Вiсник Харкiвського нацiонального унiверситету iменi В.Н. Каразiна Серiя "Математика, прикладна математика i механiка" УДК 514 № 1030, 2012, с.54–70 Minimal and totally geodesic unit sections of the unit sphere bundles. A. Yampolsky Харкiвський нацiональный унiверситет механiко-математичний факультет, кафедра геометрiї, майдан Свободи, 4, 61022, Харкiв, Україна
[email protected] We consider a real vector bundle E of rank p and a unit sphere bundle E1 ⊂ E n over the Riemannian M with the Sasaki-type metric. A unit section of E1 gives rise to a submanifold in E1. We give some examples of local minimal unit sections and present a complete description of local totally geodesic unit sections of E1 in the simplest non-trivial case p = 2 and n = 2. Keywords: Sasaki metric, unit sphere bundle, totally geodesic unit section. Ямпольський О. Л., Мiнiмальнi i цiлком геодезичнi одиничнi перерiзи сферичних розшарувань. Ми розглядаємо векторне розшарування E рангу p та одиничне розшарування E1 ⊂ E над рiмановим многовидом M n з метрикою Сасакi. Ми наводимо приклади мiнiмальних перерiзiв i надаємо повне вирiшення задачi про цiлком геодезичнi перерiзи E1 у найпростiшому нетривiальному випадку, коли p = 2 i n = 2. Ключовi слова: метрика Сасакi, одиничне розшарування, цiлком геодезичний одиничний перерiз. Ямпольский А. Л., Минимальные и вполне геодезические сечения единичных сферических расслоений. Мы рассматриваем вещественное векторное расслоение E ранга p и единичное расслоение n E1 над римановым многообразием M с метрикой Сасаки. Мы приводим примеры локальных минимальных единичных сечений и даем полное решение задачи существования локальных вполне геодезических сечений E1 в простейшем нетривиальном случае, когда p = 2 и n = 2. Ключевые слова: метрика Сасаки, сферическое расслоение, вполне геодезическое единичное сечение.