Competition Between the Gypsy Moth, Lymantria Dispar, and the Northern

Total Page:16

File Type:pdf, Size:1020Kb

Competition Between the Gypsy Moth, Lymantria Dispar, and the Northern Oecologia (2000) 125:218–228 DOI 10.1007/s004420000444 Ahnya M. Redman · J. Mark Scriber Competition between the gypsy moth, Lymantria dispar, and the northern tiger swallowtail, Papilio canadensis: interactions mediated by host plant chemistry, pathogens, and parasitoids Received: 29 November 1999 / Accepted: 14 April 2000 / Published online: 21 June 2000 © Springer-Verlag 2000 Abstract The gypsy moth, Lymantria dispar, and the Key words Competition · Tritrophic interactions · northern tiger swallowtail, Papilio canadensis, overlap Papilo canadensis · Lymantria dispar · Gypsy moth geographically as well as in their host ranges. Adult fe- male swallowtails are incapable of distinguishing be- tween damaged and undamaged leaves, and the opportu- Introduction nities for competition between these two species are nu- merous. We designed field and laboratory experiments to In 1960, Hairston and co-workers asserted that herbi- look for evidence of indirect competition between P. vores could not possibly be limited by food given the canadensis and L. dispar larvae. Swallowtail caterpillars overwhelming abundance of green plants on earth; defo- were reared in the laboratory on leaves from gypsy- liation, after all, seemed a relatively rare event (Hairston moth-defoliated and undefoliated trees to explore host- et al. 1960). Due in part to this influential paper, the plant effects. We tested for pathogen-mediated interac- importance of competition among herbivorous insects tions by rearing swallowtail larvae on both sterilized and was for many years largely overlooked (McClure 1983; unsterilized leaves from defoliated and undefoliated Denno et al. 1995) or discounted entirely (Lawton and sources. In addition, we measured the effects of known Strong 1981). Moreover, most documented instances gypsy moth pathogens, as well as gypsy moth body flu- of competition between herbivorous species can be clas- ids, on the growth and survival of swallowtail larvae. sified as “asymmetrical competition”, in which only Field experiments were designed to detect the presence one species is affected negatively, leading Lawton and of parasitoid-mediated competition, as well: we recorded Hassell (1981) to argue that such interactions would take parasitism of swallowtail caterpillars placed in the field place only during insect outbreaks and thus occur so either where there were no gypsy moth larvae present, or rarely as to be ecologically unimportant. where we had artificially created dense gypsy moth pop- Many plant-herbivore ecologists have recently begun ulations. We found evidence that swallowtails were neg- to reexamine interspecific competition among insect her- atively affected by gypsy moths in several ways: defolia- bivores, which now appears to be far more common than tion by gypsy moths depressed swallowtail growth rate once thought (Denno et al. 1995). However, it may yet, and survival, whether leaves were sterilized or not; ster- as Lawton and Hassell (1981) suggested, tend to be asso- ilization significantly reduced the effect of defoliation, ciated with introduced pests, free from their natural ene- and gypsy moth body fluids proved lethal; and swallow- mies and capable of devouring enormous amounts of tail caterpillars suffered significantly increased rates of vegetation (DeBach and Sundby 1963; Denno et al. parasitism when they were placed in the field near gypsy 1995). Further, it probably involves indirect, or “appar- moth infestations. ent”, competition more frequently than direct battles over food (Faeth 1985; Hawkins 1988; Karban et al. 1994; Denno et al. 1995). Typically, indirect competition between species occurs when the activity of one species A.M. Redman · J.M. Scriber induces a chemical response in its host plant, affecting Department of Entomology, Michigan State University, other species feeding on the same plant (Niemela et East Lansing, MI 48824, USA al. 1984; Faeth 1985, 1986; West 1985; Harrison and Present address: Karban 1986; Gibberd et al. 1988; Neuvonen et al. 1988; A.M. Redman, Department of Entomology, The Pennsylvania State University, University Park, Hunter 1990; Dankert et al. 1997). PA 16802, USA, Examples of indirect competition mediated by patho- e-mail: [email protected], Fax: +1-814-8653048 gens have been reported for a great many species, in- 219 cluding humans (Price et al. 1986), but not, as far as we ize salicaceous plants, which abound in northern lati- know, for herbivorous insects. Few cases have been doc- tudes (Lindroth and Scriber 1988; Scriber et al. 1989). P. umented, but predators and parasitoids may also mediate canadensis is polyphagous, but it typically exhibits a indirect competition (McClure 1981; Karban et al. strong preference for quaking aspen, Populus tremulo- 1994). The attraction of polyphagous natural enemies to ides (Salicaceae) (Scriber et al. 1991). Females of the visual cues (Faeth 1990) or unknown factors associated univoltine Papilio canadensis generally oviposit on new- with primary hosts (Settle and Wilson 1990) or host ly expanded leaves during the first few weeks of June, damage (Faeth 1986) can negatively affect neighboring and larvae grow throughout the summer, pupating in herbivores. Environmental factors, in certain cases, may mid- to late August. also change the outcome of competition: wind and rain Quaking aspen, which supports a large number of her- (McClure and Price 1975, 1976), or temperature (Waloff bivores, is defended primarily by the phenolic glycosides 1968; Valle et al. 1989) may differentially affect herbi- salicortin and tremulacin, and secondarily by tannins vore species that vary in their tolerance of such factors, (Clausen et al. 1989; Lindroth 1992). It grows indetermi- thus conferring an advantage on one competitor. A novel nately throughout the summer, even in the absence of de- example of environmentally mediated competition oc- foliation, and increases its rate of growth when leaf tis- curs on oak trees, where an early-season leaf-chewer cre- sue is removed (Hodson 1981). In some cases, refolia- ates such large holes in leaves that a late-season leaf- tion replaces nearly 90% of damaged foliage (Heichel rolling species is rendered incapable of creating struc- and Turner 1976) with leaves that tend to be rich in phe- tures airtight enough to maintain adequate humidity nolic glycosides (Clausen et al. 1989). Damaged leaves (Hunter and Willmer 1989). themselves also tend to contain elevated levels of these As awareness of interspecific competition among in- compounds (Mattson and Palmer 1987). sects increases, so does interest in its impact on the popu- The European gypsy moth, Lymantria dispar (L.) lation dynamics, host use, and community organization of (Lepidoptera: Lymantriidae) was brought to Massachu- insect folivores. There is experimental evidence suggest- setts from France in 1868, and has since radiated steadily ing that the population dynamics of certain herbivore spe- to the north, south, and west, taking over most of the cies can be driven both by changes in plant chemistry in- eastern United States (Liebhold et al. 1997; Sharov et al. duced by competing species feeding on the same host, and 1998). In the East, it prefers to feed on white oak and by natural enemies associated with competitors. Karban chestnut oak, and, in the Midwest, Populus species such (1986), for one, showed that competition between Phil- as quaking aspen are favored (Wallner 1988). Gypsy aenus spumarius (Homoptera: Cercopidae) and Platyptilia moth outbreaks are ecologically dramatic events, and it williamsii (Lepidoptera: Pterophoridae), presumably me- is difficult to imagine that many species remain unaffect- diated in part by plant chemistry, negatively affected the ed by the presence of such a voracious defoliator. During abundance of P. spumarius on Erigeron glaucus (Compo- peak outbreak years, levels of stand defoliation by gypsy sitae). Several years later, Karban et al. (1994) found that moths can reach nearly 100% in some areas (Cameron populations of the herbivorous Tetranychus pacificus (Ac- 1986; Hart 1990), opening the tree canopy and causing ari: Tetranychidae) fluctuated in response to populations profound ecological changes, such as increased preda- of a neighboring herbivore, Eotetranychus willamettei tion on bird nests (Thurber et al. 1994) and a reduction (Acari: Tetranychidae), and its associated predators on in the diversity of lepidopteran fauna (Sample et al. grapevines. 1996). Gypsy moth defoliation affects the chemistry of Further, a few researchers have shown that interspe- primary host plants, such as quaking aspen (Lindroth cific competition plays a part in shaping the host use and 1992; Dankert et al. 1997), and gypsy moth outbreaks the community organization of folivores. For example, are associated with high densities of pathogens, preda- Ritchie and Tilman (1992) found that the relative por- tors, and parasitoids (Elkinton and Liebhold 1990). At tions of dicots and monocots in the diets of polyphagous least some of these natural enemies, e.g., Compsilura co- grasshoppers were altered by the presence of indirect ncinnata (Diptera: Tachinidae), are known to use alterna- competition, and Karban (1989) found experimental evi- tive hosts (Leonard 1981). dence that interspecific competition helped to shape the Both the geographic range and the host range of Papi- community organization of folivores on Erigeron glau- lio canadensis overlap significantly with those of L. dis- cus. par. Therefore, it seemed likely to us that the tri- or We
Recommended publications
  • Life History of the Angoumois Grain Moth in Maryland
    2 5 2 8 2 5 :~ Illp·8 11111 . 11111 11111 1.0 1.0 i~ . 3 2 Bkl: 1111/,32 2.2 .,lA 11111 . .2 I" 36 I" .z 11111 .: ~F6 I:' ­ I'· "' I~ :: ~m~ I­.: ,~ ~ l..;L,:,1.O. '- " 1.1 1.1 La.. ,­ -- -- 11111 1.8 111111.25 /////1.4 111111.6 111111.25 1111/1.4 ~ 11111~·6 MICROCOPY RESOLUTION TEST CHART MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANOAROS-1963·A NATIONAL BUREAU Dr STAN£1AHOS·1963 A :1<f:~ . TEcliNICALBuLLETIN~~==~~.="=' No. 351 _ '='~.\III~.J.~=~.~=======_ APIUL, 1933 UNITED STATES DEPARTMENT OF AGRICULTURE WASHINGTON. D. C. 'LIFE HISTORY. OF THE ANGOUMOI8. .. ~ GRAIN MOTH IN MARYLAND . • ~J:J By PEREZ SIMM;ONS, Entomologist; and G. W. ~LLINGTON,t Assi8tant Entomologist, . DiVision of StoTed Product In.~ecw, Bureau of Entomology 2 CONTENTS Page Page , :.. Introduction________________________________ 1 Lif",his.tor~OVIp05.lt""l <;letails-Contint:ed.______ ._______________________ ·16 " ~ The AngoumoL. grain moth in wheat and ."'~ ~ corn~ ___ ..... ___ ... ___ .. ________________________ 2 Incubatioll period______________________ 19 Larval period___________________ _________ 20 ::<l ."': Annual cycle of the moth on :Maryland 2 "" _ farms ____________ ,____________________ Pupal period____________________________ 24 f_.~ Ef,Tects of some farm practices on moth Development from hotching to emer· :Ji :',f Increasc._______________________________ 3 gencc_________________________________ 25 Overwintering of the insP.Ct..____________ 3 Effectstemperatl on development Ires ________________________ oC high and low "'_ 28 Spring dispcr.;al to growing wh~aL______ 5 ;.; Thewheat Angoumois________________________________ grain moth in seed _ Comparative rate oC development oC thfi Ii sexes _________________________________.:. 30 <': Dispersal to cornfields ________ ._________ _ 12 Parasit.es____________________________________ 31 ~ - Life-history details ________________________ _ Outbreaks, past and Cuture__________________ 31 Behavior of the adults ________ .
    [Show full text]
  • Range Expansion of Lymantria Dispar Dispar (L.) (Lepidoptera: Erebidae) Along Its North‐Western Margin in North America Despite Low Predicted Climatic Suitability
    Received: 22 December 2017 | Revised: 9 August 2018 | Accepted: 11 September 2018 DOI: 10.1111/jbi.13474 RESEARCH PAPER Range expansion of Lymantria dispar dispar (L.) (Lepidoptera: Erebidae) along its north‐western margin in North America despite low predicted climatic suitability Marissa A. Streifel1,2 | Patrick C. Tobin3 | Aubree M. Kees1 | Brian H. Aukema1 1Department of Entomology, University of Minnesota, St. Paul, Minnesota Abstract 2Minnesota Department of Agriculture, Aim: The European gypsy moth, Lymantria dispar dispar (L.), (Lepidoptera: Erebidae) St. Paul, Minnesota is an invasive defoliator that has been expanding its range in North America follow- 3School of Environmental and Forest Sciences, University of Washington, Seattle, ing its introduction in 1869. Here, we investigate recent range expansion into a Washington region previously predicted to be climatically unsuitable. We examine whether win- Correspondence ter severity is correlated with summer trap captures of male moths at the landscape Brian Aukema, Department of Entomology, scale, and quantify overwintering egg survivorship along a northern boundary of the University of Minnesota, St. Paul, MN. Email: [email protected] invasion edge. Location: Northern Minnesota, USA. Funding information USDA APHIS, Grant/Award Number: Methods: Several winter severity metrics were defined using daily temperature data A-83114 13255; National Science from 17 weather stations across the study area. These metrics were used to explore Foundation, Grant/Award Number: – ‐ 1556111; United States Department of associations with male gypsy moth monitoring data (2004 2014). Laboratory reared Agriculture Animal Plant Health Inspection egg masses were deployed to field locations each fall for 2 years in a 2 × 2 factorial Service, Grant/Award Number: 15-8130- / × / 0577-CA; USDA Forest Service, Grant/ design (north south aspect below above snow line) to reflect microclimate varia- Award Number: 14-JV-11242303-128 tion.
    [Show full text]
  • Hawk Moths of North America Is Richly Illustrated with Larval Images and Contains an Abundance of Life History Information
    08 caterpillars EUSA/pp244-273 3/9/05 6:37 PM Page 244 244 TULIP-TREE MOTH CECROPIA MOTH 245 Callosamia angulifera Hyalophora cecropia RECOGNITION Frosted green with shiny yellow, orange, and blue knobs over top and sides of body. RECOGNITION Much like preceding but paler or Dorsal knobs on T2, T3, and A1 somewhat globular and waxier in color with pale stripe running below set with black spinules. Paired knobs on A2–A7 more spiracles on A1–A10 and black dots on abdomen cylindrical, yellow; knob over A8 unpaired and rounded. lacking contrasting pale rings. Yellow abdominal Larva to 10cm. Caterpillars of larch-feeding Columbia tubercle over A8 short, less than twice as high as broad. Silkmoth (Hyalophora columbia) have yellow-white to Larva to 6cm. Sweetbay Silkmoth (Callosamia securifera) yellow-pink instead of bright yellow knobs over dorsum similar in appearance but a specialist on sweet bay. Its of abdomen and knobs along sides tend to be more white than blue (as in Cecropia) and are yellow abdominal tubercle over A8 is nearly three times as set in black bases (see page 246). long as wide and the red knobs over thorax are cylindrical (see page 246). OCCURRENCE Urban and suburban yards and lots, orchards, fencerows, woodlands, OCCURRENCE Woodlands and forests from Michigan, southern Ontario, and and forests from Canada south to Florida and central Texas. One generation with mature Massachusetts to northern Florida and Mississippi. One principal generation northward; caterpillars from late June through August over most of range. two broods in South with mature caterpillars from early June onward.
    [Show full text]
  • Lepidoptera, Pterophoridae)
    European Journal of Taxonomy 247: 1–11 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2016.247 www.europeanjournaloftaxonomy.eu 2016 · Kovtunovich V. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Research article urn:lsid:zoobank.org:pub:90036D08-B606-4401-B16D-F89006A3FDEC Five new species of the genus Singularia Arenberger, 1988 (Lepidoptera, Pterophoridae) Vasiliy KOVTUNOVICH 1, Peter USTJUZHANIN 2, Mildred MARQUEZ 3 & Anna USTJUZHANINA 4,* 1 Moscow Society of Nature Explorers, c/o Malaya Filevskaya str., 24/1, app. 20, 121433, Russia. 2 Altai State University, Lenina 61, Barnaul, 656049, Russia. 3 National Autonomous University of Honduras, Siguatepeque, Comayagua, Honduras. 4 National Research Tomsk Polytechnic University, Lenina 30, Tomsk, 634050, Russia. 1 E-mail: [email protected] 2 E-mail: [email protected] 3 E-mail: [email protected] * Corresponding author: [email protected] 1 urn:lsid:zoobank.org:author:1959492D-B1A5-45F7-9C11-F079D399B42B 2 urn:lsid:zoobank.org:author:60F67CCF-F6C9-4CD4-A2DF-F3216DC46958 3 urn:lsid:zoobank.org:author:6D2884AB-DE79-4454-9E20-D3D83DB1FAAA 4 urn:lsid:zoobank.org:author:4A20CB2F-2FA9-4FB6-9983-82E203FFB0E1 Abstract. Expeditions of Ron Brechlin, Viktor Synjaev, Mildred Márquez, Juan Machado, Oleg Romanov and other colleagues over the last five years in Colombia, Ecuador and Bolivia have resulted in significant collections of Pterophoridae Zeller, 1841. The article describes five new species: Singularia brechlini Kovtunovich & Ustjuzhanin sp. nov., Singularia sinjaevi Kovtunovich & Ustjuzhanin sp. nov., Singularia guajiro Kovtunovich & Ustjuzhanin sp. nov., Singularia tolima Kovtunovich & Ustjuzhanin sp. nov. and Singularia lesya Kovtunovich & Ustjuzhanin sp. nov.
    [Show full text]
  • Big Creek Lepidoptera Checklist
    Big Creek Lepidoptera Checklist Prepared by J.A. Powell, Essig Museum of Entomology, UC Berkeley. For a description of the Big Creek Lepidoptera Survey, see Powell, J.A. Big Creek Reserve Lepidoptera Survey: Recovery of Populations after the 1985 Rat Creek Fire. In Views of a Coastal Wilderness: 20 Years of Research at Big Creek Reserve. (copies available at the reserve). family genus species subspecies author Acrolepiidae Acrolepiopsis californica Gaedicke Adelidae Adela flammeusella Chambers Adelidae Adela punctiferella Walsingham Adelidae Adela septentrionella Walsingham Adelidae Adela trigrapha Zeller Alucitidae Alucita hexadactyla Linnaeus Arctiidae Apantesis ornata (Packard) Arctiidae Apantesis proxima (Guerin-Meneville) Arctiidae Arachnis picta Packard Arctiidae Cisthene deserta (Felder) Arctiidae Cisthene faustinula (Boisduval) Arctiidae Cisthene liberomacula (Dyar) Arctiidae Gnophaela latipennis (Boisduval) Arctiidae Hemihyalea edwardsii (Packard) Arctiidae Lophocampa maculata Harris Arctiidae Lycomorpha grotei (Packard) Arctiidae Spilosoma vagans (Boisduval) Arctiidae Spilosoma vestalis Packard Argyresthiidae Argyresthia cupressella Walsingham Argyresthiidae Argyresthia franciscella Busck Argyresthiidae Argyresthia sp. (gray) Blastobasidae ?genus Blastobasidae Blastobasis ?glandulella (Riley) Blastobasidae Holcocera (sp.1) Blastobasidae Holcocera (sp.2) Blastobasidae Holcocera (sp.3) Blastobasidae Holcocera (sp.4) Blastobasidae Holcocera (sp.5) Blastobasidae Holcocera (sp.6) Blastobasidae Holcocera gigantella (Chambers) Blastobasidae
    [Show full text]
  • Electrophysiological Evidence of RML12 Mosquito Cell Line Towards Neuronal Differentiation by 20-Hydroxyecdysdone
    www.nature.com/scientificreports OPEN Electrophysiological evidence of RML12 mosquito cell line towards neuronal diferentiation by Received: 2 January 2018 Accepted: 7 June 2018 20-hydroxyecdysdone Published: xx xx xxxx Julie Gaburro 1,2, Jean-Bernard Duchemin 1, Prasad N. Paradkar 1, Saeid Nahavandi2 & Asim Bhatti 2 Continuous cell lines from insect larval tissues are widely used in diferent research domains, such as virology, insect immunity, gene expression, and bio pharmacology. Previous study showed that introduction of 20-hydroxyecdysone to Spodoptera cell line induced a neuron-like morphology with neurite extensions. Despite some results suggesting potential presence of neuro-receptors, no study so far has shown that these neuron-induced cells were functional. Here, using microelectrode arrays, we showed that the mosquito cell line, RML12, diferentiated with 20-hydroxyecdysone, displays spontaneous electrophysiological activity. Results showed that these cells can be stimulated by GABAergic antagonist as well as nicotinic agonist. These results provide new evidence of neuron-like functionality of 20-hydroxyecdysone induced diferentiated mosquito cell line. Finally, we used this new model to test the efects of two insecticides, temephos and permethrin. Our analysis revealed signifcant changes in the spiking activity after the introduction of these insecticides with prolonged efect on the neuronal activity. We believe that this diferentiated mosquito neuronal cell model can be used for high-throughput screening of new pesticides on insect nervous system instead of primary neurons or in vivo studies. Neuroactive insecticides remain the principal protection against insects, either to protect crops, livestock or humans from depredation and pathogens transmitted by vectors1. Te need of functional neurons is very impor- tant to identify new compounds and study insecticide efects on the insect nervous system in vitro, which is still not well understood.
    [Show full text]
  • Moths of the Douglas Lake Region (Emmet and Cheboygan Counties), Michigan: VI
    The Great Lakes Entomologist Volume 35 Number 1 - Spring/Summer 2002 Number 1 - Article 10 Spring/Summer 2002 April 2002 Moths of the Douglas Lake Region (Emmet and Cheboygan Counties), Michigan: VI. Miscellaneous Small Families (Lepidoptera) Edward G. Voss University of Michigan Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Voss, Edward G. 2002. "Moths of the Douglas Lake Region (Emmet and Cheboygan Counties), Michigan: VI. Miscellaneous Small Families (Lepidoptera)," The Great Lakes Entomologist, vol 35 (1) Available at: https://scholar.valpo.edu/tgle/vol35/iss1/10 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Voss: Moths of the Douglas Lake Region (Emmet and Cheboygan Counties), 2002 THE GREAT LAKES ENTOMOLOGIST 53 MOTHS OF THE DOUGLAS LAKE REGION (EMMET AND CHEBOYGAN COUNTIES), MICHIGAN: VI. MISCELLANEOUS SMALL FAMILIES (LEPIDOPTERA) Edward G. Voss1 ABSTRACT Forty-seven species in nine families of Lepidoptera (Hepialidae, Psychidae, Alucitidae, Sesiidae, Cossidae, Limacodidae, Thyrididae, Pterophoridae, Epiplemi- dae) are listed with earliest and latest recorded flight dates in Emmet and Cheboy- gan counties, which share the northern tip of the Lower Peninsula of Michigan. The records are from the principal institutional and private collections of Michigan moths and continue the documented listing of Lepidoptera in the region. ____________________ Emmet and Cheboygan counties share the northern tip of the Lower Peninsula of Michigan, the former bordered on the west by Lake Michigan and the latter, on the east by Lake Huron.
    [Show full text]
  • Acoustic Communication in the Nocturnal Lepidoptera
    Chapter 6 Acoustic Communication in the Nocturnal Lepidoptera Michael D. Greenfield Abstract Pair formation in moths typically involves pheromones, but some pyra- loid and noctuoid species use sound in mating communication. The signals are generally ultrasound, broadcast by males, and function in courtship. Long-range advertisement songs also occur which exhibit high convergence with commu- nication in other acoustic species such as orthopterans and anurans. Tympanal hearing with sensitivity to ultrasound in the context of bat avoidance behavior is widespread in the Lepidoptera, and phylogenetic inference indicates that such perception preceded the evolution of song. This sequence suggests that male song originated via the sensory bias mechanism, but the trajectory by which ances- tral defensive behavior in females—negative responses to bat echolocation sig- nals—may have evolved toward positive responses to male song remains unclear. Analyses of various species offer some insight to this improbable transition, and to the general process by which signals may evolve via the sensory bias mechanism. 6.1 Introduction The acoustic world of Lepidoptera remained for humans largely unknown, and this for good reason: It takes place mostly in the middle- to high-ultrasound fre- quency range, well beyond our sensitivity range. Thus, the discovery and detailed study of acoustically communicating moths came about only with the use of electronic instruments sensitive to these sound frequencies. Such equipment was invented following the 1930s, and instruments that could be readily applied in the field were only available since the 1980s. But the application of such equipment M. D. Greenfield (*) Institut de recherche sur la biologie de l’insecte (IRBI), CNRS UMR 7261, Parc de Grandmont, Université François Rabelais de Tours, 37200 Tours, France e-mail: [email protected] B.
    [Show full text]
  • Pdf/Curvefit.Pdf) (Retrieved 1 Affect Preference and Performance of Gypsy Moth Caterpillars
    Environmental Entomology, 46(4), 2017, 1012–1023 doi: 10.1093/ee/nvx111 Advance Access Publication Date: 4 July 2017 Physiological Ecology Research Effects of Temperature on Development of Lymantria dispar asiatica and Lymantria dispar japonica (Lepidoptera: Erebidae) Samita Limbu,1 Melody Keena,2 Fang Chen,3 Gericke Cook,4 Hannah Nadel,5 and Kelli Hoover1,6 1Department of Entomology and Center for Chemical Ecology, The Pennsylvania State University, 501 ASI Bldg., University Park, PA 16802 ([email protected]; [email protected]), 2U. S. Forest Service, Northern Research Station, 51 Mill Pond Rd., Hamden, CT 06514 ([email protected]), 3Forestry Bureau of Jingzhou, –14 Jingzhou North Rd., Jingzhou, Hubei, China 434020 ([email protected]), 4USDA Animal and Plant Health Inspection Service, PPQ CPHST, 2301 Research Blvd, Suite 108, Fort Collins, CO 80526 ([email protected]), 5USDA Animal and Plant Health Inspection Service, PPQ S & T, 1398 West Truck Rd., Buzzards Bay, MA 02542 ([email protected]), and 6Corresponding author, e-mail: [email protected] The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Forest Service of any product or service to the exclusion of others that may be suitable. Subject Editor: Kelly Johnson Received 18 January 2017; Editorial decision 1 June 2017 Abstract Periodic introductions of the Asian subspecies of gypsy moth, Lymantria dispar asiatica Vnukovskij and Lymantria dispar japonica Motschulsky, in North America are threatening forests and interrupting foreign trade.
    [Show full text]
  • Moths of Ohio Guide
    MOTHS OF OHIO field guide DIVISION OF WILDLIFE This booklet is produced by the ODNR Division of Wildlife as a free publication. This booklet is not for resale. Any unauthorized INTRODUCTION reproduction is prohibited. All images within this booklet are copyrighted by the Division of Wildlife and it’s contributing artists and photographers. For additional information, please call 1-800-WILDLIFE. Text by: David J. Horn Ph.D Moths are one of the most diverse and plentiful HOW TO USE THIS GUIDE groups of insects in Ohio, and the world. An es- Scientific Name timated 160,000 species have thus far been cata- Common Name Group and Family Description: Featured Species logued worldwide, and about 13,000 species have Secondary images 1 Primary Image been found in North America north of Mexico. Secondary images 2 Occurrence We do not yet have a clear picture of the total Size: when at rest number of moth species in Ohio, as new species Visual Index Ohio Distribution are still added annually, but the number of species Current Page Description: Habitat & Host Plant is certainly over 3,000. Although not as popular Credit & Copyright as butterflies, moths are far more numerous than their better known kin. There is at least twenty Compared to many groups of animals, our knowledge of moth distribution is very times the number of species of moths in Ohio as incomplete. Many areas of the state have not been thoroughly surveyed and in some there are butterflies. counties hardly any species have been documented. Accordingly, the distribution maps in this booklet have three levels of shading: 1.
    [Show full text]
  • Ecosystem Services Provided by Bats
    Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Issue: The Year in Ecology and Conservation Biology Ecosystem services provided by bats Thomas H. Kunz,1 Elizabeth Braun de Torrez,1 Dana Bauer,2 Tatyana Lobova,3 and Theodore H. Fleming4 1Center for Ecology and Conservation Biology, Department of Biology, Boston University, Boston, Massachusetts. 2Department of Geography, Boston University, Boston, Massachusetts. 3Department of Biology, Old Dominion University, Norfolk, Virginia. 4Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona Address for correspondence: Thomas H. Kunz, Ph.D., Center for Ecology and Conservation Biology, Department of Biology, Boston University, Boston, MA 02215. [email protected] Ecosystem services are the benefits obtained from the environment that increase human well-being. Economic valuation is conducted by measuring the human welfare gains or losses that result from changes in the provision of ecosystem services. Bats have long been postulated to play important roles in arthropod suppression, seed dispersal, and pollination; however, only recently have these ecosystem services begun to be thoroughly evaluated. Here, we review the available literature on the ecological and economic impact of ecosystem services provided by bats. We describe dietary preferences, foraging behaviors, adaptations, and phylogenetic histories of insectivorous, frugivorous, and nectarivorous bats worldwide in the context of their respective ecosystem services. For each trophic ensemble, we discuss the consequences of these ecological interactions on both natural and agricultural systems. Throughout this review, we highlight the research needed to fully determine the ecosystem services in question. Finally, we provide a comprehensive overview of economic valuation of ecosystem services.
    [Show full text]
  • Browntail Moth and the Big Itch: Public Health Implications and Management of an Invasive Species
    Browntail Moth and the Big Itch: Public Health Implications and Management of an Invasive Species July 22, 2021 Jill H. Colvin, MD, FAAD MDFMR Dermatology photo credits: Jon Karnes, MD Thomas E. Klepach, PhD Assistant Professor of Biology, Colby College Ward 3 City Councilor, Waterville, Maine Financial disclosure statement Jill H Colvin MD and Thomas E. Klepach, PhD do not have a financial interest/arrangement or affiliation with any organizations that could be perceived as a conflict of interest in the context of this presentation. OBJECTIVES • Identify: • Impacts of browntail moth (BTM) infestation on humans and the environment • Review: • Presentation and treatment of BTM dermatoses • Biology of the BTM • Population trends of the BTM • BTM mitigation strategies JUNE 2021, AUGUSTA, MAINE PERVASIVE! COMPLICATIONS OF INVASIVE BROWNTAIL MOTH SOCIAL MEDIA RADIO ARBORISTS PHARMACY NEWSPAPERS FRIENDS COLLEAGUES HEALTH CARE FAMILY TEXTS TOURISM PATIENTS MAINE.GOV SELF REALTY PHONE CALLS ACTIVISM TREES SOCIAL MEDIA IMPACT: TOURISM, REAL ESTATE, DAILY LIFE Maine.gov Maine.gov Photo credit: Jon Karnes, MD Photo credit: Robert Kenney, DO BTM: Risk to Human Health Mediated by: Toxic hairs on caterpillars, female moths, environment Direct contact Airborne Damage skin, eye, airway in multiple ways Mechanical: Barbs on hair Chemical: toxin Irritant Allergen One report of Death – 1914: ”severe internal poisoning caused by inhaling the hairs” Definitions Lepidopterism is the term for cutaneous and systemic reactions that result from contact with larvae (ie, caterpillars) or adult forms of moths and butterflies (order, Lepidoptera). Erucism (from Latin "eruca," caterpillar) is also used to refer to reactions from contact with caterpillars. photo credit: Jon Karnes, MD “The BTM, its caterpillar and their rash” Clinical and Experimental Dermatology (1979), Cicely P.
    [Show full text]