repair fractures, 129 Allenypterus, 253 arcocentra, 192 Acanthodes, 14, 79, 83, 89–90, 104, 105–107, allometric growth, 129 Arctic char, 130 123, 152, 152, 156, 213, 221, 226 alveolar bone, 134 arcualia, 4, 49, 115, 146, 191, 206 Acanthodians, 3, 7, 13–15, 18, 23, 29, 63–65, Alx, 36, 47 areolar calcification, 114 68–69, 75, 79, 82, 84, 87–89, 91, 99, 102, Amdeh Formation, 61 areolar cartilage, 192 104–106, 114, 123, 148–149, 152–153, ameloblasts, 134 areolar mineralisation, 113 156, 160, 189, 192, 195, 198–199, 207, Amia, 154, 185, 190, 193, 258 Areyongalepis,7,64–65 213, 217–218, 220 ammocoete, 30, 40, 51, 56–57, 176, 206, 208, Argentina, 60–61, 67 Acanthodiformes, 14, 68 218 armoured agnathans, 150 Acanthodii, 152 amphiaspids, 5, 27 Arthrodira, 12, 24, 26, 28, 74, 82–84, 86, 194, Acanthomorpha, 20 amphibians, 1, 20, 150, 172, 180–182, 245, 248, 209, 222 Acanthostega, 22, 155–156, 255–258, 260 255–256 arthrodires, 7, 11–13, 22, 28, 71–72, 74–75, Acanthothoraci, 24, 74, 83 amphioxus, 49, 54–55, 124, 145, 155, 157, 159, 80–84, 152, 192, 207, 209, 212–213, 215, Acanthothoracida, 11 206, 224, 243–244, 249–250 219–220 acanthothoracids, 7, 12, 74, 81–82, 211, 215, Amphioxus, 120 Ascl,36 219 Amphystylic, 148 Asiaceratodus,21
    [Show full text]
  • Lecture 6 – Integument ‐ Scale • a Scale Is a Small Rigid Plate That Grows out of an Animal’ S Skin to Provide Protection
    Lecture 6 – Integument ‐ Scale • A scale is a small rigid plate that grows out of an animal’s skin to provide protection. • Scales are quite common and have evolved multiple times with varying structure and function. • Scales are generally classified as part of an organism's integumentary system. • There are various types of scales according to shape and to class of animal. • Although the meat and organs of some species of fish are edible by humans, the scales are usually not eaten. Scale structure • Fish scales Fish scales are dermally derived, specifically in the mesoderm. This fact distinguishes them from reptile scales paleontologically. Genetically, the same genes involved in tooth and hair development in mammals are also involved in scale development. Earliest scales – heavily armoured thought to be like Chondrichthyans • Fossil fishes • ion reservoir • osmotic control • protection • Weighting Scale function • Primary function is protection (armor plating) • Hydrodynamics Scales are composed of four basic compounds: ((gmoving from inside to outside in that order) • Lamellar bone • Vascular or spongy bone • Dentine (dermis) and is always associated with enamel. • Acellular enamel (epidermis) • The scales of fish lie in pockets in the dermis and are embeded in connective tissue. • Scales do not stick out of a fish but are covered by the Epithelial layer. • The scales overlap and so form a protective flexible armor capable of withstanding blows and bumping. • In some catfishes and seahorses, scales are replaced by bony plates. • In some other species there are no scales at all. Evolution of scales Placoid scale – (Chondricthyes – cartilagenous fishes) develop in dermis but protrude through epidermis.
    [Show full text]
  • Fishes Scales & Tails Scale Types 1
    Phylum Chordata SUBPHYLUM VERTEBRATA Metameric chordates Linear series of cartilaginous or boney support (vertebrae) surrounding or replacing the notochord Expanded anterior portion of nervous system THE FISHES SCALES & TAILS SCALE TYPES 1. COSMOID (most primitive) First found on ostracaderm agnathans, thick & boney - composed of: Ganoine (enamel outer layer) Cosmine (thick under layer) Spongy bone Lamellar bone Perhaps selected for protection against eurypterids, but decreased flexibility 2. GANOID (primitive, still found on some living fish like gar) 3. PLACOID (old scale type found on the chondrichthyes) Dentine, tooth-like 4. CYCLOID (more recent scale type, found in modern osteichthyes) 5. CTENOID (most modern scale type, found in modern osteichthyes) TAILS HETEROCERCAL (primitive, still found on chondrichthyes) ABBREVIATED HETEROCERCAL (found on some primitive living fish like gar) DIPHYCERCAL (primitive, found on sarcopterygii) HOMOCERCAL (most modern, found on most modern osteichthyes) Agnatha (class) [connect the taxa] Cyclostomata (order) Placodermi Acanthodii (class) (class) Chondrichthyes (class) Osteichthyes (class) Actinopterygii (subclass) Sarcopterygii (subclass) Dipnoi (order) Crossopterygii (order) Ripidistia (suborder) Coelacanthiformes (suborder) Chondrostei (infra class) Holostei (infra class) Teleostei (infra class) CLASS AGNATHA ("without jaws") Most primitive - first fossils in Ordovician Bottom feeders, dorsal/ventral flattened Cosmoid scales (Ostracoderms) Pair of eyes + pineal eye - present in a few living fish and reptiles - regulates circadian rhythms Nine - seven gill pouches No paired appendages, medial nosril ORDER CYCLOSTOMATA (60 spp) Last living representatives - lampreys & hagfish Notochord not replaced by vertebrae Cartilaginous cranium, scaleless body Sea lamprey predaceous - horny teeth in buccal cavity & on tongue - secretes anti-coaggulant Lateral Line System No stomach or spleen 5 - 7 year life span - adults move into freshwater streams, spawn, & die.
    [Show full text]
  • A Comparative Study of Piscine Defense the Scales of Arapaima
    Journal of the mechanical behavior of biomedical materials xx (xxxx) xxxx–xxxx Contents lists available at ScienceDirect Journal of the Mechanical Behavior of Biomedical Materials journal homepage: www.elsevier.com/locate/jmbbm A comparative study of piscine defense: The scales of Arapaima gigas, Latimeria chalumnae and Atractosteus spatula ⁎ Vincent R. Shermana, Haocheng Quana, Wen Yangb, Robert O. Ritchiec, Marc A. Meyersa,d, a Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA b Department of Materials, ETH Zurich, 8093 Zurich, Switzerland c Department of Materials Science and Engineering, University of California Berkeley, CA 94720, USA d Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA ARTICLE INFO ABSTRACT Keywords: We compare the characteristics of the armored scales of three large fish, namely the Arapaima gigas Scales (arapaima), Latimeria chalumnae (coelacanth), and Atractosteus spatula (alligator gar), with specific focus on Bioinspiration their unique structure-mechanical property relationships and their specialized ability to provide protection from Bouligand predatory pressures, with the ultimate goal of providing bio-inspiration for manmade materials. The arapaima Alligator gar has flexible and overlapping cycloid scales which consist of a tough Bouligand-type arrangement of collagen Coelacanth layers in the base and a hard external mineralized surface, protecting it from piranha, a predator with extremely Arapaima sharp teeth. The coelacanth has overlapping elasmoid scales that consist of adjacent Bouligand-type pairs, forming a double-twisted Bouligand-type structure. The collagenous layers are connected by collagen fibril struts which significantly contribute to the energy dissipation, so that the scales have the capability to defend from predators such as sharks.
    [Show full text]
  • Ceratodus Tunuensis, Sp. Nov., a New Lungfish (Sarcopterygii, Dipnoi) from the Upper Triassic of Central East Greenland
    Journal of Vertebrate Paleontology ISSN: 0272-4634 (Print) 1937-2809 (Online) Journal homepage: http://www.tandfonline.com/loi/ujvp20 Ceratodus tunuensis, sp. nov., a new lungfish (Sarcopterygii, Dipnoi) from the Upper Triassic of central East Greenland Federico L. Agnolin, Octávio Mateus, Jesper Milàn, Marco Marzola, Oliver Wings, Jan Schulz Adolfssen & Lars B. Clemmensen To cite this article: Federico L. Agnolin, Octávio Mateus, Jesper Milàn, Marco Marzola, Oliver Wings, Jan Schulz Adolfssen & Lars B. Clemmensen (2018) Ceratodus tunuensis, sp. nov., a new lungfish (Sarcopterygii, Dipnoi) from the Upper Triassic of central East Greenland, Journal of Vertebrate Paleontology, 38:2, e1439834, DOI: 10.1080/02724634.2018.1439834 To link to this article: https://doi.org/10.1080/02724634.2018.1439834 Published online: 12 Apr 2018. Submit your article to this journal Article views: 58 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ujvp20 Journal of Vertebrate Paleontology e1439834 (6 pages) Ó by the Society of Vertebrate Paleontology DOI: 10.1080/02724634.2018.1439834 ARTICLE CERATODUS TUNUENSIS, SP. NOV., A NEW LUNGFISH (SARCOPTERYGII, DIPNOI) FROM THE UPPER TRIASSIC OF CENTRAL EAST GREENLAND FEDERICO L. AGNOLIN,1,2 OCTAVIO MATEUS, *,3,4 JESPER MILAN, 5,6 MARCO MARZOLA, 3,4,7,8 OLIVER WINGS,9 JAN SCHULZ ADOLFSSEN,10 and LARS B. CLEMMENSEN 7 1Laboratorio de Anatomıa Comparada y Evolucion de los Vertebrados, Museo Argentino de
    [Show full text]
  • Sarcopterygii, Tetrapodomorpha
    Tristichopterids (Sarcopterygii, Tetrapodomorpha) from the Upper Devonian tetrapod-bearing locality of Strud (Belgium, upper Famennian), with phylogenetic and paleobiogeographic considerations Sébastien Olive, Yann Leroy, Edward Daeschler, Jason Downs, S. Ladevèze, Gaël Clément To cite this version: Sébastien Olive, Yann Leroy, Edward Daeschler, Jason Downs, S. Ladevèze, et al.. Tristi- chopterids (Sarcopterygii, Tetrapodomorpha) from the Upper Devonian tetrapod-bearing locality of Strud (Belgium, upper Famennian), with phylogenetic and paleobiogeographic considerations. Journal of Vertebrate Paleontology, Society of Vertebrate Paleontology, 2020, 40 (1), pp.e1768105. 10.1080/02724634.2020.1768105. hal-03099746 HAL Id: hal-03099746 https://hal.archives-ouvertes.fr/hal-03099746 Submitted on 6 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Vertebrate Paleontology: For Review Only Tristichopterids (Sarcopterygii, Tetrapodomorpha) from the Late Devonian tetrapod-bearing locality of Strud (Belgium, late Famennian), with phylogenetic
    [Show full text]
  • The Origin and Diversification of Osteichthyans and Sarcopterygians: Rare Chinese Fossil Findings Advance Research on Key Issues of Evolution
    Vol.24 No.2 2010 Paleoichthyology The Origin and Diversification of Osteichthyans and Sarcopterygians: Rare Chinese Fossil Findings Advance Research on Key Issues of Evolution YU Xiaobo1, 2 ZHU Min1* and ZHAO Wenjin1 1 Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology (IVPP), CAS, Beijing 100044, China 2 Department of Biological Sciences, Kean University, Union, New Jersey 07083, USA iving organisms represent into a hierarchical (or “set-within- chimaeras) with 970 living species, only 1% of all the biota that set”) pattern of groupings on the and the long-extinct placoderms and Lhas ever existed on earth. family tree, with members of each acanthodians. Within osteichthyans, All organisms, living or extinct, new group united by a common the actinopterygian lineage (with are related to each other by sharing ancestor and characterized by novel 26,981 living species) includes common ancestors at different levels, biological features. For instance, sturgeons, gars, teleosts and their like twigs and branches connected within vertebrates, gnathostomes (or relatives, while the sarcopterygian to each other at different nodes on jawed vertebrates) arose as a new lineage (with 26,742 living species) the great tree of life. One major task group when they acquired jaws as includes lungfishes, coelacanths for paleontologists and evolutionary novel features, which set them apart (Latimeria), their extinct relatives as biologists is to find out how the from jawless agnathans (lampreys, well as all land-dwelling tetrapods diverse groups of organisms arose hagfishes and their relatives). Within (amphibians, reptiles, birds, and and how they are related to each gnathostomes, four major groups mammals) (Fig.1).
    [Show full text]
  • A High Latitude Devonian Lungfish, from the Famennian of South Africa
    A high latitude Devonian lungfish, from the Famennian of South Africa Robert W. Gess1,2,3,* and Alice M. Clement4,* 1 Geology Department, Rhodes University, Makhanda/Grahamstown, South Africa 2 Albany Museum, Makhanda/Grahamstown, South Africa 3 Wits University, DST-NRF Centre of Excellence in Palaeosciences (CoE-Pal), Johannesburg, South Africa 4 College of Science and Engineering, Flinders University, Adelaide, SA, Australia * These authors contributed equally to this work. ABSTRACT New fossil lungfish remains comprising two parasphenoids, tooth plates and scales from the Famennian Witpoort Formation of South Africa are described. From the parasphenoid material, which bears similarity to Oervigia and Sagenodus but is nevertheless unique, a new genus, Isityumzi mlomomde gen. et sp. nov. is erected. Tooth plates and scales from the same locality may be conspecific but are not yet assigned until further material becomes available. The tooth plates closely resemble those of some taxa in the Carboniferous genus Ctenodus. The new taxon is significant as only the second Devonian lungfish described from the African continent, and for hailing from the high-latitude (polar) Waterloo Farm environment situated close to 70 south during the Famennian. Subjects Paleontology, Taxonomy Keywords Waterloo farm, Witpoort formation, Dipnoi, Famennian, South Africa, Western Gondwana, Sarcopterygii, Palaeozoic INTRODUCTION Lungfish (Dipnoi) are a clade of sarcopterygian (lobe-finned) fishes with their origins Submitted 30 July 2019 stretching back to the Early Devonian, over 410 million years ago (Campbell & Barwick, Accepted 21 October 2019 Published 4 December 2019 1983; Chang & Yu, 1984; Denison, 1968; Wang et al., 1993). They reached a peak of diversity and abundance throughout the Devonian with close to 100 species described Corresponding author Alice M.
    [Show full text]
  • From Body Scale Ontogeny to Species Ontogeny: Histological and Morphological Assessment of the Late Devonian Acanthodian Triazeu
    RESEARCH ARTICLE From body scale ontogeny to species ontogeny: Histological and morphological assessment of the Late Devonian acanthodian Triazeugacanthus affinis from Miguasha, Canada Marion Chevrinais1☯, Jean-Yves Sire2☯, Richard Cloutier1☯* a1111111111 a1111111111 1 Universite du QueÂbec à Rimouski, Rimouski, QueÂbec G5L 3A1, Canada, 2 UMR 7138-Evolution Paris- Seine, IBPS, Universite Pierre et Marie Curie, Paris, France a1111111111 a1111111111 ☯ These authors contributed equally to this work. a1111111111 * [email protected] Abstract OPEN ACCESS Growth series of Palaeozoic fishes are rare because of the fragility of larval and juvenile Citation: Chevrinais M, Sire J-Y, Cloutier R (2017) specimens owing to their weak mineralisation and the scarcity of articulated specimens. From body scale ontogeny to species ontogeny: This rarity makes it difficult to describe early vertebrate growth patterns and processes in Histological and morphological assessment of the Late Devonian acanthodian Triazeugacanthus extinct taxa. Indeed, only a few growth series of complete Palaeozoic fishes are available; affinis from Miguasha, Canada. PLoS ONE 12(4): however, they allow the growth of isolated elements to be described and individual growth e0174655. https://doi.org/10.1371/journal. from these isolated elements to be inferred. In addition, isolated and in situ scales are gener- pone.0174655 ally abundant and well-preserved, and bring information on (1) their morphology and struc- Editor: Brian Lee Beatty, New York Institute of ture relevant to phylogenetic relationships and (2) individual growth patterns and processes Technology College of Osteopathic Medicine, UNITED STATES relative to species ontogeny. The Late Devonian acanthodian Triazeugacanthus affinis from the Miguasha Fossil-LagerstaÈtte preserves one of the best known fossilised ontogenies of Received: June 3, 2016 early vertebrates because of the exceptional preservation, the large size range, and the Accepted: March 13, 2017 abundance of complete specimens.
    [Show full text]
  • The Largest Silurian Vertebrate and Its Palaeoecological Implications
    OPEN The largest Silurian vertebrate and its SUBJECT AREAS: palaeoecological implications PALAEONTOLOGY Brian Choo1,2, Min Zhu1, Wenjin Zhao1, Liaotao Jia1 & You’an Zhu1 PALAEOCLIMATE 1Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology 2 Received and Paleoanthropology, Chinese Academy of Sciences, PO Box 643, Beijing 100044, China, School of Biological Sciences, 10 January 2014 Flinders University, GPO Box 2100, Adelaide 5001, South Australia. Accepted 23 May 2014 An apparent absence of Silurian fishes more than half-a-metre in length has been viewed as evidence that gnathostomes were restricted in size and diversity prior to the Devonian. Here we describe the largest Published pre-Devonian vertebrate (Megamastax amblyodus gen. et sp. nov.), a predatory marine osteichthyan from 12 June 2014 the Silurian Kuanti Formation (late Ludlow, ,423 million years ago) of Yunnan, China, with an estimated length of about 1 meter. The unusual dentition of the new form suggests a durophagous diet which, combined with its large size, indicates a considerable degree of trophic specialisation among early osteichthyans. The lack of large Silurian vertebrates has recently been used as constraint in Correspondence and palaeoatmospheric modelling, with purported lower oxygen levels imposing a physiological size limit. requests for materials Regardless of the exact causal relationship between oxygen availability and evolutionary success, this finding should be addressed to refutes the assumption that pre-Emsian vertebrates were restricted to small body sizes. M.Z. (zhumin@ivpp. ac.cn) he Devonian Period has been considered to mark a major transition in the size and diversity of early gnathostomes (jawed vertebrates), including the earliest appearance of large vertebrate predators1.
    [Show full text]
  • Sarcopterygii, Tetrapodomorpha)
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 421 Morphology, Taxonomy and Interrelationships of Tristichopterid Fishes (Sarcopterygii, Tetrapodomorpha) DANIEL SNITTING ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 UPPSALA ISBN 978-91-554-7153-8 2008 urn:nbn:se:uu:diva-8625 ! " ! #$ #%% &'$ ( ( ( ) * + , * - * #%% * . + / ( + " 0- + 1* ! * 2#* $2 * * /-3 45 646$$265$&6 * + 0- + 1 ( ( (* + ( ( , ( , , ( ( * 7 , ( ( 8 , ( ( (( 9* + ( , 9 , (, :( ( * / ( ( ( * + ( , , , * ; ( , ( ( + * + ( * ! ( , + ( , * + ( , 6, ( ( , ( < , , : * + , , < , , ( * ! ( * - + + + ! " # $ %& ' !()*+,- = - #%% /-- 8$68#2 /-3 45 646$$265$&6 ' ''' 6 8#$ 0 '>> **> ? @ ' ''' 6 8#$1 Et ignotas animum dimittit in artes. -Ovid, Metamorphoses VIII, 118 Trust your mechanic. -Dead Kennedys List of papers This thesis is based on the following papers, which will be referred to in the text by their Roman numerals: I Snitting, D. A redescription of the anatomy of Spodichthys buetleri Jarvik, 1985 (Sarcopterygii, Tetrapodomorpha) from
    [Show full text]
  • The Skeleton and the Mineralized Tissues of the Living Coelacanths Elements and Eventually Minute Superficial Endochondral 2008)
    Bull. Kitakyushu Mus. Nat. Hist. Hum. Hist., Ser. A, 17: 37–48, March 31, 2019 The skeleton and the mineralized tissues of the living coelacanths elements and eventually minute superficial endochondral 2008). The basal plate in both species is unmineralized (Fig. 7) evolution, but with an important reduction of the bony plates in REFERENCES L. 2014. Divergence in skeletal mass and bone anatomy of the teeth and tooth supporting tissues of MONDEJAR-FERNANDEZ, J. 2018. On cosmine: its origins, SMITH, J. L. B. 1940. A living coelacanth fish from South Biological Reviews, 44: 91–154. ossification (CASTANET et al., 1975). The axial skeleton is excepted at the contact between the superficial layer and the Latimeria linked to the vestigial state of its lung (CUPELLO et morphology in antarctic notothenioid fishes. Journal of Latimeria chalumnae. Archives of Oral Biology, 14: biology and implications for sarcopterygian Africa. Transactions of the Royal Society of South Africa, UYENO, T. and YABUMOTO, Y. 2007. Origin of extant composed of the notochord which is coated by an unmineralized basal plate, where spheritic mineralized granules are seen in al., 2015, 2019). AGASSIZ, L. 1833–44. Recherches sur les Poissons fossiles. Morphology, 275: 841–861. DOI: 10.1002/jmor.20258 855–858. interrelationships. Cybium, 42: 41–65. 28: 1–106, 44 Pls. coelacanths. The Coelacanth, Fathom the Mystery 2007. EUNIER1 UPELLO2 LÉMENT3 François J. M , Camila C and Gaël C fibrillary sheath and is totally deprived of well developed the very first layers of the basal plate (MEUNIER, 1980; Imprimerie Petitpierre, Neuchâtel. [5 volumes and atlas.] ERDMANN, M.
    [Show full text]