Cervicobrachial Region

Total Page:16

File Type:pdf, Size:1020Kb

Cervicobrachial Region 94 Annals of the Rheumatic Diseases 1994; 53: 94-99 Postmortem angiographic study of degenerative Ann Rheum Dis: first published as 10.1136/ard.53.2.94 on 1 February 1994. Downloaded from vascular changes in arteries supplying the cervicobrachial region Leena I Kauppila, Antti Penttila Abstract belong to those musculoskeletal disorders that Objectives-To study the prevalence of are common in the population, but whose degenerative changes in the arteries possible aetiological and pathological mech- supplying the cervicobrachial region, and anisms are by no means clear. These disorders their relation to cervical disc degener- have heterogeneous symptoms such as pain, ation. tenderness, stiffness and fatigue felt diffusively Methods-Fifty postmortem aortic arch over the posterior neck and shoulder area, and angiographies were evaluated for occlu- exacerbated by physical exertion."1A sions and variations in the diameter ofthe Though many research workers have vertebral arteries and thyro- and costo- suspected local ischaemia as one possible cervical trunks, as well as for tortuosity, explanation for the symptoms,59 we could find average diameter and the highest cervical no reports concerning the condition of arteries level to which the ascending cervical supplying the neck-and-shoulder region. artery, an upward continuation of the Atherosclerosis, manifesting itself in middle thyrocervical trunk, and the deep cervical age or even earlier, and being very common in artery, an upward continuation of the carotid and vertebral arteries, might also affect costocervical trunk, ascended. the thyrocervical and costocervical trunks, the Results-Localised segmental narrow- main feeders of the cervicobrachial region. ings, usually situated close to the ostia of Branches of these trunks, together with the arteries, were common, whereas total branches of the vertebral arteries, supply the occlusions were rare. Thirty (60%) of the cervical spine, as well as the musculature of the subjects showed a segmental narrowing at neck and upper shoulder regions."'O3 least in one of the six arteries analysed, Ageing ofthe vascular system does not occur http://ard.bmj.com/ while only two (4%) showed an occluded simultaneously in all the arteries; some artery, which in both the cases was the branches of the subclavian artery are more thyrocervical trunk. Narrowings were often affected than others. Stenosis of the most common in vertebral arteries, vertebral artery at its origin from the superior followed by costocervical and thyrocer- aspect of the subclavian artery is a well-known vical trunks. Segmental narrowings, as atherosclerotic manifestation,14 15 whereas the well as general tortuosity of the arteries, internal mammary artery, leaving the on September 23, 2021 by guest. Protected copyright. increased with age. It was also found that subclavian artery from its lower surface ascending and deep cervical arteries did opposite the vertebral artery, usually escapes not run as high up in the posterior neck arterial disease.'6 The fate of the thyro- and muscles in older people as in younger costocervical trunks, originating from the ones. Twenty three subjects with marked subclavian artery just after the orifice of the cervical disc degeneration showed on vertebral artery, is unknown. average 2-3 arteries with segmental To dermine the general condition of the narrowings, while the corresponding arteries supplying the cervicobrachial area, we figure for twenty seven subjects without investigated the prevalence of degenerative disc degeneration was 06. Both the changes in the vertebral arteries and thyro- and segmental narrowings and the disc costocervical trunks. We also analysed the degeneration, however, were strongly highest cervical level to which the upward associated with age, and thus the causality continuations of these trunks, the ascending between the former two remained cervical artery from the thyrocervical trunk and Department of the deep cervical artery from the costocervical Forensic Medicine, unclear. University ofHelsinki, Conclusion-The study showed that trunk, ascended. Furthermore, cervical disc Kyt6suontie, Helsinki, degenerative changes are common in the degeneration was assessed to learn whether it Finland arteries supplying the cervicobrachial had any relationship with arterial disease. L I Kauppila A Penttila area, indicating that impaired blood flow Correspondence to: might play a part in some cervicobrachial Dr Leena I Kauppila, disorders. Materials and methods Department ofForensic Medicine, University of NECROPSY Helsinki, PO Box 40, (Ann Rheum Dis 1994; 53: 94-99) Aortic arch angiography was performed on 55 Kytosuontie 11, SF-00014 at the of Forensic Helsinki, Finland. cadavers Department as well as Medicine, of Helsinki. Five of the Accepted for publication Cervical disc degeneration, poorly University 15 October 1993 defined cervicobrachial pain syndromes, cases had to be omitted from the study due to Postmortem angiographic study of degenerative vascular changes in arteries supplying the cervicobrachial region 95 ACA This technique of injection will result in the filling of arteries down to 0 1 mm in diameter. Ann Rheum Dis: first published as 10.1136/ard.53.2.94 on 1 February 1994. Downloaded from This angiographic method is in routine use in postoperative necropsies at the Department of VA Forensic Medicine, University ofHelsinki. It is DCA described in detail elsewhere.17 When the contrast medium had solidified, the trachea, oesophagus and thyroid gland were removed en CCT bloc with their contrast-filled vessels in order to provide more selective angiographies of the musculoskeletal structures of the cervical TCT _ region. The vertebral arteries and the thyrocervical and costocervical trunks, as well 6'W-, as their upward continuations; the ascending cervical artery and the deep cervical artery, were then examined in anteroposterior and lateral radiographs. Other branches of these trunks could not be analysed from these two radiological projections. In some cases the first parts of the thyrocervical and costocervical trunks were not clearly seen in angiograms due to their location on the dorsal side of the subclavian artery or r behind each other. In these cases (7 subjects), co AMA after the angiography, the subclavian artery was divided and the vulcanised cast from it and from the first parts of the vertebral artery and thyro- and costocervical trunks removed for macroscopic analysis for narrowings (fig 1). Figure 1 Cast ofthe subclavian artery (SCA) with beginning ofthe vertebral artery (VA); thyrocervical trunk (TCT) with ascending cervical artery (ACA); and costocervical EVALUATION OF ANGIOGRAMS trunk (CCT) with deep cervical artery (DCA). Internal mammary artery (AMA). The following characteristics were recorded from the angiograms: occlusions, variations in the diameter of the vessel (localised segmental narrowing of the contrast-medium pillar), technical failure of the angiography, so tortuosity, average diameter; and also for the http://ard.bmj.com/ altogether 50 bilateral cervical angiographies, ascending and deep cervical arteries, the performed on 40 men and 10 women, were highest cervical level either one of them analysed. Eligible cadavers had not died of an reached. injury to the head or neck region, but in other Variations in the diameter of the vessel were respects the material was unselected. Their determined for the vertebral arteries and for mean age was 48-8 years; range 16-76 years. the thyrocervical and costocervical trunks, but The angiographies were carried out in con- not for the ascending cervical and deep cervical on September 23, 2021 by guest. Protected copyright. nection with routine necropsies 1-9 days after arteries, because the small diameter of these death. vessels made assessment difficult and Drug or alcohol overdose, or suicide was the unreliable. If the first parts of the analysed cause of death in 46% (23) of the cases, arteries were not distinctly visible in angio- coronary artery disease in 38% (19), other grams, the casts when removed were used for vascular diseases in 6% (3), and a variety of analysis. Narrowings to no less than one fifth single diseases in 10% (5). of the lumen were recorded from the casts, equalling the smallest narrowings visible in the angiograms. ANGIOGRAPHIC TECHNIQUE Tortuosity of the vertebral, ascending The cervical arterial system was bilaterally cervical and deep cervical arteries was classified investigated by aortic arch angiography. The into three categories: 1 = straight; 2 = slightly aorta was transected from its ascending part, tortuous; 3 = tortuous. Straight and distinctly cannulated with a mouthpiece, and the tortuous vessels were first separated into common carotid and internal mammary categories 1 and 3. The borderline cases with arteries were clamped. The subclavian arteries probable or mild tortuosity difficult to classify were clamped beyond the origin of the as either straight or distinctly tortuous formed thyrocervical and costocervical trunks. The category 2. Because the degree of tortuosity contrast medium, consisting of liquid silicone was in most cases symmetrical, the right and rubber (Silicon Kautschuk RTV-Vergussmasse left sided arteries were analysed jointly. K, Wacker Chemie Cmbh, Munich, Germany) The average diameter of the vertebral, made radiopaque with 20% lead oxide, mixed ascending cervical and deep cervical arteries with 2% solidifier (Haerter T), was injected was graded into three categories: 1 = normal; under a
Recommended publications
  • Cervical Arterial Collateral Network References Reply: Reference Age
    Cervical Arterial Collateral Network Age and Gender Effects on Normal Regional Cerebral Purkayastha et al1 reported 3 cases of proatlantal intersegmental Blood Flow arteries of external carotid artery origin associated with Galen’s vein We read with great interest the article of Takahashi et al.1 The article malformation; however, because of their configuration, I believe that points out the use of 3D stereotactic surface projections (3D-SSP) to the 3 cases do not demonstrate this rare arterial variation, but rather study the age-effect on regional cerebral blood flow (rCBF). The show collateral blood flow from the occipital artery (OA) to the ver- greatest rCBF reduction observed was in the bilateral anterior cingu- tebral artery (VA). In patients with a vein of Galen malformation, the late. Although we generally agree with the conclusions, we would like intra-arterial blood pressure in the VA is lower than that in the OA to emphasize some methodologic issues that may have had an impact because of blood steal phenomenon at the malformation. It is well on the obtained results. known that there is a cervical arterial collateral network between OA, In the study, 31 healthy volunteers between 50 and 79 years were classified in 3 different age classes (50–59, 60–69, and 70–79 years). VA, and the deep cervical artery arising from the subclavian artery.2 If Statistical analysis was performed 2 by 2 by using unpaired Student t test. one of these arteries is occluded, the remaining arteries and their Rather than considering age as a discrete variable, the analysis would have branches are dilated and supply the distal segment of the occluded been strengthened by performing a multivariate analysis based on the artery.
    [Show full text]
  • The Variations of the Subclavian Artery and Its Branches Ahmet H
    Okajimas Folia Anat. Jpn., 76(5): 255-262, December, 1999 The Variations of the Subclavian Artery and Its Branches By Ahmet H. YUCEL, Emine KIZILKANAT and CengizO. OZDEMIR Department of Anatomy, Faculty of Medicine, Cukurova University, 01330 Balcali, Adana Turkey -Received for Publication, June 19,1999- Key Words: Subclavian artery, Vertebral artery, Arterial variation Summary: This study reports important variations in branches of the subclavian artery in a singular cadaver. The origin of the left vertebral artery was from the aortic arch. On the right side, no thyrocervical trunk was found. The two branches which normally originate from the thyrocervical trunk had a different origin. The transverse cervical artery arose directly from the subclavian artery and suprascapular artery originated from the internal thoracic artery. This variation provides a short route for posterior scapular anastomoses. An awareness of this rare variation is important because this area is used for diagnostic and surgical procedures. The subclavian artery, the main artery of the The variations of the subclavian artery and its upper extremity, also gives off the branches which branches have a great importance both in blood supply the neck region. The right subclavian arises vessels surgery and in angiographic investigations. from the brachiocephalic trunk, the left from the aortic arch. Because of this, the first part of the right and left subclavian arteries differs both in the Subjects origin and length. The branches of the subclavian artery are vertebral artery, internal thoracic artery, This work is based on a dissection carried out in thyrocervical trunk, costocervical trunk and dorsal the Department of Anatomy in the Faculty of scapular artery.
    [Show full text]
  • Embolization for Hemoptysis—Angiographic Anatomy of Bronchial and Systemic Arteries
    THIEME 184 Pictorial Essay Embolization for Hemoptysis—Angiographic Anatomy of Bronchial and Systemic Arteries Vikash Srinivasaiah Setty Chennur1 Kumar Kempegowda Shashi1 Stephen Edward Ryan1 1 1 Adnan Hadziomerovic Ashish Gupta 1Division of Angio-Interventional Radiology, Department of Medical Address for correspondence Ashish Gupta, MD, Division of Imaging, University of Ottawa, The Ottawa Hospital, Ottawa, Angio-Interventional Radiology, Department of Medical Imaging, Ontario, Canada University of Ottawa, The Ottawa Hospital, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada (e-mail: [email protected]). J Clin Interv Radiol ISVIR 2018;2:184–190 Abstract Massive hemoptysis is a potentially fatal respiratory emergency. The majority of these patients are referred to interventional radiology for bronchial artery embolization (BAE). Immediate clinical success in stopping hemoptysis ranges from 70 to 99%. However, recurrent hemoptysis after BAE is seen in 10 to 55% patients. One of the main reasons for recurrence is incomplete embolization due to unidentified aberrant Keywords bronchial and/or non-bronchial systemic arterial supply. This pictorial essay aims to ► bronchial describe the normal and variant bronchial arterial anatomy and non-bronchial systemic ► embolization arterial feeders to the lungs on conventional angiography; the knowledge of which is ► hemoptysis critical for interventional radiologists involved in the care of patients with hemoptysis. Introduction Angiographic Anatomy of Bronchial Arteries Massive hemoptysis is a respiratory
    [Show full text]
  • Intercostal Arteries a Single Posterior & Two Anterior Intercostal Arteries
    Intercostal Arteries •Each intercostal space contains: . A single posterior & .Two anterior intercostal arteries •Each artery gives off branches to the muscles, skin, parietal pleura Posterior Intercostal Arteries In the upper two spaces, arise from the superior intercostal artery (a branch of costocervical trunk of the subclavian artery) In the lower nine spaces, arise from the branches of thoracic aorta The course and branching of the intercostal arteries follow the intercostal Posterior intercostal artery Course of intercostal vessels in the posterior thoracic wall Anterior Intercostal Arteries In the upper six spaces, arise from the internal thoracic artery In the lower three spaces arise from the musculophrenic artery (one of the terminal branch of internal thoracic) Form anastomosis with the posterior intercostal arteries Intercostal Veins Accompany intercostal arteries and nerves Each space has posterior & anterior intercostal veins Eleven posterior intercostal and one subcostal vein Lie deepest in the costal grooves Contain valves which direct the blood posteriorly Posterior Intercostal Veins On right side: • The first space drains into the right brachiocephalic vein • Rest of the intercostal spaces drain into the azygos vein On left side: • The upper three spaces drain into the left brachiocephalic vein. • Rest of the intercostal spaces drain into the hemiazygos and accessory hemiazygos veins, which drain into the azygos vein Anterior Intercostal Veins • The lower five spaces drain into the musculophrenic vein (one of the tributary of internal thoracic vein) • The upper six spaces drain into the internal thoracic vein • The internal thoracic vein drains into the subclavian vein. Lymphatics • Anteriorly drain into anterior intercostal nodes that lie along the internal thoracic artery • Posterioly drain into posterior intercostal nodes that lie in the posterior mediastinum .
    [Show full text]
  • A Functional Perspective on the Embryology and Anatomy of the Cerebral Blood Supply
    Journal of Stroke 2015;17(2):144-158 http://dx.doi.org/10.5853/jos.2015.17.2.144 Review A Functional Perspective on the Embryology and Anatomy of the Cerebral Blood Supply Khaled Menshawi,* Jay P Mohr, Jose Gutierrez Department of Neurology, Columbia University Medical Center, New York, NY, USA The anatomy of the arterial system supplying blood to the brain can influence the develop- Correspondence: Jose Gutierrez ment of arterial disease such as aneurysms, dolichoectasia and atherosclerosis. As the arteries Department of Neurology, Columbia University Medical Center, 710 W 168th supplying blood to the brain develop during embryogenesis, variation in their anatomy may Street, New York, NY, 10032, USA occur and this variation may influence the development of arterial disease. Angiogenesis, Tel: +1-212-305-1710 Fax: +1-212-305-3741 which occurs mainly by sprouting of parent arteries, is the first stage at which variations can E-mail: [email protected] occur. At day 24 of embryological life, the internal carotid artery is the first artery to form and it provides all the blood required by the primitive brain. As the occipital region, brain Received: December 18, 2014 Revised: February 26, 2015 stem and cerebellum enlarge; the internal carotid supply becomes insufficient, triggering the Accepted: February 27, 2015 development of the posterior circulation. At this stage, the posterior circulation consists of a primitive mesh of arterial networks that originate from projection of penetrators from the *This work was done while Mr. Menshawi was visiting research fellow at Columbia distal carotid artery and more proximally from carotid-vertebrobasilar anastomoses.
    [Show full text]
  • Comparing the Organs and Vasculature of the Head and Neck
    in vivo 31 : 861-871 (2017) doi:10.21873/invivo.11140 Comparing the Organs and Vasculature of the Head and Neck in Five Murine Species MIN JAE KIM 1* , YOO YEON KIM 2* , JANET REN CHAO 3, HAE SANG PARK 1,4 , JIWON CHANG 1,4 , DAWOON OH 5, JAE JUN LEE 4,6 , TAE CHUN KANG 7, JUN-GYO SUH 2 and JUN HO LEE 1,4 1Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Hallym University, Chuncheon, Republic of Korea; 2Department of Medical Genetics, College of Medicine, Hallym University, Chuncheon, Republic of Korea; 3School of Medicine, George Washington University, Washington, DC, U.S.A.; 4Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea; 5Department of Anesthesiology and Pain Medicine, Dongtan Sacred Heart Hospital, Hallym University, Dongtan, Republic of Korea; 6Department of Anesthesiology and Pain Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea; 7Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea Abstract. Background/Aim: The purpose of the present Unique morphological characteristics were demonstrated by study was to delineate the cervical and facial vascular and comparing the five species, including symmetry of the associated anatomy in five murine species, and compare common carotid origin bilaterally in the Mongolian Gerbil, them for optimal use in research studies focused on a large submandibular gland in the hamster and an enlarged understanding the pathology and treatment of diseases in buccal branch in the Guinea Pig. In reviewing the humans. Materials and Methods: The specific adult male anatomical details, this staining technique proves superior animals examined were mice (C57BL/6J), rats (F344), for direct surgical visualization and identification.
    [Show full text]
  • Ascending and Descending Thoracic Vertebral Arteries
    CLINICAL REPORT EXTRACRANIAL VASCULAR Ascending and Descending Thoracic Vertebral Arteries X P. Gailloud, X L. Gregg, X M.S. Pearl, and X D. San Millan ABSTRACT SUMMARY: Thoracic vertebral arteries are anastomotic chains similar to cervical vertebral arteries but found at the thoracic level. Descending thoracic vertebral arteries originate from the pretransverse segment of the cervical vertebral artery and curve caudally to pass into the last transverse foramen or the first costotransverse space. Ascending thoracic vertebral arteries originate from the aorta, pass through at least 1 costotransverse space, and continue cranially as the cervical vertebral artery. This report describes the angiographic anatomy and clinical significance of 9 cases of descending and 2 cases of ascending thoracic vertebral arteries. Being located within the upper costotransverse spaces, ascending and descending thoracic vertebral arteries can have important implications during spine inter- ventional or surgical procedures. Because they frequently provide radiculomedullary or bronchial branches, they can also be involved in spinal cord ischemia, supply vascular malformations, or be an elusive source of hemoptysis. ABBREVIATIONS: ISA ϭ intersegmental artery; SIA ϭ supreme intercostal artery; VA ϭ vertebral artery he cervical portion of the vertebral artery (VA) is formed by a bral arteria lusoria8-13 or persistent left seventh cervical ISA of Tseries of anastomoses established between the first 6 cervical aortic origin.14 intersegmental arteries (ISAs) and one of the carotid-vertebral This report discusses 9 angiographic observations of descend- anastomoses, the proatlantal artery.1-3 The VA is labeled a “post- ing thoracic VAs and 2 cases of ascending thoracic VAs. costal” anastomotic chain (ie, located behind the costal process of cervical vertebrae or dorsal to the rib itself at the thoracic level) to CASE SERIES emphasize its location within the transverse foramina.
    [Show full text]
  • Product Information
    G30 Latin VASA CAPITIS et CERVICIS ORGANA INTERNA 1 V. frontalis 49 Pulmo sinister 2 V. temporalis superficialis 50 Atrium dextrum 3 A. temporalis superficialis 51 Atrium sinistrum 3 a A. maxillaris 52 Ventriculus dexter 4 A. occipitalis 53 Ventriculus sinister 5 A. supratrochlearis 54 Valva aortae 6 A. et V. angularis 55 Valva trunci pulmonalis 7 A. et V. facialis 56 Septum interventriculare 7 a A. lingualis 57 Diaphragma 9 V. retromandibularis 58 Hepar 10 V. jugularis interna 11 A. thyroidea superior VASA ORGANORUM INTERNORUM 12 A. vertebralis 59 Vv. hepaticae 13 Truncus thyrocervicalis 60 V. gastrica dextra et sinistra 14 Truncus costocervicalis 61 A. hepatica communis 15 A. suprascapularis 61 a Truncus coeliacus 16 A. et V. subclavia dextra 62 V. mesenterica superior 17 V. cava superior 63 V. cava inferior 18 A. carotis communis 64 A. et V. renalis 18 a A. carotis externa 65 A. mesenterica superior 19 Arcus aortae 66 A. et V. lienalis 20 Pars descendens aortae 67 A. gastrica sinistra 68 Pars abdominalis® aortae VASA MEMBRII SUPERIORIS 69 A. mesenterica inferior 21 A. et V. axillaris 22 V. cephalica VASA REGIONIS PELVINAE 22 a A. circumflexa humeri anterior 72 A. et V. iliaca communis 22 b A. circumflexa humeri posterior 73 A. et V. iliaca externa 23 A. thoracodorsalis 74 A. sacralis mediana 24 A. et V. brachialis 75 A. et V. iliaca interna 25 A. thoracoacromialis 26 A. subclavia sinistra VASA MEMBRI INFERIORIS 27 V. basilica 76 Ramus ascendens a. circumflexae femoris 28 A. collateralis ulnaris superior lateralis 29 A. ulnaris 77 Ramus descendens a.
    [Show full text]
  • An Unusual Origin and Course of the Thyroidea Ima Artery, with Absence of Inferior Thyroid Artery Bilaterally
    Surgical and Radiologic Anatomy (2019) 41:235–237 https://doi.org/10.1007/s00276-018-2122-1 ANATOMIC VARIATIONS An unusual origin and course of the thyroidea ima artery, with absence of inferior thyroid artery bilaterally Doris George Yohannan1 · Rajeev Rajan1 · Akhil Bhuvanendran Chandran1 · Renuka Krishnapillai1 Received: 31 May 2018 / Accepted: 21 October 2018 / Published online: 25 October 2018 © Springer-Verlag France SAS, part of Springer Nature 2018 Abstract We report an unusual origin and course of the thyroidea ima artery in a male cadaver. The ima artery originated from the right subclavian artery very close to origin of the right vertebral artery. The artery coursed anteriorly between the common carotid artery medially and internal jugular vein laterally. It then coursed obliquely, from below upwards, from lateral to medial superficial to common carotid artery, to reach the inferior pole of the right lobe of thyroid and branched repeatedly to supply the anteroinferior and posteroinferior aspects of both the thyroid lobes and isthmus. The superior thyroid arteries were normal. Both the inferior thyroid arteries were absent. The unusual feature of this thyroidea ima artery is its origin from the subclavian artery close to vertebral artery origin, the location being remarkably far-off from the usual near midline position, and the oblique and relatively superficial course. This report is a caveat to neck surgeons to consider such a superficially running vessel to be a thyroidea ima artery. Keywords Thyroid vascular anatomy · Thyroidea ima artery · Artery of Neubauer · Blood supply of thyroid · Variations Introduction (1.1%), transverse scapular (1.1%), or pericardiophrenic or thyrocervical trunk [8, 10].
    [Show full text]
  • Blood Supply to the Human Spinal Cord. I. Anatomy and Hemodynamics
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by IUPUIScholarWorks Clinical Anatomy 00:00–00 (2013) REVIEW Blood Supply to the Human Spinal Cord. I. Anatomy and Hemodynamics 1 1 2 1 ANAND N. BOSMIA , ELIZABETH HOGAN , MARIOS LOUKAS , R. SHANE TUBBS , AND AARON A. COHEN-GADOL3* 1Pediatric Neurosurgery, Children’s Hospital of Alabama, Birmingham, Alabama 2Department of Anatomic Sciences, St. George’s University School of Medicine, St. George’s, Grenada 3Goodman Campbell Brain and Spine, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana The arterial network that supplies the human spinal cord, which was once thought to be similar to that of the brain, is in fact much different and more extensive. In this article, the authors attempt to provide a comprehensive review of the literature regarding the anatomy and known hemodynamics of the blood supply to the human spinal cord. Additionally, as the medical litera- ture often fails to provide accurate terminology for the arteries that supply the cord, the authors attempt to categorize and clarify this nomenclature. A com- plete understanding of the morphology of the arterial blood supply to the human spinal cord is important to anatomists and clinicians alike. Clin. Anat. 00:000–000, 2013. VC 2013 Wiley Periodicals, Inc. Key words: spinal cord; vascular supply; anatomy; nervous system INTRODUCTION (segmental medullary) arteries and posterior radicular (segmental medullary) arteries, respectively (Thron, Gillilan (1958) stated that Adamkiewicz carried out 1988). The smaller radicular arteries branch from the and published in 1881 and 1882 the first extensive spinal branch of the segmental artery (branch) of par- study on the blood vessels of the spinal cord, and that ent arteries such as the vertebral arteries, ascending his work and a study of 29 human spinal cords by and deep cervical arteries, etc.
    [Show full text]
  • Imaging Characteristics of Cerebrovascular Arteriopathy and Stroke in Hutchinson-Gilford Progeria Syndrome
    ORIGINAL RESEARCH PEDIATRICS Imaging Characteristics of Cerebrovascular Arteriopathy and Stroke in Hutchinson-Gilford Progeria Syndrome V.M. Silvera, L.B. Gordon, D.B. Orbach, S.E. Campbell, J.T. Machan, and N.J. Ullrich ABSTRACT BACKGROUND AND PURPOSE: HGPS is a rare disorder of segmental aging, with early morbidity from cardiovascular and cerebrovascular disease. The goal of this study was to identify the neurovascular features, infarct type, topography, and natural history of stroke in the only neurovascular imaging cohort study of HGPS. MATERIALS AND METHODS: We studied 25 children with confirmed diagnoses of HGPS and neuroimaging studies available for review. Relevant clinical information was abstracted from medical records. RESULTS: We identified features suggestive of a vasculopathy unique to HGPS, including distinctive intracranial steno-occlusive arterial lesions, basal cistern collateral vessels, and slow compensatory collateral flow over the cerebral convexities. The arterial pathology in the neck consisted of distal vertebral artery stenosis with prominent collateral vessel formation as well as stenosis and calcification of both the cervical internal and common carotid arteries. Radiographic evidence of infarction was found in 60% of patients, of which half were likely clinically silent. Both large- and small-vessel disease was observed, characterized by arterial territorial, white matter, lacunar, and watershed infarcts. CONCLUSIONS: We report a unique intracranial and superior cervical arteriopathy in HGPS distinct from other vasculopathies of childhood, such as Moyamoya, and cerebrovascular disease of aging, including atherosclerosis. Arterial features of the mid and lower neck are less distinctive. For the first time, we identified early and clinically silent strokes as a prevalent disease characteristic in HGPS.
    [Show full text]
  • Variations of the Subclavian Arterial Branching Pattern and Maximization of Its Juwan Ryu Western University, [email protected]
    Western University Scholarship@Western Masters of Clinical Anatomy Projects Anatomy and Cell Biology Department 2016 Variations of the Subclavian Arterial Branching Pattern and Maximization of its Juwan Ryu Western University, [email protected] Follow this and additional works at: https://ir.lib.uwo.ca/mcap Part of the Anatomy Commons Citation of this paper: Ryu, Juwan, "Variations of the Subclavian Arterial Branching Pattern and Maximization of its" (2016). Masters of Clinical Anatomy Projects. 14. https://ir.lib.uwo.ca/mcap/14 Variations of the Subclavian Arterial Branching Pattern and Maximization of its Supraclavicular Surgical Exposure (Project format: Integrated) by Juwan Ryu Graduate Program in Anatomy and Cell Biology Division of Clinical Anatomy A project submitted in partial fulfillment of the requirements for the degree of Master’s of Science The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Juwan Ryu 2016 Abstract The subclavian artery (SCA) is an important vessel with several branches. However, significant pattern variations exist. Characterizing SCA branches and its relationships to landmark structures like the anterior scalene muscle (ASM) is important in surgery. Computed Tomography Angiograms from 55 patients were retrospectively analyzed using Aquarius iNtuition. Measurements were taken of: distance of origin of SCA branches from the aorta and the ASM-VA origin distance. Only 13 SCAs (12.9%) exhibited the highest prevalence in typical branching pattern. VA originated 1st in 80.2% of SCAs, with ITA arising 2nd (41.3%), TCT 3rd (47.3%), CCT 4th (43.6%) and DSA 5th branch (56.9%). Average VA-ASM distance was 14.14mm with 94.9% of VAs originating within 30mm proximal to the medial border of ASM.
    [Show full text]