From Super Liquid-Repellency and the Leidenfrost Effect to Liquid Marbles

Total Page:16

File Type:pdf, Size:1020Kb

From Super Liquid-Repellency and the Leidenfrost Effect to Liquid Marbles Fabrication and manipulation of non-wetting surfaces and drops: From super liquid-repellency and the Leidenfrost effect to liquid marbles Dissertation zur Erlangung des Grades „Doktor der Naturwissenschaften” im Promotionsfach Chemie Fachbereich Chemie, Pharmazie und Geowissenschaften der Johannes Gutenberg-Universität in Mainz Maxime Paven geboren in Brest, Frankreich Mainz, November 2016 Die vorliegende Arbeit wurde von Oktober 2013 bis November 2016 unter der Betreuung von [n.a. in online version] am Max-Planck-Institut für Polymerforschung in Mainz angefertigt. Tag der Prüfung: 14. Dezember 2016 Dekan: [n.a. in online version] 1. Berichterstatter: [n.a. in online version] 2. Berichterstatter: [n.a. in online version] Table of content Table of content 1 Introduction ........................................................................................... 13 1.1 Conceptual similarities and differences in super liquid-repellency, the Leidenfrost effect and liquid marbles ........................................... 16 1.2 Super liquid-repellency ........................................................................ 21 1.2.1 Wetting of smooth and rigid surfaces ...................................................... 21 1.2.2 Contact angle hysteresis ......................................................................... 22 1.2.3 Wetting of rough surfaces: The Wenzel and Cassie-Baxter states .......... 23 1.2.4 Superhydrophobic surfaces .................................................................... 26 1.2.5 How drops move on superhydrophobic surfaces ..................................... 27 1.2.6 Superamphiphobic surfaces .................................................................... 30 1.2.7 Design parameters of super liquid-repellent surfaces .............................. 33 1.2.8 Fabrication of super liquid-repellent surfaces .......................................... 35 1.2.9 Challenges and opportunities of super liquid-repellent surfaces .............. 39 1.3 The Leidenfrost effect .......................................................................... 45 1.3.1 Features of boiling and the lifetime of drops ............................................ 46 1.3.2 Lateral and vertical movement of drops and objects exploiting the Leidenfrost phenomenon ........................................................................ 48 1.3.3 Challenges and opportunities in drop and object manipulation using transition and film boiling ........................................................................ 51 1.4 Liquid marbles ...................................................................................... 53 1.4.1 Manipulation and application of liquid marbles ........................................ 56 1.4.2 Challenges and opportunities of liquid marbles ....................................... 60 1.5 Aim of the thesis ................................................................................... 62 1.6 References ............................................................................................ 64 2 Optimization of superamphiphobic layers based on candle soot ..... 71 2.1 Abstract ................................................................................................. 71 2.2 Introduction ........................................................................................... 72 2.3 Materials and methods ......................................................................... 73 2.4 Results ................................................................................................... 76 2.4.1 Deposited soot mass .............................................................................. 76 2.4.2 Network structure for different sooting times ........................................... 79 2.4.3 Analyzing soot composition by Raman spectroscopy .............................. 80 5 Table of content 2.4.4 Thickness of porous silica ....................................................................... 81 2.4.5 Porosity of the layer ................................................................................ 83 2.4.6 Contact angle and roll-off angles ............................................................ 84 2.5 Conclusions .......................................................................................... 85 2.6 Acknowledgments ................................................................................ 86 2.7 References ............................................................................................ 86 3 Mech. properties of highly porous super liquid-repellent surfaces .. 88 3.1 Abstract ................................................................................................. 88 3.2 Introduction .......................................................................................... 89 3.3 Results and discussion ........................................................................ 91 3.3.1 Wetting properties .................................................................................. 92 3.3.2 Finger and pencil scratching ................................................................... 93 3.3.3 Morphology ............................................................................................. 95 3.3.4 Nanoscale mechanical test using the atomic force microscope .............. 98 3.3.5 Microscale mechanical tests using colloidal probe .................................. 99 3.3.6 Microscale mechanical tests using nanoindentation ............................. 105 3.4 Conclusion .......................................................................................... 106 3.5 Experimental section .......................................................................... 106 3.6 Acknowledgments .............................................................................. 111 3.7 References .......................................................................................... 111 4 Spontaneous jumping and long-lasting bouncing of hydrogel drops from a superheated surface ............................................................... 114 4.1 Abstract ............................................................................................... 114 4.2 Introduction ........................................................................................ 115 4.3 Results ................................................................................................ 117 4.3.1 Preparation and characterization of millimetric hydrogel drops ............. 117 4.3.2 Determining the modulus of soft hydrogel drops ................................... 118 4.3.3 Heat-induced jumping and bouncing of 30 kPa hydrogels .................... 120 4.3.4 Effect of elastic modulus on jumping and bouncing .............................. 122 4.3.5 Jumping mechanism ............................................................................. 125 4.3.6 Observation of the contact time ............................................................ 127 4.4 Discussion .......................................................................................... 129 4.5 Methods ............................................................................................... 132 4.6 Acknowledgements ............................................................................ 134 6 Table of content 4.7 Further supporting information ......................................................... 135 4.8 References .......................................................................................... 135 5 Light-driven delivery and release of materials using liquid marbles138 5.1 Abstract ............................................................................................... 139 5.2 Introduction ......................................................................................... 139 5.3 Results and discussion ...................................................................... 141 5.4 Conclusions ........................................................................................ 155 5.5 Experimental section .......................................................................... 155 5.6 Acknowledgment ................................................................................ 158 5.7 References .......................................................................................... 158 5.8 Further supporting information ......................................................... 161 6 Conclusion .......................................................................................... 164 7 Appendix ............................................................................................. 166 7.1 Supplement information to chapter 1.2.9: Brief overview of contact mechanics to analyse force-sensitive measurements ..................... 166 8 List of publication ............................................................................... 170 8.1 Original paper ..................................................................................... 170 8.2 Books................................................................................................... 171 8.3 Patent applications ............................................................................. 171 9 Acknowledgment ................................................................................ 172 10 Curriculum Vitae ................................................................................. 173 10.1 Conference contributions .................................................................
Recommended publications
  • Liquid Marbles As Bioreactors for the Study of Three-Dimensional Cell Interactions
    Biomed Microdevices (2017) 19:31 DOI 10.1007/s10544-017-0171-6 Liquid marbles as bioreactors for the study of three-dimensional cell interactions Raja K. Vadivelu1 & Harshad Kamble2 & Ahmed Munaz2 & Nam-Trung Nguyen2 # Springer Science+Business Media New York 2017 Abstract Liquid marble as a bioreactor platform for cell- developing bioassays that could substantially contribute to based studies has received significant attention, especially therapeutic applications. Especially, insights for improving for developing 3D cell-based assays. This platform is partic- the survival and adherence of transplanted cells. ularly suitable for 3D in-vitro modeling of cell-cell interac- tions. For the first time, we demonstrated the interaction of Keywords Liquid marble . Bioreactor . Spinal cord injury . olfactory ensheathing cells (OECs) with nerve debris and Post-injury model . Post-transplantation model . Digital meningeal fibroblast using liquid marbles. As the transplanta- microfluidics . 3D cell interaction tion of OECs can be used for repairing nerve injury, degenerating cell debris within the transplantation site can adversely affect the survival of transplanted OECs. In this 1 Introduction paper, we used liquid marbles to mimic the hostile 3D envi- ronment to analyze the functional behavior of the cells and to Repairing injured tissues using cellular therapy is attractive. form the basis for cell-based therapy. We show that OECs Recently, this approach has been increasingly adopted in clin- interact with debris and enhanced cellular aggregation to form ical practice. Over the past two decades, cell-based therapy has a larger 3D spheroidal tissue. However, these spheroids indi- been improving significantly, especially in post-transplantation cated limitation in biological functions such as the inability of survival of cells in the host niche (Wan et al.
    [Show full text]
  • Capillarity: Revisiting the Fundamentals of Liquid Marbles
    Microfluidics and Nanofluidics (2020) 24:81 https://doi.org/10.1007/s10404-020-02385-9 REVIEW Capillarity: revisiting the fundamentals of liquid marbles Pradip Singha1 · Chin Hong Ooi1 · Nhat‑Khuong Nguyen1 · Kamalalayam Rajan Sreejith1 · Jing Jin1 · Nam‑Trung Nguyen1 Received: 11 June 2020 / Accepted: 1 September 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Liquid marble, an emerging platform for digital microfuidics, has shown its potential in biomedical applications, cosmet- ics, and chemical industries. Recently, the manipulation and fundamental aspects of liquid marbles have been reported and attracted attention from the microfuidics community. Insights into their physical and chemical properties allow liquid marbles to be utilised in practical applications. This review summarises and revisits the efect of capillarity on the formation of liquid marbles and how it afects the efective surface tension as well as their robustness. The paper also systematically discusses the applied aspect of capillarity of the carrier liquid for transporting foating liquid marbles. Keywords Liquid marble · Surface tension · Capillarity · Digital microfuidics 1 Introduction et al. 2017; Samiei et al. 2016). Droplets can be manipulated with active approaches, such as electrowetting (Teng et al. Microfuidics is the science and technology dealing with the 2020), dielectrophoresis (Velev et al. 2003), thermocapil- manipulation of fuid in sub-millimeter/micrometer scale. lary efect (Chen et al. 2005), acoustic vibration (Chen et al. Microfuidics enables the implementation of liquid handling 2017; Zang et al. 2015), and magneto-wetting (Nguyen et al. process on a single device (Whitesides 2006). Microfuid- 2010a). However, evaporation, handling, contamination, ics has a broad range of applications from lab on a chip for and surface modifcation remain current challenges.
    [Show full text]
  • Inverted Leidenfrost-Like Effect During Condensation
    Article pubs.acs.org/Langmuir Inverted Leidenfrost-like Effect during Condensation Ramchandra Narhe,†,‡ Sushant Anand,§ Konrad Rykaczewski,∥ Marie-Gabrielle Medici,†,⊥ Wenceslao Gonzalez-Viń ̃as,‡ Kripa K. Varanasi,§ and Daniel Beysens*,†,# † Physique et Mecaniqué des Milieux Hetérogé nes,̀ UnitéMixte de Recherches (UMR) 7636, École Superieuré de Physique et Chimie Industrielles ParisTech, UniversitéPierre et Marie Curie, UniversitéParis-Diderot, Centre National de la Recherche Scientifique (CNRS), 10 rue Vauquelin, 75231 Paris, France ‡ Department of Physics and Applied Mathematics, University of Navarra, 31008 Pamplona, Spain § Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States ∥ School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85281, United States ⊥ UniversitéNice Sophia Antipolis, CNRS, Laboratoire de Physique de la Mateierè Condensee-UMŔ 7336, Parc Valrose, 06100 Nice, France # Service des Basses Temperatures,́ CEA-Grenoble and UniversitéJoseph Fourier, 38041 Grenoble, France *S Supporting Information ABSTRACT: Water droplets condensing on solidified phase change materials such as benzene and cyclohexane near their melting point show in-plane jumping and continuous “crawling” motion. The jumping drop motion has been tentatively explained as an outcome of melting and refreezing of the materials surface beneath the droplets and can be thus considered as an inverted Leidenfrost-like effect (in the classical case vapor is generated from a droplet on a hot substrate). We present here a detailed investigation of jumping movements using high-speed imaging and static cross- sectional cryogenic focused ion beam scanning electron microscope imaging. Our results show that drop motion is induced by a thermocapillary (Marangoni) effect. The in-plane jumping motion can be delineated to occur in two stages.
    [Show full text]
  • Behavior of Self-Propelled Acetone Droplets in a Leidenfrost State on Liquid Substrates
    CORE Metadata, citation and similar papers at core.ac.uk Provided by OIST Institutional Repository Behavior of self-propelled acetone droplets in a Leidenfrost state on liquid substrates Author Stoffel D. Janssens, Satoshi Koizumi, Eliot Fried journal or Physics of Fluids publication title volume 29 number 3 page range 032103 year 2017-03-14 Publisher AIP Publishing Author's flag publisher URL http://id.nii.ac.jp/1394/00000325/ doi: info:doi/10.1063/1.4977442 Creative Commons Attribution 4.0 International (http://creativecommons.org/licenses/by/4.0/) Behavior of self-propelled acetone droplets in a Leidenfrost state on liquid substrates Stoffel D. Janssens, Satoshi Koizumi, and Eliot Fried Citation: Physics of Fluids 29, 032103 (2017); doi: 10.1063/1.4977442 View online: https://doi.org/10.1063/1.4977442 View Table of Contents: http://aip.scitation.org/toc/phf/29/3 Published by the American Institute of Physics Articles you may be interested in Effect of interfacial slip on the deformation of a viscoelastic drop in uniaxial extensional flow field Physics of Fluids 29, 032105 (2017); 10.1063/1.4977949 Reversible self-propelled Leidenfrost droplets on ratchet surfaces Applied Physics Letters 110, 091603 (2017); 10.1063/1.4976748 Leidenfrost drops Physics of Fluids 15, 1632 (2003); 10.1063/1.1572161 The fate of pancake vortices Physics of Fluids 29, 031701 (2017); 10.1063/1.4977975 Spontaneous rotation of an ice disk while melting on a solid plate Physics of Fluids 28, 123601 (2016); 10.1063/1.4967399 On the shape memory of red blood cells Physics of Fluids 29, 041901 (2017); 10.1063/1.4979271 PHYSICS OF FLUIDS 29, 032103 (2017) Behavior of self-propelled acetone droplets in a Leidenfrost state on liquid substrates Stoffel D.
    [Show full text]
  • The Thermo-Wetting Instability Driving Leidenfrost Film Collapse
    The thermo-wetting instability driving Leidenfrost film collapse Tom Y. Zhaoa and Neelesh A. Patankara,1 aDepartment of Mechanical Engineering, Northwestern University, Evanston, IL 60208 Edited by Parviz Moin, Stanford University, Stanford, CA, and approved April 15, 2020 (received for review October 14, 2019) Above a critical temperature known as the Leidenfrost point (LFP), In this work, we introduce a stability analysis of the vapor a heated surface can suspend a liquid droplet above a film of film at the nanoscale regime. The dominant destabilizing term its own vapor. The insulating vapor film can be highly detrimen- arises from the van der Waals interaction between the bulk liq- tal in metallurgical quenching and thermal control of electronic uid and the substrate across a thin vapor layer. On the other devices, but may also be harnessed to reduce drag and gener- hand, liquid–vapor surface tension-driven transport of vapor and ate power. Manipulation of the LFP has occurred mostly through evaporation at the two-phase interface stabilize the film. The experiment, giving rise to a variety of semiempirical models that competition between these mechanisms gives rise to a com- account for the Rayleigh–Taylor instability, nucleation rates, and prehensive description of the LFP as a function of both fluid superheat limits. However, formulating a truly comprehensive and solid properties. For fluids that wet the surface, such that model has been difficult given that the LFP varies dramatically for the intrinsic contact angle is small, a single dimensionless num- different fluids and is affected by system pressure, surface rough- ber (Eq.
    [Show full text]
  • Effect of Ambient Pressure on Leidenfrost Temperature
    Edinburgh Research Explorer Effect of ambient pressure on Leidenfrost temperature Citation for published version: Orejon, D, Sefiane, K & Takata, Y 2014, 'Effect of ambient pressure on Leidenfrost temperature', Physical Review E - Statistical, Nonlinear and Soft Matter Physics, vol. 90, no. 5, 053012. https://doi.org/10.1103/PhysRevE.90.053012 Digital Object Identifier (DOI): 10.1103/PhysRevE.90.053012 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Physical Review E - Statistical, Nonlinear and Soft Matter Physics Publisher Rights Statement: Publisher's Version/PDF:green tick author can archive publisher's version/PDF General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 07. Oct. 2021 PHYSICAL REVIEW E 90, 053012 (2014) Effect of ambient pressure on Leidenfrost temperature Daniel Orejon,1,2,3,* Khellil Sefiane,1,3 and Yasuyuki Takata1,2
    [Show full text]
  • Superconductivity Practical Days at CERN
    Superconductivity Practical Days at CERN 4-5th March 2020 Jerome Fleiter, Iole Falorio CERN TE/MSC/SCD JUAS 2020 1 Few Definitions to start Superconductivity “Superconductivity is a phenomenon occurring in certain materials at very low temperatures , characterized by exactly zero electrical resistance and the exclusion of the interior magnetic field (the Meissner effect). from Wikipedia Superconductor A conductor that exhibit superconducting properties. It is an assembly of low resistive metal and superconducting material. Cryogenics Cryogenic: for Greek “kryos", which means cold or freezing, and "genes" meaning born or produced.“In physics, cryogenics is the study of the production and the behaviour of materials at very low temperature (<-150-180°C ) ” from Wikipedia JUAS 2020 2 Main properties of superconductors For T<Tc Zero resistance Perfect conductors Exclusion of magnetic field Perfect diamagnets Zero resistance Meissner effect The Meissner Effect Onne’s measurement on mercury (1911) Discovered by Meissner and Oschenfeld (1933) Perfect conductivity + perfect diamagnetism = superconductors JUAS 2020 3 Type 1 Superconductors • 1933:Meissner effect discovered: magnetic field is expelled from Type 1 superconductors for T<Tc and B<Bc1. • Bc1 is the critical field. • For B>Bc1 material is in normal state • For T>Tc material is in normal state Superconductors = zero resistance+ perfect diamagnetism JUAS 2020 for T<Tc and B<Bc 4 Type 2 Superconductors • 1952: Abrikosov Vortices: In the mixed state, Bc1<B<Bc2 magnetic flux penetrates the superconductor as a small independent vortices. In the vortex core the material is in normal state. • For B<Bc1 => perfect diamagnet, no vortices • For Bc1<B<Bc2 , mixed state magnetic flux penetrates locally the material as -15 vortex with a flux quanta Φ0 = h/2e = 2 .10 Wb.
    [Show full text]
  • Prediction of Leidenfrost Temperature in Spray Cooling for Continuous Casting and Heat Treatment Processes
    metals Article Prediction of Leidenfrost Temperature in Spray Cooling for Continuous Casting and Heat Treatment Processes Milan Hnizdil 1, Jan Kominek 1 , Tae-Woo Lee 2 , Miroslav Raudensky 1,* , Maria Carnogurska 3 and Martin Chabicovsky 1 1 Heat Transfer and Fluid Flow Laboratory, Brno University of Technology, 61669 Brno, Czech Republic; [email protected] (M.H.); [email protected] (J.K.); [email protected] (M.C.) 2 Department of Mechanical and Aerospace Engineering, School of Engineering for Matter, Transport and Energy, Arizona State University, Tempe, AZ 85281, USA; [email protected] 3 Department of Power Engineering, Faculty of Mechanical Engineering, Technical University of Košice, 04200 Košice, Slovakia; [email protected] * Correspondence: [email protected]; Tel.: +420-604-229-524 Received: 9 October 2020; Accepted: 16 November 2020; Published: 22 November 2020 Abstract: Spray cooling of hot steel surfaces is an inherent part of continuous casting and heat treatment. When we consider the temperature interval between room temperature and for instance 1000 ◦C, different boiling regimes can be observed. Spray cooling intensity rapidly changes with the surface temperature. Secondary cooling in continuous casting starts when the surface temperature is well above a thousand degrees Celsius and a film boiling regime can be observed. The cooled surface is protected from the direct impact of droplets by the vapour layer. As the surface temperature decreases, the vapour layer is less stable and for certain temperatures the vapour layer collapses, droplets reach the hot surface and heat flux suddenly jumps enormously. It is obvious that the described effect has a great effect on control of cooling.
    [Show full text]
  • Leidenfrost Drops on a Heated Liquid Pool
    Leidenfrost drops on a heated liquid pool L. Maquet,∗ B. Darbois-Texier, A. Duchesne, M. Brandenbourger, and S. Dorbolo GRASP, CESAM, Universit´ede Li`ege,Li`ege,Belgium B. Sobac,y A. Rednikov, and P. Colinet TIPs, Universit´elibre de Bruxelles, C.P. 165/67, Brussels, Belgium (Dated: October 15, 2018) Abstract We show that a volatile liquid drop placed at the surface of a non-volatile liquid pool warmer than the boiling point of the drop can experience a Leidenfrost effect even for vanishingly small superheats. Such an observation points to the importance of the substrate roughness, negligible in the case considered here, in determining the threshold Leidenfrost temperature. A theoretical model based on the one proposed by Sobac et al. [Phys. Rev. E 90, 053011 (2014)] is developed in order to rationalize the experimental data. The shapes of the drop and of the substrate are analyzed. The model notably provides scalings for the vapor film thickness. For small drops, these scalings appear to be identical to the case of a Leidenfrost drop on a solid substrate. For large drops, in contrast, they are different and no evidence of chimney formation has been observed either experimentally or theoretically in the range of drop sizes considered in this study. Concerning the evaporation dynamics, the radius is shown to decrease linearly with time whatever the drop size, which differs from the case of a Leidenfrost drop on a solid substrate. For high superheats, the characteristic lifetime of the drops versus the superheat follows a scaling law that is derived from the model but, at low superheats, it deviates from this scaling by rather saturating.
    [Show full text]
  • Arxiv:Physics/0512262V1
    Hot water can freeze faster than cold?!? Monwhea Jeng∗ Physics Department, Box 1654, Southern Illinois University Edwardsville, Edwardsville, IL, 62025 We review the Mpemba effect, where intially hot water freezes faster than initially cold water. While the effect appears impossible at first sight, it has been seen in numerous experiments, was reported on by Aristotle, Francis Bacon, and Descartes, and has been well-known as folklore around the world. It has a rich and fascinating history, which culminates in the dramatic story of the secondary school student, Erasto Mpemba, who reintroduced the effect to the twentieth century scientific community. The phenomenon, while simple to describe, is deceptively complex, and illus- trates numerous important issues about the scientific method: the role of skepticism in scientific inquiry, the influence of theory on experiment and observation, the need for precision in the state- ment of a scientific hypothesis, and the nature of falsifiability. We survey proposed theoretical mechanisms for the Mpemba effect, and the results of modern experiments on the phenomenon. Studies of the observation that hot water pipes are more likely to burst than cold water pipes are also described. I. INTRODUCTION is much harder to study experimentally than it might ap- pear at first glance, and discuss some common problems The Mpemba effect occurs when two bodies of water, with lay experiments on the Mpemba effect. Analysis of identical in every way, except that one is at a higher tem- the experiments naturally brings up Popper’s thesis that perature than the other, are exposed to identical subzero a scientific hypothesis must be falsifiable.
    [Show full text]
  • Vitrification and Levitation of a Liquid Droplet on Liquid Nitrogen
    Vitrification and levitation of a liquid droplet on liquid nitrogen Young S. Songa, Douglas Adlera, Feng Xua, Emre Kayaalpb,2, Aida Nureddinc, Raymond M. Anchanc, Richard L. Maasd, and Utkan Demircia,e,1 aBio-Acoustic-Microelectromechanical Systems in Medicine Laboratory, Center for Bioengineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115; bFaculty of Medicine, Yeditepe University, Istanbul, Turkey 34755; cCenter for Infertility and Reproductive Surgery, Obstetrics Gynecology and Reproductive Biology, and dDivision of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115; and eHarvard-Massachusetts Institute of Technology Health Sciences and Technology, Cambridge, MA 02139 Edited by Daniel D. Joseph, University of Minnesota, Minneapolis, MN, and approved January 13, 2010 (received for review December 4, 2009) The vitrification of a liquid occurs when ice crystal formation is pre- study, we investigate the heat transfer and simultaneous phase vented in the cryogenic environment through ultrarapid cooling. In change of a nanoliter volume droplet levitating on liquid nitro- general, vitrification entails a large temperature difference be- gen. Understanding the vitrification and film boiling phenomena tween the liquid and its surrounding medium. In our droplet vitri- is also of great importance to other broad applications, such as fication experiments, we observed that such vitrification events metallurgy, nuclear reactors, turbine machineries, and biopreser- are accompanied by a Leidenfrost phenomenon, which impedes vation (13–16). In particular, vitrification is regarded as the only the heat transfer to cool the liquid, when the liquid droplet comes feasible way to successfully cryopreserve human cells and tissues into direct contact with liquid nitrogen.
    [Show full text]
  • Topological Superconductivity: Edging Closer
    research highlights SOFT MATTER commutator relations, but we do not yet have bulk to edge-mode superconductivity, but Droplet duster any proof that that is indeed the case. Still, as the edge-mode regime is only observable Soft Matter http://doi.org/5dn (2015) modified commutators could potentially when the bulk is highly resistive, they associate be revealed in low-energy mechanical this with a two-dimensional topological phase. A droplet brought in contact with a hot-enough oscillators, which makes them a good place Topological superconductivity in such edge plate will develop an insulating vapour layer at to look for clues. states would not only give access to Majorana the bottom, slowing down further evaporation Mateusz Bawaj and colleagues analysed fermions, but also provide a platform for and making the droplet seem to levitate. This several micro- and nano-oscillators to realizing localized Majorana modes. And as phenomenon — the Leidenfrost effect — is explore the bounds on modifications to the these modes would obey non-Abelian statistics familiar to cooks who sprinkle water on a pan commutator relations between their position and have topological characteristics, they are to gauge its temperature. and momentum operators. They used the highly sought-after building blocks for a Cher Lin Tan and colleagues have now oscillators with high quality-factors and low fault-tolerant quantum computer. LF demonstrated how this effect might be background noise with different geometries employed to remove dust and other particles and masses distributed around the Planck SUPERNOVAE from heated ceramic or metallic surfaces. mass, including a 33 mg double-paddle Lone star states The physical mechanism is reminiscent of oscillator, a 20 μg silicon wheel oscillator Astrophys.
    [Show full text]