FACT SHEET: Iguanodon

Total Page:16

File Type:pdf, Size:1020Kb

FACT SHEET: Iguanodon FACT SHEET: iguanodon NAME: IGUANODON (ee-GUAN-oh-don), meaning: “Iguana Tooth” SIZE: 30 feet long, 16 feet tall at the hips (the size of a bus), weighed 5 tons TYPE OF DIET: Herbivore (leaves from cycads) WHEN: Late Jurassic period (135 - 125 million years ago) WHERE: Belgium, England, Germany (Europe), North America, North Africa Iguanodon fossils are some of the first dinosaur bones ever found. A tooth and a few bones were found by a British scientist named Gideon Mantell in the 1820s. These first fossils looked like the teeth of a modern iguana. That is how Iguanodon got its name, which means “iguana tooth”. Iguanodon lived about 135 to 125 million years ago. The Iguanodon was a very successful dinosaur; the species survived for a long time. Iguanodon bones have been found in many places. Iguanodon spread and lived in every continent except Antarctica. It was a big herbivore, meaning that it ate only plants. It grew to be about 30 feet long and 16 feet tall. That is about the size of a school bus. It spent most of its time on all fours, but could run on two legs when it needed to move quickly. It was a relatively fast dinosaur. It could rear up onto its two back legs in order to escape from predators, and it could use its hands to gather food. Iguanodon had a flat, stiff tail, which stuck straight out behind it for balance. It had no front teeth, just a horn-covered beak which it used to rip the leaves off tough plants. In the back of its mouth it had rows of grinding teeth packed closely together. We believe that Iguanodon traveled in large groups. We know this because about 30 Iguanodon skeletons were found together in a coal mine in Belgium, in Northern Europe. Among them were bones of adults and younger dinosaurs. Dinosaur Days TM © 2010 Distant Train, inc. (www.distanttrain.com) all rights reserved.
Recommended publications
  • CPY Document
    v^ Official Journal of the Biology Unit of the American Topical Association 10 Vol. 40(4) DINOSAURS ON STAMPS by Michael K. Brett-Surman Ph.D. Dinosaurs are the most popular animals of all time, and the most misunderstood. Dinosaurs did not fly in the air and did not live in the oceans, nor on lake bottoms. Not all large "prehistoric monsters" are dinosaurs. The most famous NON-dinosaurs are plesiosaurs, moso- saurs, pelycosaurs, pterodactyls and ichthyosaurs. Any name ending in 'saurus' is not automatically a dinosaur, for' example, Mastodonto- saurus is neither a mastodon nor a dinosaur - it is an amphibian! Dinosaurs are defined by a combination of skeletal features that cannot readily be seen when the animal is fully restored in a flesh reconstruction. Because of the confusion, this compilation is offered as a checklist for the collector. This topical list compiles all the dinosaurs on stamps where the actual bones are pictured or whole restorations are used. It excludes footprints (as used in the Lesotho stamps), cartoons (as in the 1984 issue from Gambia), silhouettes (Ascension Island # 305) and unoffi- cial issues such as the famous Sinclair Dinosaur stamps. The name "Brontosaurus", which appears on many stamps, is used with quotation marks to denote it as a popular name in contrast to its correct scientific name, Apatosaurus. For those interested in a detailed encyclopedic work about all fossils on stamps, the reader is referred to the forthcoming book, 'Paleontology - a Guide to the Postal Materials Depicting Prehistoric Lifeforms' by Fran Adams et. al. The best book currently in print is a book titled 'Dinosaur Stamps of the World' by Baldwin & Halstead.
    [Show full text]
  • A Revised Taxonomy of the Iguanodont Dinosaur Genera and Species
    ARTICLE IN PRESS + MODEL Cretaceous Research xx (2007) 1e25 www.elsevier.com/locate/CretRes A revised taxonomy of the iguanodont dinosaur genera and species Gregory S. Paul 3109 North Calvert Station, Side Apartment, Baltimore, MD 21218-3807, USA Received 20 April 2006; accepted in revised form 27 April 2007 Abstract Criteria for designating dinosaur genera are inconsistent; some very similar species are highly split at the generic level, other anatomically disparate species are united at the same rank. Since the mid-1800s the classic genus Iguanodon has become a taxonomic grab-bag containing species spanning most of the Early Cretaceous of the northern hemisphere. Recently the genus was radically redesignated when the type was shifted from nondiagnostic English Valanginian teeth to a complete skull and skeleton of the heavily built, semi-quadrupedal I. bernissartensis from much younger Belgian sediments, even though the latter is very different in form from the gracile skeletal remains described by Mantell. Currently, iguanodont remains from Europe are usually assigned to either robust I. bernissartensis or gracile I. atherfieldensis, regardless of lo- cation or stage. A stratigraphic analysis is combined with a character census that shows the European iguanodonts are markedly more morpho- logically divergent than other dinosaur genera, and some appear phylogenetically more derived than others. Two new genera and a new species have been or are named for the gracile iguanodonts of the Wealden Supergroup; strongly bipedal Mantellisaurus atherfieldensis Paul (2006. Turning the old into the new: a separate genus for the gracile iguanodont from the Wealden of England. In: Carpenter, K. (Ed.), Horns and Beaks: Ceratopsian and Ornithopod Dinosaurs.
    [Show full text]
  • The Dinosaurs Transylvanian Province in Hungary
    COMMUNICATIONS OF THE YEARBOOK OF THE ROYAL HUNGARIAN GEOLOGICAL IMPERIAL INSTITUTE ================================================================== VOL. XXIII, NUMBER 1. ================================================================== THE DINOSAURS OF THE TRANSYLVANIAN PROVINCE IN HUNGARY. BY Dr. FRANZ BARON NOPCSA. WITH PLATES I-IV AND 3 FIGURES IN THE TEXT. Published by The Royal Hungarian Geological Imperial Institute which is subject to The Royal Hungarian Agricultural Ministry BUDAPEST. BOOK-PUBLISHER OF THE FRANKLIN ASSOCIATION. 1915. THE DINOSAURS OF THE TRANSYLVANIAN PROVINCE IN HUNGARY. BY Dr. FRANZ BARON NOPCSA. WITH PLATES I-IV AND 3 FIGURES IN THE TEXT. Mit. a. d. Jahrb. d. kgl. ungar. Geolog. Reichsanst. XXIII. Bd. 1 heft I. Introduction. Since it appears doubtful when my monographic description of the dinosaurs of Transylvania1 that formed my so-to-speak preparatory works to my current dinosaur studies can be completed, due on one hand to outside circumstances, but on the other hand to the new arrangement of the vertebrate material in the kgl. ungar. geologischen Reichsanstalt accomplished by Dr. KORMOS, the necessity emerged of also exhibiting some of the dinosaur material located here, so that L. v. LÓCZY left the revision to me; I view the occasion, already briefly anticipating my final work at this point, to give diagnoses of the dinosaurs from the Transylvanian Cretaceous known up to now made possible from a systematic division of the current material, as well as to discuss their biology. The reptile remains known from the Danian of Transylvania will be mentioned only incidentally. Concerning the literature, I believe in refraining from more exact citations, since this work presents only a preliminary note.
    [Show full text]
  • Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex
    Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex By Karen E. Poole B.A. in Geology, May 2004, University of Pennsylvania M.A. in Earth and Planetary Sciences, August 2008, Washington University in St. Louis A Dissertation submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 31, 2015 Dissertation Directed by Catherine Forster Professor of Biology The Columbian College of Arts and Sciences of The George Washington University certifies that Karen Poole has passed the Final Examination for the degree of Doctor of Philosophy as of August 10th, 2015. This is the final and approved form of the dissertation. Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex Karen E. Poole Dissertation Research Committee: Catherine A. Forster, Professor of Biology, Dissertation Director James M. Clark, Ronald Weintraub Professor of Biology, Committee Member R. Alexander Pyron, Robert F. Griggs Assistant Professor of Biology, Committee Member ii © Copyright 2015 by Karen Poole All rights reserved iii Dedication To Joseph Theis, for his unending support, and for always reminding me what matters most in life. To my parents, who have always encouraged me to pursue my dreams, even those they didn’t understand. iv Acknowledgements First, a heartfelt thank you is due to my advisor, Cathy Forster, for giving me free reign in this dissertation, but always providing valuable commentary on any piece of writing I sent her, no matter how messy.
    [Show full text]
  • Dinosaur Species List E to M
    Dinosaur Species List E to M E F G • Echinodon becklesii • Fabrosaurus australis • Gallimimus bullatus • Edmarka rex • Frenguellisaurus • Garudimimus brevipes • Edmontonia longiceps ischigualastensis • Gasosaurus constructus • Edmontonia rugosidens • Fulengia youngi • Gasparinisaura • Edmontosaurus annectens • Fulgurotherium australe cincosaltensis • Edmontosaurus regalis • Genusaurus sisteronis • Edmontosaurus • Genyodectes serus saskatchewanensis • Geranosaurus atavus • Einiosaurus procurvicornis • Gigantosaurus africanus • Elaphrosaurus bambergi • Giganotosaurus carolinii • Elaphrosaurus gautieri • Gigantosaurus dixeyi • Elaphrosaurus iguidiensis • Gigantosaurus megalonyx • Elmisaurus elegans • Gigantosaurus robustus • Elmisaurus rarus • Gigantoscelus • Elopteryx nopcsai molengraaffi • Elosaurus parvus • Gilmoreosaurus • Emausaurus ernsti mongoliensis • Embasaurus minax • Giraffotitan altithorax • Enigmosaurus • Gongbusaurus shiyii mongoliensis • Gongbusaurus • Eoceratops canadensis wucaiwanensis • Eoraptor lunensis • Gorgosaurus lancensis • Epachthosaurus sciuttoi • Gorgosaurus lancinator • Epanterias amplexus • Gorgosaurus libratus • Erectopus sauvagei • "Gorgosaurus" novojilovi • Erectopus superbus • Gorgosaurus sternbergi • Erlikosaurus andrewsi • Goyocephale lattimorei • Eucamerotus foxi • Gravitholus albertae • Eucercosaurus • Gresslyosaurus ingens tanyspondylus • Gresslyosaurus robustus • Eucnemesaurus fortis • Gresslyosaurus torgeri • Euhelopus zdanskyi • Gryponyx africanus • Euoplocephalus tutus • Gryponyx taylori • Euronychodon
    [Show full text]
  • DINOSAUR BOOKLET No. 2 Iguanodon Bernissartensis and Mantellisaurus Atherfieldensis
    DINOSAUR BOOKLET No. 2 Iguanodon bernissartensis and Mantellisaurus atherfieldensis Description Iguanodon (pronounced 'Ig-wan-oh-don') was one of the first dinosaurs to be named. The name is derived from 'Iguana' - a type of modern reptile, and 'don' meaning tooth. Iguanodon is the name of a small group of dinosaurs within the much larger group called Iguanodontids; they were large herbivores, with a long tail for balance, and hind legs that were longer than their fore limbs. There were three large hooved toes on each foot, and four fingers and a thumb spike on each hand. The mouth had a battery of chewing teeth, and a boney beak in place of front teeth. Since its initial discovery in the early nineteenth century, and more detailed reconstructions after complete skeletons were found in a Belgian mine in 1878, we have been forced to re-evaluate its posture, shape and movement; and to look again at how it fits in with other members of the Iguanodontids. Fossil remains from the group show they existed from the late Jurassic through to the late Cretaceous. Here on the Isle of Wight it was once thought there were two basic species of Iguanodon; a larger form called Iguanodon bernissartensis, and a more graceful species called Iguanodon atherfieldensis. The first was named after the Belgian town where complete skeletons were found (Bernissart) and the latter from Atherfield on the south west coast of the Isle of Wight. However 1 more recently palaeontologist Gregory Paul has moved our smaller variety to a new genera, leaving us with only one Iguanodon but a new genera of Iguanodontid called Mantellisaurus atherfieldensis (named after Gideon Mantell) in its place.
    [Show full text]
  • Our Museum Dinosaurs
    Our Museum Dinosaurs Coelophysis Tyrannosaurus Means: ‘hollow form’ Means: ‘tyrant lizard’ Say it: seel-oh-FIE-sis Say it: tie-ran-oh-SORE-us Where found: USA Where found: USA, Canada Type: Theropod Type: Theropod Length: 3m Length: 12m Height: 2m Height: 3.6m Weight: 27kg Weight: 8,300kg How it moved: walked on two legs, may have run How it moved: swiftly on two legs Teeth: 60 saw-edged, bone-crushing, pointed Teeth: small and sharp teeth in immensely strong jaws Type of feeder: CARNIVORE Type of feeder: CARNIVORE + SCAVENGER Food: small reptiles and insects Food: all other animals When it lived: 225-220 million years ago When it lived: 68-66 million years ago In the museum In the museum Models of Coelophysis Full size replica of its skull REAL fossil footprints Polacanthus Edmontosaurus Means: ‘many prickles’ Means: ‘Edmonton lizard’ Say it: pole-a-CAN-thus Say it: ed-mon-toe-SORE-us Where found: England Where found: North America Type: Ankylosaur Type: Hadrosaur Length: 5m Length: 13m Height: 1m Height: 3.5m Weight: 2 tonnes Weight: 3,400kg How it moved: walked on four legs How it moved: on two or four legs Teeth: small Teeth: horny beak, 200 grinding cheek teeth Type of feeder: HERBIVORE Type of feeder: HERBIVORE Food: plants Food: pine needles, seeds, twigs and leaves When it lived: 130-125 million years ago When it lived: 73-66 million years ago In the museum In the museum Partial skeleton of A REAL Edmontosaurus skeleton Polacanthus (in rock) Fossil Edmontosaurus skin imprint Hypsilophodon Dracoraptor Means: ‘high-crested tooth’ Means: ‘dragon robber’ Say it: hip-sih-LOW-foh-don Say it: DRAY-co-RAP-tor Where found: Isle of Wight, England Where found: Wales Type: Ornithiscian (orn-i-thi-SHE-an) Type: Theropod Length: around 3m Length: 1.8m Height: around 1m Height: 0.8m (80cm) Weight: around 25kg Weight: 20kg How it moved: walked or ran on two legs How it moved: swiftly on two legs Teeth: small pointed serrated teeth Teeth: horny beak, c.
    [Show full text]
  • Saurolophus Angustirostris from the Late Cretaceous of Mongolia with Comments on Saurolophus Osborni from Canada Author(S): Phil R
    Cranial Osteology and Ontogeny of Saurolophus angustirostris from the Late Cretaceous of Mongolia with Comments on Saurolophus osborni from Canada Author(s): Phil R. Bell Source: Acta Palaeontologica Polonica, 56(4):703-722. 2011. Published By: Institute of Paleobiology, Polish Academy of Sciences DOI: http://dx.doi.org/10.4202/app.2010.0061 URL: http://www.bioone.org/doi/full/10.4202/app.2010.0061 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Cranial osteology and ontogeny of Saurolophus angustirostris from the Late Cretaceous of Mongolia with comments on Saurolophus osborni from Canada PHIL R. BELL Bell, P.R. 2011. Cranial osteology and ontogeny of Saurolophus angustirostris from the Late Cretaceous of Mongolia with comments on Saurolophus osborni from Canada. Acta Palaeontologica Polonica 56 (4): 703–722. Reanalysis of the skull of the crested Asian hadrosaurine Saurolophus angustirostris confirms its status as a distinct spe− cies from its North American relative, Saurolophus osborni.
    [Show full text]
  • A Four-Legged Megalosaurus and Swimming Brontosaurs
    Channels: Where Disciplines Meet Volume 2 Number 2 Spring 2018 Article 5 April 2018 A Four-Legged Megalosaurus and Swimming Brontosaurs Jordan C. Oldham Cedarville University, [email protected] Follow this and additional works at: https://digitalcommons.cedarville.edu/channels Part of the Geology Commons, History of Philosophy Commons, Paleontology Commons, and the Philosophy of Science Commons DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Recommended Citation Oldham, Jordan C. (2018) "A Four-Legged Megalosaurus and Swimming Brontosaurs," Channels: Where Disciplines Meet: Vol. 2 : No. 2 , Article 5. DOI: 10.15385/jch.2018.2.2.5 Available at: https://digitalcommons.cedarville.edu/channels/vol2/iss2/5 A Four-Legged Megalosaurus and Swimming Brontosaurs Abstract Thomas Kuhn in his famous work The Structure of Scientific Revolutions laid out the framework for his theory of how science changes. At the advent of dinosaur paleontology fossil hunters like Gideon Mantell discovered some of the first dinosaurs like Iguanodon and Megalosaurus. Through new disciples like Georges Cuvier’s comparative anatomy lead early dinosaur paleontologist to reconstruct them like giant reptiles of absurd proportions. This lead to the formation of a new paradigm that prehistoric animals like dinosaurs existed and eventually went extinct.
    [Show full text]
  • THE BIBLIOGRAPHY of HADROSAURIAN DINOSAURS the First 150 Years: 1856 - 2006
    THE BIBLIOGRAPHY OF HADROSAURIAN DINOSAURS The First 150 Years: 1856 - 2006. complied by M.K. Brett-Surman © Smithsonian Institution 1985-2008 The Department of Paleobiology of the National Museum of Natural History, Smithsonian Institution, currently houses approximately 44 million fossil plant, invertebrate, and vertebrate fossils in more than 480 separate collections. In addition, Paleobiology also maintains a reference collection of over 120,000 stratigraphic and sediment samples. This listing represents a service provided to the public as part of our Outreach Program and as part of the Smithsonian Institution’s mission "for the increase and diffusion of knowledge...". Papers are listed by author and year. Author's names are capitalized. The viewer should be aware of any searches that are case sensitive. The papers listed here, in a majority of instances, do NOT contain abstracts, papers on ichnites, or popular articles or books, unless they present new information or cover an aspect of the history of dinosaur paleontology. At present, some of the legacy software that was used to maintain this list only allowed basic ASCII characters, therefore foreign accents (such as in French and Spanish) did not translate. This will be fixed at a later date. The Bibliography of Hadrosaurian Dinosaurs was written, compiled, and maintained by M.K. Brett-Surman, (Museum Specialist), P.O. Box 37012, Department of Paleobiology, National Museum of Natural History, MRC-121, Washington, DC 20013-7012. He can be reached electronically at: [email protected]., and by FAX at 202-786-2832. Please send all corrections and additions to the e-mail address. This file will be no longer be updated, except for entries prior to 2007.
    [Show full text]
  • Dinosaur Detectives Years 5 & 6 Which Oneiswhich? Name: T Rex T Is a One Isacarnivore (Eatsmeat)Andtheother Iguanodon in Thecentralcourt
    Name: 1 Famous Fossils 2 Interesting Iggy Find the huge fossils of Iguanodon and T rex When scientists first found fossils ofIguanodon , they were in a big jumble. in the central court. Years 5 & 6 Years They first pieced the bones together to look like this. One is a carnivore (eats meat) and the other They placed an unusual bone that looked like a spike on the end of its nose. is a herbivore (eats plants). Look at the big Iguanodon skeleton in the centre of the Museum. Which one is which? T rex is a Discuss with a friend the differences between the picture above and the skeleton. The legs are different because... The tail is different because... Iguanodon is a Scientists now know that Iguanodon had 2 spikes. Can you spot where they are? Circle them on this picture. Very recent discoveries suggest that Iguanodon walked on 4 legs, Look carefully at T rex and Iguanodon. rather than 2. Compare both dinosaurs. How are they Is our Iguanodon skeleton in the centre of the Museum in the correct different? position or not? T rex... Circle your answer. CORRECT INCORRECT Dinosaur Detectives It is exactly how Iguanodon It is now out of date would have stood ...but Iguanodon... Museum Map 6 3 Giant Jaw Find the Megalosaurus jaw. This was the first ever fossil described as a dinosaur. 3 1 Study the jaw and fill in the gaps of 4 the picture above. 7 2 What does Megalosaurus mean? 4 Bird-a-saurus? 5 Dino Dentist 6 Super Sauropods Dinosaurs laid eggs, just like birds.
    [Show full text]
  • Osteology of a Near-Complete Skeleton of Tenontosaurus Tilletti (Dinosauria: Ornithopoda) from the Cloverly Formation, Montana, USA
    Osteology of a Near-Complete Skeleton of Tenontosaurus tilletti (Dinosauria: Ornithopoda) from the Cloverly Formation, Montana, USA A report submitted in partial fulfilment of the requirements for the degree of MEarthSci Geology (Hons.), University of Manchester Jonathan Tennant 70406912 MEarthSci Geology (Hons.) School of Earth, Atmospheric and Environmental Sciences University of Manchester Williamson Building Oxford Road Manchester M13 9PL Osteology of Tenontosaurus tilletti Contents Figures and Tables..............................................................................................................................................3 1.0 Abstract .............................................................................................................................................................6 2.0 Introduction ......................................................................................................................................................7 2.1 Aims and Objectives....................................................................................................................................7 2.2 Institutional Abbreviations ........................................................................................................................9 3.0 Previous Work ............................................................................................................................................... 11 3.1 The Cloverly Formation ..........................................................................................................................
    [Show full text]