Chapter 11: Space Technology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Precollimator for X-Ray Telescope (Stray-Light Baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017
Mindrum.com Precollimator for X-Ray Telescope (stray-light baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017 1 Overview Mindrum.com Precollimator •Past •Present •Future 2 Past Mindrum.com • Space X-Ray Telescopes (XRT) • Basic Structure • Effectiveness • Past Construction 3 Space X-Ray Telescopes Mindrum.com • XMM-Newton 1999 • Chandra 1999 • HETE-2 2000-07 • INTEGRAL 2002 4 ESA/NASA Space X-Ray Telescopes Mindrum.com • Swift 2004 • Suzaku 2005-2015 • AGILE 2007 • NuSTAR 2012 5 NASA/JPL/ASI/JAXA Space X-Ray Telescopes Mindrum.com • Astrosat 2015 • Hitomi (ASTRO-H) 2016-2016 • NICER (ISS) 2017 • HXMT/Insight 慧眼 2017 6 NASA/JPL/CNSA Space X-Ray Telescopes Mindrum.com NASA/JPL-Caltech Harrison, F.A. et al. (2013; ApJ, 770, 103) 7 doi:10.1088/0004-637X/770/2/103 Basic Structure XRT Mindrum.com Grazing Incidence 8 NASA/JPL-Caltech Basic Structure: NuSTAR Mirrors Mindrum.com 9 NASA/JPL-Caltech Basic Structure XRT Mindrum.com • XMM Newton XRT 10 ESA Basic Structure XRT Mindrum.com • XMM-Newton mirrors D. de Chambure, XMM Project (ESTEC)/ESA 11 Basic Structure XRT Mindrum.com • Thermal Precollimator on ROSAT 12 http://www.xray.mpe.mpg.de/ Basic Structure XRT Mindrum.com • AGILE Precollimator 13 http://agile.asdc.asi.it Basic Structure Mindrum.com • Spektr-RG 2018 14 MPE Basic Structure: Stray X-Rays Mindrum.com 15 NASA/JPL-Caltech Basic Structure: Grazing Mindrum.com 16 NASA X-Ray Effectiveness: Straylight Mindrum.com • Correct Reflection • Secondary Only • Backside Reflection • Primary Only 17 X-Ray Effectiveness Mindrum.com • The Crab Nebula by: ROSAT (1990) Chandra 18 S. -
New Views of the Moon Enabled by Combined Remotely Sensed and Lunar Sample Data Sets, a Lunar Initiative
New Views of the Moon Enabled by Combined Remotely Sensed and Lunar Sample Data Sets, A Lunar Initiative Using the hand tool on your Reader, click on the links below to view that particular section of the proposal. Proposal Summary Scientific/Technical/Management Objectives and Expected Significance Background and Impact Approach and Methodology: The Role of Integration in Fundamental Problems of Lunar Geoscience Workshop 2: New Views of the Moon II: Understanding the Moon Through the Integration of Diverse Datasets. Abstract Volume and Subsequent Publications Statement of Relevance Work Plan Potential Workshop (2000): Thermal and Magmatic Evolution of the Moon Potential Workshop (2001): Early Lunar Differentiation, Core Formation, Effects of Early Planetesimal Impacts, and the Origin of the Moon’s Global Asymmetry Potential Workshop (2002): Selection of Sites for Future Sample Return Capstone Publication Timeline for the New Views of the Moon Initiative Personnel: Initiative Management and Proposal Management References Facilities: The LPI Appendix 1. Workshop on New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datasets. List of presentations Appendix 2. LPSC 30 (1999) special sessions related to the Lunar Initiative. List of presentations (oral and poster) Appendix 3. Lunar Initiative Steering Committee Web Note: This is the text of a proposal submitted on behalf of the Lunar Science Community to support ongoing workshops and activities associated with the CAPTEM Lunar Initiative. It was submitted in May, 1999, in response to the ROSS 99 NRA, which solicits such proposals to be submitted to the relevant research programs. This proposal was submitted jointly to Cosmo- chemistry and Planetary Geology and Geophysics. -
Atlas V Launches LRO/LCROSS Mission Overview
Atlas V Launches LRO/LCROSS Mission Overview Atlas V 401 Cape Canaveral Air Force Station, FL Space Launch Complex-41 AV-020/LRO/LCROSS United Launch Alliance is proud to be a part of the Lunar Reconnaissance Orbiter (LRO) and the Lunar Crater Observation and Sensing Satellite (LCROSS) mission with the National Aeronautics and Space Administration (NASA). The LRO/LCROSS mission marks the sixteenth Atlas V launch and the seventh flight of an Atlas V 401 configuration. LRO/LCROSS is a dual-spacecraft (SC) launch. LRO is a lunar orbiter that will investigate resources, landing sites, and the lunar radiation environment in preparation for future human missions to the Moon. LCROSS will search for the presence of water ice that may exist on the permanently shadowed floors of lunar polar craters. The LCROSS mission will use two Lunar Kinetic Impactors, the inert Centaur upper stage and the LCROSS SC itself, to produce debris plumes that may reveal the presence of water ice under spectroscopic analysis. My thanks to the entire Atlas team for its dedication in bringing LRO/LCROSS to launch, and to NASA for selecting Atlas for this ground-breaking mission. Go Atlas, Go Centaur, Go LRO/LCROSS! Mark Wilkins Vice President, Atlas Product Line Atlas V Launch History Flight Config. Mission Mission Date AV-001 401 Eutelsat Hotbird 6 21 Aug 2002 AV-002 401 HellasSat 13 May 2003 AV-003 521 Rainbow 1 17 Jul 2003 AV-005 521 AMC-16 17 Dec 2004 AV-004 431 Inmarsat 4-F1 11 Mar 2005 AV-007 401 Mars Reconnaissance Orbiter 12 Aug 2005 AV-010 551 Pluto New Horizons 19 Jan 2006 AV-008 411 Astra 1KR 20 Apr 2006 AV-013 401 STP-1 08 Mar 2007 AV-009 401 NROL-30 15 Jun 2007 AV-011 421 WGS SV-1 10 Oct 2007 AV-015 401 NROL-24 10 Dec 2007 AV-006 411 NROL-28 13 Mar 2008 AV-014 421 ICO G1 14 Apr 2008 AV-016 421 WGS-2 03 Apr 2009 Payload Fairing Number of Solid Atlas V Size (meters) Rocket Boosters Flight/Configuration Key AV-XXX ### Number of Centaur Engines 3-digit Tail Number 3-digit Configuration Number LRO Overview LRO is the first mission in NASA’s planned return to the Moon. -
Protons in the Near Lunar Wake Observed by the SARA Instrument on Board Chandrayaan-1
FUTAANA ET AL. PROTONS IN DEEP WAKE NEAR MOON 1 Protons in the Near Lunar Wake Observed by the SARA 2 Instrument on Board Chandrayaan-1 3 Y. Futaana, 1 S. Barabash, 1 M. Wieser, 1 M. Holmström, 1 A. Bhardwaj, 2 M. B. Dhanya, 2 R. 4 Sridharan, 2 P. Wurz, 3 A. Schaufelberger, 3 K. Asamura 4 5 --- 6 Y. Futaana, Swedish Institute of Space Physics, Box 812, Kiruna, SE-98128, Sweden. 7 ([email protected]) 8 9 10 1 Swedish Institute of Space Physics, Box 812, Kiruna, SE-98128, Sweden 11 2 Space Physics Laboratory, Vikram Sarabhai Space Center, Trivandrum 695 022, India 12 3 Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland 13 4 Institute of Space and Astronautical Science, 3-1-1 Yoshinodai, Sagamihara, Japan 14 Index Terms 15 6250 Moon 16 5421 Interactions with particles and fields 17 2780 Magnetospheric Physics: Solar wind interactions with unmagnetized bodies 18 7807 Space Plasma Physics: Charged particle motion and acceleration 19 Abstract 20 Significant proton fluxes were detected in the near wake region of the Moon by an ion mass 21 spectrometer on board Chandrayaan-1. The energy of these nightside protons is slightly higher than 22 the energy of the solar wind protons. The protons are detected close to the lunar equatorial plane at 23 a 140˚ solar zenith angle, i.e., ~50˚ behind the terminator at a height of 100 km. The protons come 24 from just above the local horizon, and move along the magnetic field in the solar wind reference 25 frame. -
The Making of the Chandra X-Ray Observatory: the Project Scientist’S Perspective
SPECIAL FEATURE: PERSPECTIVE The making of the Chandra X-Ray Observatory: The project scientist’s perspective Martin C. Weisskopf1 National Aeronautics and Space Administration/Marshall Space Flight Center, Huntsville, AL 35805 Edited by Harvey D. Tananbaum, Smithsonian Astrophysical Observatory, Cambridge, MA, and approved January 22, 2010 (received for review December 16, 2009) The history of the development of the Chandra X-Ray Observatory is reviewed from a personal perspective. This review is necessarily biased and limited by space because it attempts to cover a time span approaching five decades. historical perspective | x-ray astronomy t is sobering for me to realize that there arescientistswhoareworkingwithdata Ifrom this truly great observatory who were not even born when the founda- tion for what is now the Chandra X-Ray Observatory was laid. Thus, it may surprise many to know that the beginning was suc- cinctly and accurately outlined in a research proposal that Riccardo Giacconi and col- leagues wrote in 1963, a mere 9 months after he and his team’s discovery of the first ex- trasolar x-ray source Scorpius X-1. As im- portant, the data from this rocket flight also indicated the presence of the “diffuse x-ray background.” Fig. 1 illustrates the showpiece of this insightful proposal. It shows a ≈1-m diameter, 10-m focal length, grazing-incidence x-ray telescope. The telescope was of sufficient area and angular resolution to determine the nature of the unresolved x-ray background. We all owe Riccardo an enormous debt of gratitude for his insight, leadership, and, in my case (and I suspect for many others), inspiration. -
+ New Horizons
Media Contacts NASA Headquarters Policy/Program Management Dwayne Brown New Horizons Nuclear Safety (202) 358-1726 [email protected] The Johns Hopkins University Mission Management Applied Physics Laboratory Spacecraft Operations Michael Buckley (240) 228-7536 or (443) 778-7536 [email protected] Southwest Research Institute Principal Investigator Institution Maria Martinez (210) 522-3305 [email protected] NASA Kennedy Space Center Launch Operations George Diller (321) 867-2468 [email protected] Lockheed Martin Space Systems Launch Vehicle Julie Andrews (321) 853-1567 [email protected] International Launch Services Launch Vehicle Fran Slimmer (571) 633-7462 [email protected] NEW HORIZONS Table of Contents Media Services Information ................................................................................................ 2 Quick Facts .............................................................................................................................. 3 Pluto at a Glance ...................................................................................................................... 5 Why Pluto and the Kuiper Belt? The Science of New Horizons ............................... 7 NASA’s New Frontiers Program ........................................................................................14 The Spacecraft ........................................................................................................................15 Science Payload ...............................................................................................................16 -
Global Mapping of Elemental Abundance on Lunar Surface by SELENE Gamma-Ray Spectrometer
Lunar and Planetary Science XXXVI (2005) 2092.pdf Global Mapping of elemental abundance on lunar surface by SELENE gamma-ray spectrometer. 1M. -N. Kobayashi, 1A. A. Berezhnoy, 6C. d’Uston, 1M. Fujii, 1N. Hasebe, 3T. Hiroishi, 4H. Kaneko, 1T. Miyachi, 5K. Mori, 6S. Maurice, 4M. Nakazawa, 3K. Narasaki, 1O. Okudaira, 1E. Shibamura, 2T. Takashima, 1N. Yamashita, 1Advanced Research Institute of Sci.& Eng., Waseda Univ., 3-4-1, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan, (masa- [email protected]), 2Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, Kanagawa, 229-8510, 3Niihama Works, Sumitomo Heavy Industry Ltd., Niihama, Ehime, Japan, Moriya Works, 4Meisei Electric Co., Ltd., 3-249-1, Yuri-ga-oka, Moriya-shi, Ibaraki, 302-0192, 5Clear Pulse Co., 6-25-17, Chuo, Ohta-ku, Tokyo, Japan, 143-0024, 6Centre d’Etude Spatiale des Rayonnements, CNRS/UPS, Colonel Roche, B.P 4346, France. Introduction: Elemental composition on the sur- face of a planet is very important information for solv- ing the origin and the evolution of the planet and also very necessary for understanding the origin and the evolution of solar system. Planetary gamma-ray spec- troscopy is extremely powerful approach for the ele- mental composition measurement. Gamma-ray spec- trometer (GRS) will be on board SELENE, advanced lunar polar orbiter, and employ a large-volume Ge detector of 252cc as the main detector [1]. SELENE GRS is, therefore, approximately twice more sensitiv- ity than Lunar Prospector GRS, four times more sensi- Figure 1: The schematic drawing of SELENE Gamma- tive than APOLLO GRS. -
Mission Design for the Lunar Reconnaissance Orbiter
AAS 07-057 Mission Design for the Lunar Reconnaissance Orbiter Mark Beckman Goddard Space Flight Center, Code 595 29th ANNUAL AAS GUIDANCE AND CONTROL CONFERENCE February 4-8, 2006 Sponsored by Breckenridge, Colorado Rocky Mountain Section AAS Publications Office, P.O. Box 28130 - San Diego, California 92198 AAS-07-057 MISSION DESIGN FOR THE LUNAR RECONNAISSANCE ORBITER † Mark Beckman The Lunar Reconnaissance Orbiter (LRO) will be the first mission under NASA’s Vision for Space Exploration. LRO will fly in a low 50 km mean altitude lunar polar orbit. LRO will utilize a direct minimum energy lunar transfer and have a launch window of three days every two weeks. The launch window is defined by lunar orbit beta angle at times of extreme lighting conditions. This paper will define the LRO launch window and the science and engineering constraints that drive it. After lunar orbit insertion, LRO will be placed into a commissioning orbit for up to 60 days. This commissioning orbit will be a low altitude quasi-frozen orbit that minimizes stationkeeping costs during commissioning phase. LRO will use a repeating stationkeeping cycle with a pair of maneuvers every lunar sidereal period. The stationkeeping algorithm will bound LRO altitude, maintain ground station contact during maneuvers, and equally distribute periselene between northern and southern hemispheres. Orbit determination for LRO will be at the 50 m level with updated lunar gravity models. This paper will address the quasi-frozen orbit design, stationkeeping algorithms and low lunar orbit determination. INTRODUCTION The Lunar Reconnaissance Orbiter (LRO) is the first of the Lunar Precursor Robotic Program’s (LPRP) missions to the moon. -
Mars Exploration - a Story Fifty Years Long Giuseppe Pezzella and Antonio Viviani
Chapter Introductory Chapter: Mars Exploration - A Story Fifty Years Long Giuseppe Pezzella and Antonio Viviani 1. Introduction Mars has been a goal of exploration programs of the most important space agencies all over the world for decades. It is, in fact, the most investigated celestial body of the Solar System. Mars robotic exploration began in the 1960s of the twentieth century by means of several space probes sent by the United States (US) and the Soviet Union (USSR). In the recent past, also European, Japanese, and Indian spacecrafts reached Mars; while other countries, such as China and the United Arab Emirates, aim to send spacecraft toward the red planet in the next future. 1.1 Exploration aims The high number of mission explorations to Mars clearly points out the impor- tance of Mars within the Solar System. Thus, the question is: “Why this great interest in Mars exploration?” The interest in Mars is due to several practical, scientific, and strategic reasons. In the practical sense, Mars is the most accessible planet in the Solar System [1]. It is the second closest planet to Earth, besides Venus, averaging about 360 million kilometers apart between the furthest and closest points in its orbit. Earth and Mars feature great similarities. For instance, both planets rotate on an axis with quite the same rotation velocity and tilt angle. The length of a day on Earth is 24 h, while slightly longer on Mars at 24 h and 37 min. The tilt of Earth axis is 23.5 deg, and Mars tilts slightly more at 25.2 deg [2]. -
The Most Dangerous Ieos in STEREO
EPSC Abstracts Vol. 6, EPSC-DPS2011-682, 2011 EPSC-DPS Joint Meeting 2011 c Author(s) 2011 The most dangerous IEOs in STEREO C. Fuentes (1), D. Trilling (1) and M. Knight (2) (1) Northern Arizona University, Arizona, USA, (2) Lowell Observatory, Arizona, USA ([email protected]) Abstract (STEREO-B) which view the Sun-Earth line using a suite of telescopes. Each spacecraft moves away 1 from the Earth at a rate of 22.5◦ year− (Figure 1). IEOs (inner Earth objects or interior Earth objects) are ∼ potentially the most dangerous near Earth small body Our search for IEOs utilizes the Heliospheric Imager population. Their study is complicated by the fact the 1 instruments on each spacecraft (HI1A and HI1B). population spends all of its time inside the orbit of The HI1s are centered 13.98◦ from the Sun along the the Earth, giving ground-based telescopes a small win- Earth-Sun line with a square field of view 20 ◦ wide, 1 dow to observe them. We introduce STEREO (Solar a resolution of 70 arcsec pixel− , and a bandpass of TErrestrial RElations Observatory) and its 5 years of 630—730 nm [3]. Images are taken every 40 minutes, archival data as our best chance of studying the IEO providing a nearly continuous view of the inner solar population and discovering possible impactor threats system since early 2007. The nominal visual limit- ing magnitude of HI1 is 13, although the sensitivity to Earth. ∼ We show that in our current search for IEOs in varies somewhat with solar elongation, and asteroids STEREO data we are capable of detecting and char- fainter than 13 can be seen near the outer edges. -
INTRODUCTION to SPACE EXPLORATION Creating a Time Capsule
INTRODUCTION TO SPACE EXPLORATION Creating a Time Capsule Grade Level: 5 - 8 Suggested TEKS Language Arts - 5.15 6.15 7.15 8.15 Social Studies - 5.18 6.20 7.20 8.20 Time Required: 30 - 45 minutes Art - 5.2 6.2 7.2 8.2 Computer - 5.2 6.2 7.2 8.2 Suggested SCANS Countdown: Writing paper Interpersonal. Interprets and Communicates Information National Science and Math Standards Pencils Science as Inquiry, Physical Science, Earth & Space Science, Science & Technology, History & Nature of Science, Measurement, Observing, Communicating Ignition: For decades, space colonies have been the creation of science fiction writers. However, with world population growing at an alarming rate, the concept of a second home in space could very likely become a stark reality. Already, a number of visionary scientists have drawn up plans for off-earth habitats. Biosphere II near Tucson, Arizona is an example. Additionally, NASA has future plans for a mission to Mars in the next 20 years. It certainly appears that earth will not always be our home. With this in mind, ask the students to consider the scenario suggested next in "Liftoff." Liftoff: You will have the opportunity to bury a time capsule, a sealed and durable box, which will be opened after one hundred years. Future discoverers of the box will be able to guess from the contents what your life was like 100 years before their time. Below are six different categories. For each category, choose an object that would best represent it. Keep in mind that you may choose items like photographs, scrapbooks, films or videos, books, newspapers, miniature models, and other favorite mementos. -
New Publication: Commission A1 Annual Report 2016
IAU Commission A1 - Astrometry Anthony Brown, Norbert Zacharias, Yoshiyuki Yamada, Jean Souchay, Alexandre Humberto Andrei, Dafydd Evans, Stephen Unwin Annual Report 2016 Gaia mission The first release of Gaia data (Gaia DR1, Gaia Collaboration et al 2016) took place on September 14 2016. This first Gaia catalogue consists of 1.1 billion sources to magnitude 20.7 for which positions are provided with typical uncertainties of 10 milliarcsec. For a subset of about 2 million sources from the Hipparcos and Tycho-2 catalogues proper motions and parallaxes are provided with a typical uncertainty of 1 milliarcsec/yr and 0.3 milliarcsec, respectively. Gaia DR1 represents a large step forward in the densification of the astrometric reference frame in the optical at faint magnitudes, and has consequently already been employed as the reference positional catalogue for several other large surveys (see below). The radio positions of around 2000 ICRF2 sources were compared to the optical positions from Gaia (Mignard et al 2016). No systematic differences larger than a few tenths of amilliarcsec were found. For most sources the true offsets are likely to be less than 1 mas. This is a very encouraging result in connection with the efforts to develop multi-wavelength realizations of the ICRS. The optical tracking of the position of Gaia on the sky was continued throughout 2016 by the GBOT (Ground Based Optical Tracking). The aim is to get an optimized position of the satellite with respect to the surrounding stars. The observations are made with the help of CCD frames taken at the focus of T1-2m class telescopes located at various places in the world.