Algal Morphogenesis: How Volvox Turns Itself Inside-Out Dispatch

Total Page:16

File Type:pdf, Size:1020Kb

Algal Morphogenesis: How Volvox Turns Itself Inside-Out Dispatch View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology, Vol. 13, R770–R772, September 30, 2003, ©2003 Elsevier Science Ltd. All rights reserved. DOI 10.1016/j.cub.2003.09.019 Algal Morphogenesis: How Volvox Dispatch Turns Itself Inside-Out 1 2 Douglas G. Cole and Mark V. Reedy This shape change by cells of the phialopore is sufficient to initiate bending of the epithelial sheet. In order for the cellular sheet to create a sharp arc and During its development, the multicellular green alga propagate the turn into a full inversion, the tip of each Volvox undergoes inversion, in which spherical flask cell must be brought close to the tips of adja- embryos turn their multicellular sheet completely cent flask cells (Figure 1B). This is achieved by the inside out. A mutant analysis has revealed that a inward movement of flask cells with respect to the novel kinesin motor protein is essential for complet- sphere. Because each cell moves perpendicularly to ing this process. the plane of the epithelium while the cytoplasmic bridges remain stationary relative to the cellular sheet, this causes a relative displacement of the cell In some colony like Volvox there once lay hidden the such that the cytoplasmic bridges are now found at secret of the body and mind of man — JS Huxley, the slender end of the flask cells, and forces a sharp 1912 [1]. bend in the epithelium [7]. How exactly does this displacement come about? One of the advantages of studying Volvox is that it is a genetically tractable model organism. Nishii et al. [4] The coordinated movements of epithelial tissues play used a temperature-sensitive Volvox transposon vital roles in a variety of processes, from embryonic Jordan [8] — named after the US basketball star, development to wound healing. The multicellular green because of its jumping abilities — to generate a panel alga Volvox carteri is a useful model organism for of Volvox mutants that failed to complete inversion. studying one such movement: epithelial bending [2]. One of the mutant alleles identified, InvA, was cloned During embryogenesis, the immature spheroid Volvox and found to encode a novel type of kinesin that is undergoes a process known as inversion whereby it expressed only in the embryo during late cleavage turns itself completely inside out [3]. The recent dis- and inversion. Expression of HA-tagged InvA in Volvox covery by David Kirk and colleagues [4] that a kinesin showed that the protein is exclusively localized at the is essential for this process provides new clues for how cytoplasmic bridges, regardless of whether the bridge a cellular sheet can make a sharp bend. is at the fat or slender portion of the cell. In the InvA An adult Volvox consists of 2,000–4,000 somatic cells mutant, the cells never move relative to one another in a single spherical sheet surrounding 16 larger, repro- and the cytoplasmic bridges remain at the fat portion ductive cells known as gonidia [5]. During asexual of the cell (Figure 1C). As flask cell formation is not reproduction, each mature gonidium within the spher- blocked, the first stages of inversion where the cellu- oid undergoes 11 or 12 rapid rounds of cell division. lar sheet starts to bend back still occurs. But without Because cytokinesis is incomplete during these early the movement of flask cells relative to the cytoplasmic cleavage stages, the resulting somatic cells are actually bridges, the cellular sheet is unable to propagate a a syncytium connected by a network of cytoplasmic sharp turn (Figure 2A,B). bridges [6,7]. By the end of cleavage, there may be as How does the InvA kinesin function? A regular many as 100,000 total bridges in an embryo, with nearly network of rootlet and cortical microtubules originate 25 bridges linking the average cell to its neighbors. from the basal body region and runs the length of The immature Volvox, though, is an ‘inside-out’ each somatic cell. These cortical microtubule tracks sphere, with its nascent gonidia on the external surface lie very close to the cytoplasmic bridges, and extend and the flagella of its somatic cells facing inside the all the way to the tips of the slender ends of flask organism. In order to achieve its final adult form, each cells [7,9]. The model proposed by Nishii et al. [4] embryonic Volvox must effectively turn itself inside-out, argues that during inversion, the InvA kinesin, while a process known as inversion (Figure 1A). The cell- anchored at cytoplasmic bridges, moves along corti- sheet bending that occurs during Volvox inversion cal microtubules toward the slender ends of flask begins at a specific site known as the phialopore, a cells (Figure 2C). Effectively, this moves the cytoplas- swastika-shaped opening found at the anterior pole of mic bridge to the slender end, forcing the slender the embryo. To initiate inversion, cells at the edges of ends of neighboring cells to be adjacent and, thus, the phialopore adopt an asymmetric flask-like shape forcing a sharp bend of the epithelial sheet. (Figure 1B,C). The rearrangement of epithelial sheets is a reoccur- ring theme in animal development [10] and Volvox inversion bears striking similarity to certain morpho- 1Department of Microbiology, Molecular Biology and genetic processes in animal embryos. For example, Biochemistry, Life Science South 142, University of Idaho, the dramatic reorganization of tissues during inversion Moscow, Idaho 83844-3052, USA. 2Biology Department, is reminiscent of tissue movements witnessed during Creighton University, 2500 California Plaza, Omaha, Nebraska vertebrate gastrulation. Obvious analogies can also be 68178, USA. made between flask cells and phialopore formation in Current Biology R771 Figure 1. Volvox inversion. (A) Volvox embryo initiating inversion. (B) Wild-type flask cells with cytoplasmic bridges at slender end (arrows). (C) InvA mutant flask cells, where cell movement relative to cytoplasmic bridges is blocked (arrows). Volvox and bottle cells and blastopore formation in that in the former, the neural folds bend inwards (medi- gastrulating amphibian embryos. ally) as they elevate, rather than outwards. The direc- The formation and elevation of the neural folds during tionality of bending, however, is largely the result of primary neurulation in amniote embryos is also quite external forces driven by other tissues acting on the similar to Volvox inversion [11]. In a process similar to elevating neural folds, as isolated avian neural plates in flask cell formation in Volvox, columnar epithelial cells vitro do, in fact, bend outwards and roll ‘inside-out’ [12]. at the lateral edges of the neural plate narrow at their What relevance then, if any, do the results of Nishii et apical ends, causing the edges of the neural plate to ini- al. [4] have to our understanding of morphogenetic tiate bending upwards and inwards. The edges of the movements in animal embryos? The organization of neural plate, now referred to as neural folds, continue epithelial sheets in early Volvox embryos is quite to elevate and ultimately meet medially, where they different from that of metazoan embryos, which fuse to form the neural tube. The major difference generally lack the cytoplasmic bridges and associated between neural fold elevation and Volvox inversion is cortical microtubule networks seen in Volvox. In A C Model Wild type Basal bodies Cortical microtubules InvA kinesin in bridges Cell elongation Inversion plus movement of continues cells relative to the cytoplasmic bridge system Cytoplasmic B bridge InvA mutant Cell elongation Inversion but no movement is arrested of cells relative to the cytoplasmic bridge system Current Biology Figure 2. The role of InvA in Volvox inversion. Diagrammatic representations of inverting wild-type (A) and InvA mutant (B) embryos, viewed in midsaggital section. The red line rep- resents the cytoplasmic bridges that link all cells. In the absence of InvA kinesin (B), the cells fail to move relative to the bridges and inversion is arrested. (C) Anchored to the cytoplasmic bridges, the InvA kinesin is hypothesized [4] to move along the cortical micro- tubules, resulting in the net movement of the cell relative to the bridge network. Dispatch R772 addition, there do not appear to be any obvious homo- logues or orthologues of InvA in any of the vertebrate genomes sequenced to date. Together, these observa- tions suggest that the mechanisms of Volvox inversion and vertebrate gastrulation or neurulation will be quite different, despite their phenomenological similarities. Nevertheless, the implication of a novel kinesin family member in epithelial bending should be of interest to embryologists studying epithelial morphogenesis, and might suggest that those researchers take a closer look at the potential for microtubule-driven cytoskeletal activities to play a role in those processes. References 1. Huxley, J.S. (1912). The Individual in the animal kingdom. Cam- bridge University Press. 2. Kirk, D.L., and Nishii, I. (2001). Volvox carteri as a model for study- ing the genetic and cytological control of morphogenesis. Dev. Growth Differ. 43, 621-631. 3. Kuschakewisch, S. (1923). Zur Kenntnis derEntwickslungs- geschichte von Volvox. Bull de I'Acad dSc de I'Oukraine 1, 32-40. 4. Nishii, I., Ogihara, S., and Kirk, D.L. (2003). A kinesin, InvA, plays an essential role in Volvox morphogenesis. Cell 113, 743-753. 5. Kirk, D.L. (1998). Volvox: Molecular genetic origins of multicellular- ity and cellular differentiation. (New York: Cambridge University Press.) 6. Green, K.J., and Kirk, D.L. (1981). Cleavage patterns, cell lineages, and development of a cytoplasmic bridge system in Volvox embryos. J. Cell Biol. 91, 743-755. 7. Green, K.J., Viamontes, G.I., and Kirk, D.L. (1981). Mechanism of formation, ultrastructure, and function of the cytoplasmic bridge system during morphogenesis in Volvox.
Recommended publications
  • Real-Time Dynamics of Plasmodium NDC80 Reveals Unusual Modes of Chromosome Segregation During Parasite Proliferation Mohammad Zeeshan1,*, Rajan Pandey1,*, David J
    © 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2021) 134, jcs245753. doi:10.1242/jcs.245753 RESEARCH ARTICLE SPECIAL ISSUE: CELL BIOLOGY OF HOST–PATHOGEN INTERACTIONS Real-time dynamics of Plasmodium NDC80 reveals unusual modes of chromosome segregation during parasite proliferation Mohammad Zeeshan1,*, Rajan Pandey1,*, David J. P. Ferguson2,3, Eelco C. Tromer4, Robert Markus1, Steven Abel5, Declan Brady1, Emilie Daniel1, Rebecca Limenitakis6, Andrew R. Bottrill7, Karine G. Le Roch5, Anthony A. Holder8, Ross F. Waller4, David S. Guttery9 and Rita Tewari1,‡ ABSTRACT eukaryotic organisms to proliferate, propagate and survive. During Eukaryotic cell proliferation requires chromosome replication and these processes, microtubular spindles form to facilitate an equal precise segregation to ensure daughter cells have identical genomic segregation of duplicated chromosomes to the spindle poles. copies. Species of the genus Plasmodium, the causative agents of Chromosome attachment to spindle microtubules (MTs) is malaria, display remarkable aspects of nuclear division throughout their mediated by kinetochores, which are large multiprotein complexes life cycle to meet some peculiar and unique challenges to DNA assembled on centromeres located at the constriction point of sister replication and chromosome segregation. The parasite undergoes chromatids (Cheeseman, 2014; McKinley and Cheeseman, 2016; atypical endomitosis and endoreduplication with an intact nuclear Musacchio and Desai, 2017; Vader and Musacchio, 2017). Each membrane and intranuclear mitotic spindle. To understand these diverse sister chromatid has its own kinetochore, oriented to facilitate modes of Plasmodium cell division, we have studied the behaviour movement to opposite poles of the spindle apparatus. During and composition of the outer kinetochore NDC80 complex, a key part of anaphase, the spindle elongates and the sister chromatids separate, the mitotic apparatus that attaches the centromere of chromosomes to resulting in segregation of the two genomes during telophase.
    [Show full text]
  • Substrate and Cell Fusion Influence on Slime Mold Network Dynamics
    www.nature.com/scientificreports OPEN Substrate and cell fusion infuence on slime mold network dynamics Fernando Patino‑Ramirez1*, Chloé Arson1,3 & Audrey Dussutour2,3* The acellular slime mold Physarum polycephalum provides an excellent model to study network formation, as its network is remodelled constantly in response to mass gain/loss and environmental conditions. How slime molds networks are built and fuse to allow for efcient exploration and adaptation to environmental conditions is still not fully understood. Here, we characterize the network organization of slime molds exploring homogeneous neutral, nutritive and adverse environments. We developed a fully automated image analysis method to extract the network topology and followed the slime molds before and after fusion. Our results show that: (1) slime molds build sparse networks with thin veins in a neutral environment and more compact networks with thicker veins in a nutritive or adverse environment; (2) slime molds construct long, efcient and resilient networks in neutral and adverse environments, whereas in nutritive environments, they build shorter and more centralized networks; and (3) slime molds fuse rapidly and establish multiple connections with their clone‑mates in a neutral environment, whereas they display a late fusion with fewer connections in an adverse environment. Our study demonstrates that slime mold networks evolve continuously via pruning and reinforcement, adapting to diferent environmental conditions. Transportation networks where fuids are transported from one point of the network to another are ubiquitous in nature. Vascular networks in animals, plants, fungi and slime molds are commonly cited examples of such natural transportation networks. Tese networks are ofen studied as static architectures, although most of them have the ability to alter their morphology in space and time in response to environmental conditions1.
    [Show full text]
  • S41598-020-68694-9.Pdf
    www.nature.com/scientificreports OPEN Delayed cytokinesis generates multinuclearity and potential advantages in the amoeba Acanthamoeba castellanii Nef strain Théo Quinet1, Ascel Samba‑Louaka2, Yann Héchard2, Karine Van Doninck1 & Charles Van der Henst1,3,4,5* Multinuclearity is a widespread phenomenon across the living world, yet how it is achieved, and the potential related advantages, are not systematically understood. In this study, we investigate multinuclearity in amoebae. We observe that non‑adherent amoebae are giant multinucleate cells compared to adherent ones. The cells solve their multinuclearity by a stretchy cytokinesis process with cytosolic bridge formation when adherence resumes. After initial adhesion to a new substrate, the progeny of the multinucleate cells is more numerous than the sibling cells generated from uninucleate amoebae. Hence, multinucleate amoebae show an advantage for population growth when the number of cells is quantifed over time. Multiple nuclei per cell are observed in diferent amoeba species, and the lack of adhesion induces multinuclearity in diverse protists such as Acanthamoeba castellanii, Vermamoeba vermiformis, Naegleria gruberi and Hartmannella rhysodes. In this study, we observe that agitation induces a cytokinesis delay, which promotes multinuclearity. Hence, we propose the hypothesis that multinuclearity represents a physiological adaptation under non‑adherent conditions that can lead to biologically relevant advantages. Te canonical view of eukaryotic cells is usually illustrated by an uninucleate organization. However, in the liv- ing world, cells harbouring multiple nuclei are common. Tis multinuclearity can have diferent origins, being either generated (i) by fusion events between uninucleate cells or by (ii) uninucleate cells that replicate their DNA content without cytokinesis.
    [Show full text]
  • Nuclear and Genome Dynamics in Multinucleate Ascomycete Fungi
    Current Biology 21, R786–R793, September 27, 2011 ª2011 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2011.06.042 Nuclear and Genome Dynamics Review in Multinucleate Ascomycete Fungi Marcus Roper1,2, Chris Ellison3, John W. Taylor3, to enhance phenotypic plasticity [5] and is also thought to and N. Louise Glass3,* contribute to fungal virulence [6–8]. Recent and ongoing work reveals two fundamental chal- lenges of multinucleate fungal lifestyles, both in the presence Genetic variation between individuals is essential to evolu- and absence of genotypic diversity — namely, the coordina- tion and adaptation. However, intra-organismic genetic tion of populations of nuclei for growth and other behaviors, variation also shapes the life histories of many organisms, and the suppression of nucleotypic competition during including filamentous fungi. A single fungal syncytium can reproduction and dispersal. The potential for a mycelium to harbor thousands or millions of mobile and potentially harbor fluctuating proportions and distributions of multiple genotypically different nuclei, each having the capacity genotypes led some 20th century mycologists to argue for to regenerate a new organism. Because the dispersal of life-history models that focused on nuclei as the unit of asexual or sexual spores propagates individual nuclei in selection, and on the role of nuclear cooperation and compe- many of these species, selection acting at the level of tition in shaping mycelium growth and behavior [9,10].In nuclei creates the potential for competitive and coopera- particular, nuclear totipotency creates potential for conflict tive genome dynamics. Recent work in Neurospora crassa between heterogeneous nuclear populations within a myce- and Sclerotinia sclerotiorum has illuminated how nuclear lium [11,12].
    [Show full text]
  • Roles for IFT172 and Primary Cilia in Cell Migration, Cell Division, and Neocortex Development
    fcell-07-00287 November 26, 2019 Time: 12:22 # 1 ORIGINAL RESEARCH published: 26 November 2019 doi: 10.3389/fcell.2019.00287 Roles for IFT172 and Primary Cilia in Cell Migration, Cell Division, and Neocortex Development Michal Pruski1,2,3,4,5†‡, Ling Hu3,5†, Cuiping Yang4, Yubing Wang4, Jin-Bao Zhang6, Lei Zhang4,5, Ying Huang3,4,5, Ann M. Rajnicek5, David St Clair5, Colin D. McCaig5, Bing Lang1,2,5* and Yu-Qiang Ding3,4* Edited by: 1 Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China, 2 National Clinical Eiman Aleem, Research Center for Mental Disorders, Changsha, China, 3 State Key Laboratory of Medical Neurobiology and MOE The University of Arizona, Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China, 4 Key Laboratory United States of Arrhythmias, Ministry of Education, East Hospital, Department of Anatomy and Neurobiology, Collaborative Innovation Reviewed by: Centre for Brain Science, Tongji University School of Medicine, Shanghai, China, 5 School of Medicine, Medical Sciences Surya Nauli, and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom, 6 Department of Histology University of California, Irvine, and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, China United States Andrew Paul Jarman, The University of Edinburgh, The cilium of a cell translates varied extracellular cues into intracellular signals that United Kingdom control embryonic development and organ function. The dynamic maintenance of *Correspondence: ciliary structure and function requires balanced bidirectional cargo transport involving Bing Lang intraflagellar transport (IFT) complexes. IFT172 is a member of the IFT complex B, and [email protected] Yu-Qiang Ding IFT172 mutation is associated with pathologies including short rib thoracic dysplasia, [email protected] retinitis pigmentosa and Bardet-Biedl syndrome, but how it underpins these conditions † These authors have contributed is not clear.
    [Show full text]
  • Host-Parasite Relationships of Atalodera Spp. (Heteroderidae) M
    234 Journal of Nematology, Volume 15, No. 2, April 1983 and D. I. Edwards. 1972. Interaction of Meloidogyne 18. Volterra, V. 1931. Variations and fluctuations naasi, Pratylenchus penetrans, and Tylenchorhyn- of the number of individuals in animal species chus agri on creeping bentgrass. J. Nematol. 4:~ living together. Pp. 409-448 tn R. N. Chapman ed. 162-165. Animal ecology. New York: McGraw-Hill. Host-Parasite Relationships of Atalodera spp. (Heteroderidae) M. ]~'IUNDO-OCAMPOand J. G. BALDWIN r Abstract: Atalodera ucri, Wouts and Sher, 1971, and ,4. lonicerae, (Wonts, 1973) Luc et al., 1978, induce similar multinucleate syncytia in roots of golden bush and honeysuckle, respec- tively. The syncytium is initiated in the cortex; as it expands, it includes several partially delimited syncytial units and distorts vascular tissue. Outer walls of the syncytium are rela- tively smooth and thickest near the feeding site of the nematode; inner walls are interrupted by perforations which enlarge as syncytial units increa~ in size. The cytoplasm of the syncytium is granular and includes numermts plastids, mit(~chondria, vacuoles, Golgi, and a complex network of membranes. Nuclei are greatly enlarged and amoeboid in shape. Although more than one nucleus sometimes occur in a given syncytial unit, no mitotic activity was observed. Syncytia induced by species of Atalodera chiefly differ from those of Heterodera sensu lato by the absence of cell wall ingrowths; wall ingrowths increase solute transport and characterize transfer cells. In syncytia of Atalodera spp., a high incidence of pits and pit fields in walls adjacent to vasctdar elements suggests that in this case plasmodesmata provide the pathway for increased entry of sohttes.
    [Show full text]
  • A Parasitic Nematode Releases Cytokinin That Controls Cell Division and Orchestrates Feeding Site Formation in Host Plants
    A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants Shahid Siddiquea, Zoran S. Radakovica, Carola M. De La Torreb,1, Demosthenis Chronisb,1,2, Ondrej Novákc, Eswarayya Ramireddyd, Julia Holbeina, Christiane Materaa, Marion Hüttena, Philipp Gutbroda, Muhammad Shahzad Anjama, Elzbieta Rozanskae, Samer Habasha, Abdelnaser Elashrya, Miroslaw Sobczake, Tatsuo Kakimotof, Miroslav Strnadc, Thomas Schmüllingd, Melissa G. Mitchumb, and Florian M. W. Grundlera,3 aRheinische Friedrich-Wilhelms-University of Bonn, Department of Molecular Phytomedicine, D-53115 Bonn, Germany; bDivision of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211; cLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University and Institute of Experimental Botany Academy of Sciences of the Czech Republic, CZ-78371 Olomouc, Czech Republic; dInstitute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany; eDepartment of Botany, Warsaw University of Life Sciences, PL-02787 Warsaw, Poland; and fDepartment of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan Edited by Paul Schulze-Lefert, Max Planck Institute for Plant Breeding Research, Cologne, Germany, and approved August 26, 2015 (received for review February 21, 2015) Sedentary plant-parasitic cyst nematodes are biotrophs that cause the majority of juveniles develop into females. However, when the significant losses in agriculture. Parasitism is based on modifications juveniles are exposed to adverse conditions, as seen in resistant of host root cells that lead to the formation of a hypermetabolic plants, the percentage of males increases considerably.
    [Show full text]
  • Retention of Gene Products in Syncytial Spermatids Promotes Non-Mendelian Inheritance As Revealed by the T Complex Responder
    Downloaded from genesdev.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press RESEARCH COMMUNICATION distorters(Tcd1–4), which additively enhance the trans- Retention of gene products in mission rate of the t complex responder (Tcr) (Lyon 1984). syncytial spermatids promotes On the physiological level, TRD has been attributed to alteration of motility parameters in wild-type sperm de- non-Mendelian inheritance rived from t/+ males (Katz et al. 1979; Olds-Clarke and Johnson 1993). t complex Tcr as revealed by the Tcr (gene symbol Smok1 , herein abbreviated Tcr) was responder identified as a dominant-negative allele of the sperm motility kinase-1 (Smok1) (Herrmann et al. 1999). This Nathalie Ve´ron,1,2 Hermann Bauer,1 finding suggested that Tcds are involved in signaling Andrea Y. Weiße,3,6 Gerhild Lu¨ der,4 pathways controlling sperm motility via Smok1. Indeed, Martin Werber,1,5 and Bernhard G. Herrmann1,5,7 molecular cloning of Tcd1a and Tcd2 has identified regulators of Rho small G-proteins, Tagap1 and Fgd2, 1Department of Developmental Genetics, Max-Planck-Institute linking TRD to Rho signaling pathways (Bauer et al. 2005, for Molecular Genetics, 14195 Berlin, Germany; 2Faculty of 2007). Biology, Free University Berlin, 14195 Berlin, Germany; The current model of TRD suggests that Tcds addi- 3Department of Mathematics and Computer Science, tively contribute to deregulation of two Rho signaling Biocomputing Group, Free University Berlin, 14195 Berlin, cascades that control wild-type Smok1 protein (Bauer Germany; 4Electron Microscopy Group, Max-Planck-Institute et al. 2005, 2007). The activating pathway is up-regulated, for molecular Genetics, 14195 Berlin, Germany; 5Institute for while the repressing pathway is down-regulated, by the medical Genetics-CBF, Charite´-University Medicine Berlin, Tcd gene products.
    [Show full text]
  • Aspergillus Fumigatus, One Uninucleate Species with Disparate Offspring
    Journal of Fungi Article Aspergillus fumigatus, One Uninucleate Species with Disparate Offspring François Danion 1,2,3 , Norman van Rhijn 4 , Alexandre C. Dufour 5,† , Rachel Legendre 6, Odile Sismeiro 6, Hugo Varet 6,7 , Jean-Christophe Olivo-Marin 5 , Isabelle Mouyna 1, Georgios Chamilos 8, Michael Bromley 4, Anne Beauvais 1 and Jean-Paul Latgé 1,8,*,‡ 1 Unité des Aspergillus, Institut Pasteur, 75015 Paris, France; [email protected] (F.D.); [email protected] (I.M.); [email protected] (A.B.) 2 Centre d’infectiologie Necker Pasteur, Hôpital Necker-Enfants Malades, 75015 Paris, France 3 Department of Infectious Diseases, CHU Strasbourg, 67000 Strasbourg, France 4 Manchester Fungal Infection Group, University of Manchester, Manchester M13 9PL, UK; [email protected] (N.v.R.); [email protected] (M.B.) 5 Bioimage Analysis Unit, Institut Pasteur, CNRS UMR3691, 75015 Paris, France; [email protected] (A.C.D.); [email protected] (J.-C.O.-M.) 6 Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Plate-Forme Transcriptome et Epigenome, Biomics, 75015 Paris, France; [email protected] (R.L.); [email protected] (O.S.); [email protected] (H.V.) 7 Département Biologie Computationnelle, Hub de Bioinformatique et Biostatistique, Institut Pasteur, USR 3756 CNRS, 75015 Paris, France 8 Institute of Molecular Biology and Biotechnology FORTH and School of Medicine, University of Crete, 70013 Heraklion, Crete, Greece; [email protected] * Correspondence: [email protected] † Current addresses: Centre Scientifique et Technique Jean Féger, Total, 64000 Pau, France. ‡ Current addresses: Institute of Molecular Biology and Biotechnology FORTH, University of Crete Heraklion, 70013 Heraklion, Greece.
    [Show full text]
  • Physarum Polycephalum (Plasmodial Slime Mold)
    Physarum polycephalum (plasmodial slime mold) Species: polycephalum Genus: Physarum Family: Physaraceae Order: Physarales Class: Myxomycetes Phylum: Mycetozoa Kingdom: Amoebozoa Conditions for Customer Ownership We hold permits allowing us to transport these organisms. To access permit conditions, click here. Never purchase living specimens without having a disposition strategy in place. There are currently no USDA permits required for this organism. In order to protect our environment, never release a live laboratory organism into the wild. Primary Hazard Considerations Always wash your hands thoroughly before and after you handle your cultures, or anything it has touched. It is recommended to use gloves when working with mold, fungus, or bacteria. Availability Physarum is available year round. Care Habitat • Plasmodial stage are shipped in a Petri dish on Physarum agar with oats. Your Physarum should be bright yellow in color, and fan shaped. If your Physarum takes on a different appearance it may be contaminated. Contaminated cultures occur when a foreign specimen (something other than Physarum) makes its way onto your culture. This culture should be stored at room temperature in a dark place. The culture should be viable for about 1–2 weeks in its current container. • Sclerotia are hardened masses of irregular form consisting of many minute cell-like components. These are shipped on cut strips of filter paper in a tube. The culture should be stored at room temperature and can be stored in this stage for several months. Care: • Physarum is subcultured onto Physarum agar, and is incubated at room temperature or 25 °C. To maintain viability, plasmodial Physarum should be subcultured weekly.
    [Show full text]
  • The Primary Cilium: the Tiny Driver of Dentate Gyral Neurogenesis
    In: Neurogenesis Research ISBN: 978-1-62081-723-0 Editors: Gerry J. Clark and Walcot T. Anderson © 2012 Nova Science Publishers, Inc. No part of this digital document may be reproduced, stored in a retrieval system or transmitted commercially in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. Chapter V The Primary Cilium: The Tiny Driver of Dentate Gyral Neurogenesis James F. Whitfield1, Balu Chakravarthy1, Anna Chiarini2 and Ilaria Dal Prà2 1Molecular Signaling Group, National Research Council of Canada, Institute for Biological Sciences, Ottawa, Ontario, Canada 2Histology and Embryology Section, Department of Life and Reproduction Sciences, University of Verona Medical School, Verona, Italy Abstract An emerging picture of the brain is one in which both neurons and astrocytes have an immobile protuberance, a tiny sensory antenna. Each of these antennae is studded with a region-specific selection of receptors and maintains a busy, energy-consuming bidirectional traffic along its microtubular spine (axoneme) of parts of signaling machineries and messages to the cell center from the receptors about mechanical strains and external events. These messages are merged with those from the swarm of synapses on the cell’s dendrites to frame appropriate responses.
    [Show full text]
  • Adaptive Behavior and Learning in Slime Moulds: the Role of Oscillations
    Adaptive behavior and learning in slime moulds: the role of oscillations Aurèle Boussard, Adrian Fessel, Christina Oettmeier, Léa Briard, Hans-Gunther Dobereiner, Audrey Dussutour To cite this version: Aurèle Boussard, Adrian Fessel, Christina Oettmeier, Léa Briard, Hans-Gunther Dobereiner, et al.. Adaptive behavior and learning in slime moulds: the role of oscillations. Philosophical Transactions of the Royal Society of London. B (1887–1895), Royal Society, The, 2021. hal-02992905v1 HAL Id: hal-02992905 https://hal.archives-ouvertes.fr/hal-02992905v1 Submitted on 6 Nov 2020 (v1), last revised 25 Nov 2020 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Submitted to Phil. Trans. R. Soc. B - Issue Adaptive behavior and learning in slime moulds: the role of oscillations Journal: Philosophical Transactions B Manuscript ID RSTB-2019-0757.R1 Article Type:ForReview Review Only Date Submitted by the n/a Author: Complete List of Authors: Boussard, Aurèle; CNRS, Research Center on Animal Cognition Fessel, Adrian; University of Bremen, Institut für Biophysik
    [Show full text]