Hydrogen Production by the Hyperthermophilic Bacterium

Total Page:16

File Type:pdf, Size:1020Kb

Hydrogen Production by the Hyperthermophilic Bacterium Boileau et al. Biotechnol Biofuels (2016) 9:269 DOI 10.1186/s13068-016-0678-8 Biotechnology for Biofuels RESEARCH Open Access Hydrogen production by the hyperthermophilic bacterium Thermotoga maritima part I: effects of sulfured nutriments, with thiosulfate as model, on hydrogen production and growth Céline Boileau, Richard Auria, Sylvain Davidson, Laurence Casalot, Pierre Christen, Pierre‑Pol Liebgott and Yannick Combet‑Blanc* Abstract Background: Thermotoga maritima and T. neapolitana are hyperthermophile bacteria chosen by many research teams to produce bio-hydrogen because of their potential to ferment a wide variety of sugars with the highest theoretical H2/glucose yields. However, to develop economically sustainable bio-processes, the culture medium for‑ mulation remained to be optimized. The main aim of this study was to quantify accurately and specifically the effect of thiosulfate, used as sulfured nutriment model, on T. maritima growth, yields and productivities of hydrogen. The results were obtained from batch cultures, performed into a bioreactor, carefully controlled, and specifically designed to prevent the back-inhibition by hydrogen. Results: Among sulfured nutriments tested, thiosulfate, cysteine, and sulfide were found to be the most efficient to stimulate T. maritima growth and hydrogen production. In particular, under our experimental conditions (glu‑ 1 1 cose 60 mmol L− and yeast extract 1 g L− ), the cellular growth was limited by thiosulfate concentrations lower 1 than 0.06 mmol L− . Under these conditions, the cellular yield on thiosulfate (Y X/Thio) could be determined at 1 3617 mg mmol− . In addition, it has been shown that the limitations of T. maritima growth by thiosulfate lead to metabolic stress marked by a significant metabolic shift of glucose towards the production of extracellular polysac‑ charides (EPS). Finally, it has been estimated that the presence of thiosulfate in the T. maritima culture medium signifi‑ cantly increased the cellular and hydrogen productivities by a factor 6 without detectable sulfide production. Conclusions: The stimulant effects of thiosulfate at very low concentrations on T. maritima growth have forced us to reconsider its role in this species and more probably also in all thiosulfato-reducer hyperthermophiles. Henceforth, thiosulfate should be considered in T. maritima as (1) an essential sulfur source for cellular materials when it is present 1 at low concentrations (about 0.3 mmol g− of cells), and (2) as both sulfur source and detoxifying agent for H2 when thiosulfate is present at higher concentrations and, when, simultaneously, the pH2 is high. Finally, to improve the hydrogen production in bio-processes using Thermotoga species, it should be recommended to incorporate thiosul‑ fate in the culture medium. Keywords: Thermotoga maritima, Hydrogen, Thiosulfate, Productivity, Growth, Yields, Sulfured nutriments, Glucose, Metabolism *Correspondence: yannick.combet‑[email protected] Aix Marseille Université, CNRS, Université de Toulon, IRD, MIO UM 110, 13288 Marseille, France © The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Boileau et al. Biotechnol Biofuels (2016) 9:269 Page 2 of 17 Background be preserved. The use of marine microorganisms, which Today, the amount of energy derived from fossils fuels produce hydrogen in seawater from a wide variety of sug- (petroleum, natural gas, and coal) represents about ars, appears, in this case, to be a promising approach. 80% of the world energy consumption. It is hence- Thermotoga spp. are hyperthermophile or thermophile forth recognized that their use has induced very seri- fermentative anaerobic bacteria belonging to a deep- ous environmental pollutions. The accumulation of the branching lineage within the domain Bacteria [31–34]. greenhouse-gas carbon dioxide in the atmosphere and They inhabit various hot ecosystems, including hot the depletion of fossil fuels, altogether with the high springs, hydrothermal vents, and oil reservoirs [35–37]. prices and the ever-increasing demand have forced most Among Thermotoga species, T. maritima, originally iso- of the countries to start looking for cleaner and renew- lated from a geothermal-heated marine sediment at able energy sources. Therefore, major research efforts Vulcano, Italy [32], has received considerable interest as focusing on solar and wind energy, geothermal resources, potential hydrogen producer [38]. Indeed, T. maritima and energy derived from biomass were undertaken to is able to produce hydrogen with high productivity and develop new technologies suitable for industrial use. yield [29, 39] from a wide variety of sugars, ranging from In this context, although dihydrogen (H2) is not a pri- hexose and pentose monomers to starch and xylan poly- mary energy source, it is currently seen as a very prom- mers [40]. In addition, compared to the other hydrogen- ising carbonless “energy carrier” which may be used to producing microorganisms, Thermotogales, including store energy and provide an efficient alternative to fossil T. maritima, exhibit the highest H2 yields, close to the fuels. Up to now, most of the H2 is currently industri- Thauer limit (4 mol H2 per mol glucose). For instance, a ally produced by steam reforming of natural gas or by yield of 4 mol of H2 per mol of glucose has been reported alternative processes based on electrolysis or thermoly- by Schöder et al. [39] when T. maritima growth was sis of water [1]. However, in the last decade, biological limited by glucose, the energy source, and under very processes employing bacteria for H2 production have low hydrogen partial pressure (down to 1.3% as hydro- received a significant and increasing attention [2–11]. gen partial pressure). Actually, T. maritima harvests Indeed, like with other biofuels such as ethanol, butanol, energy by glycolysis via the Embden–Meyerhof pathway fatty acids, and methane, bio-hydrogen can be produced (EMP) as the main route and via the Entner–Doudor- by processes using living organisms such as green algae off (ED) pathway to a lesser extent (about 85 and 15% of (photolysis of water), phototrophic and anaerobic micro- consumed glucose, respectively) [39, 41]. The ultimate organisms (photofermentation of organic acids), and pyruvate-reduction steps resulted in acetate, H2 and CO2 anaerobic fermentative microorganisms (dark fermen- (1:2:1 as molar proportions, respectively) as major end- tation of organic substrates) [2, 7, 8, 11–19]. Among products of glucose fermentation, and in lactate, alanine, these, due to the large spectrum of catabolic activities and extracellular polysaccharides (EPS) as minor end- of H2-producing microorganisms, dark fermentation is products. The production of these fermentation prod- considered as one of the most promising route. The fer- ucts was shown to depend on culture conditions (culture mentation processes of these microorganisms poten- medium, nutritional or oxidative stress, operating condi- tially allow producing hydrogen from renewable energy tions such as pH, pH2, stirring, Eh,…) [35, 39, 42–46]. In sources derived from biomass or various carbohydrate- agreement with this classical fermentation model, the H2 rich waste streams [2, 20–26]. yield is optimal (4 H2:2 CO2:2 acetate as molar propor- Depending on the microorganism species used, dark tions per mol of glucose or other hexose) only when all fermentations can be performed at either moderate or the glucose is converted to acetate because the lactate, elevated temperature. In the former case, hydrogen pro- alanine, and EPS productions are bypassing pathways ductivities (QH2/time) were generally higher whereas impairing the H2 production. Furthermore, it has been higher yields (YH2/substrate) were reached in the latter reported in the literature that Thermotogales reduced [4]. Moreover, the advantages of high versus low tem- sulfur-containing compounds such as elemental sulfur, peratures for the bio-hydrogen production include bet- polysulfide, and thiosulfate to hydrogen sulfide [47–49]. ter pathogen destruction, reduced risks of methanogen When T. maritima and T. neapolitana, two very closely or acetogen growth (hydrogen consuming), and less related species [50], were cultivated in the presence of sensitivity of hyperthermophiles to the H2 partial pres- elemental sulfur, and with glucose as energy source, final sure [27–30]. However, in order to develop economically cell yields were significantly enhanced but their growth sustainable hydrogen-producing bio-processes, both pro- rate remained unaffected [39, 51, 52]. In addition, it has ductivities and yields should be significantly increased. been shown that, in the presence of sulfur, glucose was Another economic aspect for these bio-processes is the not more efficiently used. Indeed fermentation–carbon– high fresh water requirement, a resource which needs to product pattern remained similar (e.g., acetate and CO2 Boileau et al. Biotechnol Biofuels (2016) 9:269 Page 3 of 17 as major fermentation
Recommended publications
  • Aglycone Specificity of Thermotoga Neapolitana B-Glucosidase 1A
    Khan et al. BMC Biochemistry 2011, 12:11 http://www.biomedcentral.com/1471-2091/12/11 RESEARCHARTICLE Open Access Aglycone specificity of Thermotoga neapolitana b-glucosidase 1A modified by mutagenesis, leading to increased catalytic efficiency in quercetin-3-glucoside hydrolysis Samiullah Khan1, Tania Pozzo1, Márton Megyeri1,2, Sofia Lindahl3, Anders Sundin3, Charlotta Turner3, Eva Nordberg Karlsson1* Abstract Background: The thermostable b-glucosidase (TnBgl1A) from Thermotoga neapolitana is a promising biocatalyst for hydrolysis of glucosylated flavonoids and can be coupled to extraction methods using pressurized hot water. Hydrolysis has however been shown to be dependent on the position of the glucosylation on the flavonoid, and e.g. quercetin-3-glucoside (Q3) was hydrolysed slowly. A set of mutants of TnBgl1A were thus created to analyse the influence on the kinetic parameters using the model substrate para-nitrophenyl-b-D-glucopyranoside (pNPGlc), and screened for hydrolysis of Q3. Results: Structural analysis pinpointed an area in the active site pocket with non-conserved residues between specificity groups in glycoside hydrolase family 1 (GH1). Three residues in this area located on b-strand 5 (F219, N221, and G222) close to sugar binding sub-site +2 were selected for mutagenesis and amplified in a protocol that introduced a few spontaneous mutations. Eight mutants (four triple: F219L/P165L/M278I, N221S/P165L/M278I, G222Q/P165L/M278I, G222Q/V203M/K214R, two double: F219L/K214R, N221S/P342L and two single: G222M and N221S) were produced in E. coli, and purified to apparent homogeneity. Thermostability, measured as Tm by differential scanning calorimetry (101.9°C for wt), was kept in the mutated variants and significant decrease (ΔTof5 - 10°C) was only observed for the triple mutants.
    [Show full text]
  • Fermentation of Biodegradable Organic Waste by the Family Thermotogaceae
    resources Review Fermentation of Biodegradable Organic Waste by the Family Thermotogaceae Nunzia Esercizio 1 , Mariamichela Lanzilli 1 , Marco Vastano 1 , Simone Landi 2 , Zhaohui Xu 3 , Carmela Gallo 1 , Genoveffa Nuzzo 1 , Emiliano Manzo 1 , Angelo Fontana 1,2 and Giuliana d’Ippolito 1,* 1 Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; [email protected] (N.E.); [email protected] (M.L.); [email protected] (M.V.); [email protected] (C.G.); [email protected] (G.N.); [email protected] (E.M.); [email protected] (A.F.) 2 Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; [email protected] 3 Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA; [email protected] * Correspondence: [email protected] Abstract: The abundance of organic waste generated from agro-industrial processes throughout the world has become an environmental concern that requires immediate action in order to make the global economy sustainable and circular. Great attention has been paid to convert such nutrient- rich organic waste into useful materials for sustainable agricultural practices. Instead of being an environmental hazard, biodegradable organic waste represents a promising resource for the Citation: Esercizio, N.; Lanzilli, M.; production of high value-added products such as bioenergy, biofertilizers, and biopolymers. The Vastano, M.; Landi, S.; Xu, Z.; Gallo, ability of some hyperthermophilic bacteria, e.g., the genera Thermotoga and Pseudothermotoga, to C.; Nuzzo, G.; Manzo, E.; Fontana, A.; anaerobically ferment waste with the concomitant formation of bioproducts has generated great d’Ippolito, G.
    [Show full text]
  • Complete Genome Sequence of the Hyperthermophilic Bacteria- Thermotoga Sp
    COMPLETE GENOME SEQUENCE OF THE HYPERTHERMOPHILIC BACTERIA- THERMOTOGA SP. STRAIN RQ7 Rutika Puranik A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2015 Committee: Zhaohui Xu, Advisor Scott Rogers George Bullerjahn © 2015 Rutika Puranik All Rights Reserved iii ABSTRACT Zhaohui Xu, Advisor The genus Thermotoga is one of the deep-rooted genus in the phylogenetic tree of life and has been studied for its thermostable enzymes and the property of hydrogen production at higher temperatures. The current study focuses on the complete genome sequencing of T. sp. strain RQ7 to understand and identify the conserved as well as variable properties between the strains and its genus with the approach of comparative genomics. A pipeline was developed to assemble the complete genome based on the next generation sequencing (NGS) data. The pipeline successfully combined computational approaches with wet lab experiments to deliver a completed genome of T. sp. strain RQ7 that has the genome size of 1,851,618 bp with a GC content of 47.1%. The genome is submitted to Genbank with accession CP07633. Comparative genomic analysis of this genome with three other strains of Thermotoga, helped identifying putative natural transformation and competence protein coding genes in addition to the absence of TneDI restriction- modification system in T. sp. strain RQ7. Genome analysis also assisted in recognizing the unique genes in T. sp. strain RQ7 and CRISPR/Cas system. This strain has 8 CRISPR loci and an array of Cas coding genes in the entire genome.
    [Show full text]
  • On the Chimeric Nature, Thermophilic Origin, and Phylogenetic Placement of the Thermotogales
    On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales Olga Zhaxybayevaa, Kristen S. Swithersb, Pascal Lapierrec, Gregory P. Fournierb, Derek M. Bickhartb, Robert T. DeBoyd, Karen E. Nelsond, Camilla L. Nesbøe,f, W. Ford Doolittlea,1, J. Peter Gogartenb, and Kenneth M. Nollb aDepartment of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 1X5; bDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125; cBiotechnology-Bioservices Center, University of Connecticut, Storrs, CT 06269-3149; dThe J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850; eCentre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo, Norway; and fDepartment of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 Contributed by W. Ford Doolittle, February 11, 2009 (sent for review January 6, 2009) Since publication of the first Thermotogales genome, Thermotoga developments are relevant here: first that mesophilic Thermo- maritima strain MSB8, single- and multi-gene analyses have dis- togales have been discovered (2), raising the possibility that agreed on the phylogenetic position of this order of Bacteria. Here hyperthermophily is not ancestral to the group, and second that we present the genome sequences of 4 additional members of the a thorough analysis of A. aeolicus shows that, although many of Thermotogales (Tt. petrophila, Tt. lettingae, Thermosipho melane- its informational genes support sisterhood with Tt. maritima, siensis, and Fervidobacterium nodosum) and a comprehensive substantial exchange of some of these genes has occurred with comparative analysis including the original T.
    [Show full text]
  • Study of Thermotoga Maritima Β-Galactosidase
    PhD thesis: Study of Thermotoga maritima β-galactosidase: immobilization, engineering and phylogenetic analysis by David Talens-Perales Supervised by: Julio Polaina Molina Julia Mar´ın Navarro Valencia, 2016 Los Doctores Julio Polaina Molina y Julia Mar´ın Navarro pertenecientes al Instituto de Agroqu´ımica y Tecnolog´ıa de Alimentos del Consejo Superior de Investigaciones Cientificas, hacen constar que: La Tesis Doctoral titulada “Study of Thermotoga maritima β-galactosidase: immobilization, engineering and phylogenetic analysis”, presentada por Don David Talens Perales para optar al grado de Doctor en Biotecnolog´ıa por la Universidad de Valencia, ha sido realizada en el Instituto de Agroqu´ımica y Tecnolog´ıa de Alimentos (IATA- CSIC) bajo su direcci´on, y que re´une los requisitos legales establecidos para ser defendida por su autor. Y para que as´ıconste a los efectos oportunos, firman el presente documento en Paterna, a 22 de Julio de 2016. Julia Mar´ın Navarro Julio Polaina Molina This work was developed at the Department of Food Biotechnology in the Agrochemistry and Food Technology Institute (CSIC), Valencia, Spain. This project was carried out within a JAEpredoc program and FPU program sponsored by CSIC and the Ministerio de Educaci´on, Cultura y Deporte respectively. This project was also supported by grants BIO2010-20508-C04- 02, BIO2013-48779-C4-3-R from Spain’s Secretar´ıa de Estado de Investigaci´on, Desarrollo e Innovaci´onand EU H2020-634486-INMARE from EU Horizon 2020 Program. Dedicado a mi familia y a ti, gracias por no dejarme vencer Agradecimientos Cuando uno decide embarcarse en un doctorado no sabe muy bien qu´ees lo que est´ahaciendo.
    [Show full text]
  • Biochemical and Structural Analysis of Thermostable Esterases
    Biochemical and Structural Analysis of Thermostable Esterases Mark Levisson Thesis supervisors: Prof. dr. J. van der Oost Personal chair at the Laboratory of Microbiology Wageningen University Prof. dr. W.M. de Vos Professor of Microbiology Wageningen University Thesis co-supervisor: Dr. S.W.M. Kengen Assistant Professor at the Laboratory of Microbiology Wageningen University Other members: Prof. dr. ir. H. Gruppen Wageningen University Dr. M.C.R Franssen Wageningen University Dr. T. Sonke DSM, Geleen Prof. dr. B.W. Dijkstra University of Groningen Dr. A.M.W.H Thunnissen University of Groningen This research was conducted under the auspices of the Graduate School VLAG Biochemical and Structural Analysis of Thermostable Esterases Mark Levisson Thesis submitted in partial fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Doctorate Board to be defended in public on Monday 28 September 2009 at 4 PM in the Aula Levisson, M. Biochemical and Structural Analysis of Thermostable Esterases PhD Thesis, Wageningen University, Wageningen, The Netherlands (2009) 170 pages - With references, and with summaries in English and Dutch ISBN: 978-90-8585-459-3 TABLE OF contents Aim and outline 1 Chapter 1 Introduction 5 Chapter 2 Characterization and structural modeling of a new type of 21 thermostable esterase from Thermotoga maritima Chapter 3 Crystallization and preliminary crystallographic analysis of
    [Show full text]
  • Comparative Kinetic Modeling of Growth and Molecular Hydrogen Overproduction by Engineered Strains of Thermotoga Maritima
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Chemical and Biomolecular Engineering -- All Chemical and Biomolecular Engineering, Faculty Papers Department of 2019 Comparative kinetic modeling of growth and molecular hydrogen overproduction by engineered strains of Thermotoga maritima Raghuveer Singh University of Nebraska-Lincoln, [email protected] Rahul Tevatia University of Nebraska-Lincoln, [email protected] Derrick White University of Nebraska-Lincoln Yasar Demirel University of Nebraska-Lincoln, [email protected] Paul H. Blum University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/chemengall Part of the Biomedical Engineering and Bioengineering Commons, and the Catalysis and Reaction Engineering Commons Singh, Raghuveer; Tevatia, Rahul; White, Derrick; Demirel, Yasar; and Blum, Paul H., "Comparative kinetic modeling of growth and molecular hydrogen overproduction by engineered strains of Thermotoga maritima " (2019). Chemical and Biomolecular Engineering -- All Faculty Papers. 88. https://digitalcommons.unl.edu/chemengall/88 This Article is brought to you for free and open access by the Chemical and Biomolecular Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Chemical and Biomolecular Engineering -- All Faculty Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. digitalcommons.unl.edu Comparative kinetic modeling of growth and molecular hydrogen overproduction by engineered strains of Thermotoga maritima Raghuveer Singh,1 Rahul Tevatia,2 Derrick White,1 Yaşar Demirel,2 Paul Blum 1 1 Beadle Center for Genetics, University of Nebraska-Lincoln, 68588, USA 2 Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, 68588, USA Corresponding authors — R.
    [Show full text]
  • H Synthesis from Pentoses and Biomass in Spp. Niels T
    H synthesis from pentoses and biomass in spp. Niels T. Eriksen, Martin Leegaard Riis, Nikolaj Kyndby Holm, Niels Iversen To cite this version: Niels T. Eriksen, Martin Leegaard Riis, Nikolaj Kyndby Holm, Niels Iversen. H synthesis from pentoses and biomass in spp.. Biotechnology Letters, Springer Verlag, 2010, 33 (2), pp.293-300. 10.1007/s10529-010-0439-x. hal-00633990 HAL Id: hal-00633990 https://hal.archives-ouvertes.fr/hal-00633990 Submitted on 20 Oct 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Section: Biofuels and Environmental Biotechnology H2 synthesis from pentoses and biomass in Thermotoga spp. Niels T. Eriksen*, Martin Leegaard Riis, Nikolaj Kyndby Holm, Niels Iversen Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark *Corresponding author: Niels T. Eriksen Fax: + 45 98 14 18 08 E-mail: [email protected] 1 Abstract We have investigated H2 production on glucose, xylose, arabinose, and glycerol in Thermotoga maritima and T. neapolitana. Both species metabolised all sugars with hydrogen yields of 2.7 – 3.8 mol mol-1 sugar. Both pentoses were at least comparable to glucose with respect to their qualities as substrates for hydrogen production, while glycerol was not metabolised by either species.
    [Show full text]
  • Development of Genetic Tools for Thermotoga Spp
    DEVELOPMENT OF GENETIC TOOLS FOR THERMOTOGA SPP. Dongmei Han A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2013 Committee: Dr. Zhaohui Xu, Advisor Dr. Lisa C. Chavers Graduate Faculty Representative Dr. George S. Bullerjahn Dr. Raymond A. Larsen Dr. Scott O. Rogers © 2013 Dongmei Han All Rights Reserved iii ABSTRACT Zhaohui Xu, Advisor Thermotoga spp. may serve as model systems for understanding life sustainability under hyperthermophilic conditions. They are also attractive candidates for producing biohydrogen in industry. However, a lack of genetic tools has hampered the investigation and application of these organisms. We improved the cultivation method of Thermotoga spp. for preparing and handling Thermotoga solid cultures under aerobic conditions. An embedded method achieved a plating efficiency of ~ 50%, and a soft SVO medium was introduced to bridge isolating single Thermotoga colonies from solid medium to liquid medium. The morphological change of T. neapolitana during the growth process was observed through scanning electron microscopy and transmission electron microscopy. At the early exponential phase, around OD600 0.1 – 0.2, the area of adhered region between toga and cell membrane was the largest, and it was suspected to be the optimal time for DNA uptake in transformation. The capacity of natural transformation was found in T. sp. RQ7, but not in T. maritima. A Thermotoga-E. coli shuttle vector pDH10 was constructed using pRQ7, a cryptic mini-plasmid isolated from T. sp. RQ7. Plasmid pDH10 was introduced to T. sp. RQ7 by liposome-mediated transformation, electroporation, and natural transformation, and to T.
    [Show full text]
  • On the Chimeric Nature, Thermophilic Origin, and Phylogenetic Placement of the Thermotogales
    On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales Olga Zhaxybayevaa, Kristen S. Swithersb, Pascal Lapierrec, Gregory P. Fournierb, Derek M. Bickhartb, Robert T. DeBoyd, Karen E. Nelsond, Camilla L. Nesbøe,f, W. Ford Doolittlea,1, J. Peter Gogartenb, and Kenneth M. Nollb aDepartment of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 1X5; bDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125; cBiotechnology-Bioservices Center, University of Connecticut, Storrs, CT 06269-3149; dThe J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850; eCentre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo, Norway; and fDepartment of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 Contributed by W. Ford Doolittle, February 11, 2009 (sent for review January 6, 2009) Since publication of the first Thermotogales genome, Thermotoga developments are relevant here: first that mesophilic Thermo- maritima strain MSB8, single- and multi-gene analyses have dis- togales have been discovered (2), raising the possibility that agreed on the phylogenetic position of this order of Bacteria. Here hyperthermophily is not ancestral to the group, and second that we present the genome sequences of 4 additional members of the a thorough analysis of A. aeolicus shows that, although many of Thermotogales (Tt. petrophila, Tt. lettingae, Thermosipho melane- its informational genes support sisterhood with Tt. maritima, siensis, and Fervidobacterium nodosum) and a comprehensive substantial exchange of some of these genes has occurred with comparative analysis including the original T.
    [Show full text]
  • Structural Genomics of the Thermotoga Maritima Proteome Implemented in a High-Throughput Structure Determination Pipeline
    Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline Scott A. Lesley*†, Peter Kuhn‡, Adam Godzik§, Ashley M. Deacon‡, Irimpan Mathews‡, Andreas Kreusch*, Glen Spraggon*, Heath E. Klock*, Daniel McMullan*, Tanya Shin*, Juli Vincent*, Alyssa Robb*, Linda S. Brinen‡, Mitchell D. Miller‡, Timothy M. McPhillips‡, Mark A. Miller§, Daniel Scheibe*¶, Jaume M. Canaves§, Chittibabu Guda§, Lukasz Jaroszewski§, Thomas L. Selbyʈ, Marc-Andre Elsligerʈ, John Wooley§**, Susan S. Taylor¶, Keith O. Hodgson‡, Ian A. Wilsonʈ, Peter G. Schultz*ʈ, and Raymond C. Stevensʈ *Joint Center for Structural Genomics, Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121; ‡Joint Center for Structural Genomics, Stanford Synchrotron Radiation Laboratory, Stanford University, 2575 Sand Hill Road, MS99, Menlo Park, CA 94025; Joint Center for Structural Genomics, §San Diego Supercomputer Center and **University of California, 9500 Gilman Drive, La Jolla, CA 92093; and ʈJoint Center for Structural Genomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 Contributed by Peter G. Schultz, July 11, 2002 Structural genomics is emerging as a principal approach to define An HT pipeline requires integrating technology and process protein structure–function relationships. To apply this approach on development. To this end, a large set of easily accessible genes a genomic scale, novel methods and technologies must be devel- is required. T. maritima is an attractive target for a structural oped to determine large numbers of structures. We describe genomics research program, as its small genome (1,877 genes) the design and implementation of a high-throughput structural makes it practical for isolating the entire recombinant proteome.
    [Show full text]
  • Deciphering the Outer Envelope of Thermotoga Maritima Chaman Ranjit University of Connecticut - Storrs, [email protected]
    University of Connecticut OpenCommons@UConn Master's Theses University of Connecticut Graduate School 2-1-2016 Deciphering the Outer Envelope of Thermotoga maritima Chaman Ranjit University of Connecticut - Storrs, [email protected] Recommended Citation Ranjit, Chaman, "Deciphering the Outer Envelope of Thermotoga maritima" (2016). Master's Theses. 869. https://opencommons.uconn.edu/gs_theses/869 This work is brought to you for free and open access by the University of Connecticut Graduate School at OpenCommons@UConn. It has been accepted for inclusion in Master's Theses by an authorized administrator of OpenCommons@UConn. For more information, please contact [email protected]. Deciphering the Outer Envelope of Thermotoga maritima Chaman Ranjit B.S., University of Pune, India 1998 M.S., Tribhuvan University, Kathmandu, Nepal 2002 A Thesis In Partial Fulfillment of the Degree of Master of Science At the University of Connecticut 2016 i APPROVAL PAGE Master of Science Thesis Deciphering the Outer Envelope of Thermotoga maritima Presented by Chaman Ranjit, M.S. Major Advisor: ___________________________ Kenneth Noll, Ph.D. Associate Advisor: ___________________________ J. Peter Gogarten, Ph.D. Associate Advisor: ___________________________ David Knecht, Ph.D. Advisor/Examiner: ___________________________Spencer Nyholm, Ph.D. Advisor/Examiner: ___________________________Daniel Gage, Ph.D. University of Connecticut 2016 ii Acknowledgments I would like to acknowledge my major advisor, Dr. Kenneth Noll for all the time, effort and encouragement that he put in for me to complete this document and ultimately this degree. His guidance through the highs and lows of graduate school paved a path for me to move on. I thank him sincerely. I would also like to thank my advisors; Dr.
    [Show full text]