X1,...,Xd+1), We Will Denote That
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Abstract Book
14th International Geometry Symposium 25-28 May 2016 ABSTRACT BOOK Pamukkale University Denizli - TURKEY 1 14th International Geometry Symposium Pamukkale University Denizli/TURKEY 25-28 May 2016 14th International Geometry Symposium ABSTRACT BOOK 1 14th International Geometry Symposium Pamukkale University Denizli/TURKEY 25-28 May 2016 Proceedings of the 14th International Geometry Symposium Edited By: Dr. Şevket CİVELEK Dr. Cansel YORMAZ E-Published By: Pamukkale University Department of Mathematics Denizli, TURKEY All rights reserved. No part of this publication may be reproduced in any material form (including photocopying or storing in any medium by electronic means or whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright holder. Authors of papers in these proceedings are authorized to use their own material freely. Applications for the copyright holder’s written permission to reproduce any part of this publication should be addressed to: Assoc. Prof. Dr. Şevket CİVELEK Pamukkale University Department of Mathematics Denizli, TURKEY Email: [email protected] 2 14th International Geometry Symposium Pamukkale University Denizli/TURKEY 25-28 May 2016 Proceedings of the 14th International Geometry Symposium May 25-28, 2016 Denizli, Turkey. Jointly Organized by Pamukkale University Department of Mathematics Denizli, Turkey 3 14th International Geometry Symposium Pamukkale University Denizli/TURKEY 25-28 May 2016 PREFACE This volume comprises the abstracts of contributed papers presented at the 14th International Geometry Symposium, 14IGS 2016 held on May 25-28, 2016, in Denizli, Turkey. 14IGS 2016 is jointly organized by Department of Mathematics, Pamukkale University, Denizli, Turkey. The sysposium is aimed to provide a platform for Geometry and its applications. -
Parametric Modelling of Architectural Developables Roel Van De Straat Scientific Research Mentor: Dr
MSc thesis: Computation & Performance parametric modelling of architectural developables Roel van de Straat scientific research mentor: dr. ir. R.M.F. Stouffs design research mentor: ir. F. Heinzelmann third mentor: ir. J.L. Coenders Computation & Performance parametric modelling of architectural developables MSc thesis: Computation & Performance parametric modelling of architectural developables Roel van de Straat 1041266 Delft, April 2011 Delft University of Technology Faculty of Architecture Computation & Performance parametric modelling of architectural developables preface The idea of deriving analytical and structural information from geometrical complex design with relative simple design tools was one that was at the base of defining the research question during the early phases of the graduation period, starting in September of 2009. Ultimately, the research focussed an approach actually reversely to this initial idea by concentrating on using analytical and structural logic to inform the design process with the aid of digital design tools. Generally, defining architectural characteristics with an analytical approach is of increasing interest and importance with the emergence of more complex shapes in the building industry. This also means that embedding structural, manufacturing and construction aspects early on in the design process is of interest. This interest largely relates to notions of surface rationalisation and a design approach with which initial design sketches can be transferred to rationalised designs which focus on a strong integration with manufacturability and constructability. In order to exemplify this, the design of the Chesa Futura in Sankt Moritz, Switzerland by Foster and Partners is discussed. From the initial design sketch, there were many possible approaches for surfacing techniques defining the seemingly freeform design. -
J.M. Sullivan, TU Berlin A: Curves Diff Geom I, SS 2019 This Course Is an Introduction to the Geometry of Smooth Curves and Surf
J.M. Sullivan, TU Berlin A: Curves Diff Geom I, SS 2019 This course is an introduction to the geometry of smooth if the velocity never vanishes). Then the speed is a (smooth) curves and surfaces in Euclidean space Rn (in particular for positive function of t. (The cusped curve β above is not regular n = 2; 3). The local shape of a curve or surface is described at t = 0; the other examples given are regular.) in terms of its curvatures. Many of the big theorems in the DE The lengthR [ : Länge] of a smooth curve α is defined as subject – such as the Gauss–Bonnet theorem, a highlight at the j j len(α) = I α˙(t) dt. (For a closed curve, of course, we should end of the semester – deal with integrals of curvature. Some integrate from 0 to T instead of over the whole real line.) For of these integrals are topological constants, unchanged under any subinterval [a; b] ⊂ I, we see that deformation of the original curve or surface. Z b Z b We will usually describe particular curves and surfaces jα˙(t)j dt ≥ α˙(t) dt = α(b) − α(a) : locally via parametrizations, rather than, say, as level sets. a a Whereas in algebraic geometry, the unit circle is typically be described as the level set x2 + y2 = 1, we might instead This simply means that the length of any curve is at least the parametrize it as (cos t; sin t). straight-line distance between its endpoints. Of course, by Euclidean space [DE: euklidischer Raum] The length of an arbitrary curve can be defined (following n we mean the vector space R 3 x = (x1;:::; xn), equipped Jordan) as its total variation: with with the standard inner product or scalar product [DE: P Xn Skalarproduktp ] ha; bi = a · b := aibi and its associated norm len(α):= TV(α):= sup α(ti) − α(ti−1) : jaj := ha; ai. -
Title CLAD HELICES and DEVELOPABLE SURFACES( Fulltext )
CLAD HELICES AND DEVELOPABLE SURFACES( Title fulltext ) Author(s) TAKAHASHI,Takeshi; TAKEUCHI,Nobuko Citation 東京学芸大学紀要. 自然科学系, 66: 1-9 Issue Date 2014-09-30 URL http://hdl.handle.net/2309/136938 Publisher 東京学芸大学学術情報委員会 Rights Bulletin of Tokyo Gakugei University, Division of Natural Sciences, 66: pp.1~ 9 ,2014 CLAD HELICES AND DEVELOPABLE SURFACES Takeshi TAKAHASHI* and Nobuko TAKEUCHI** Department of Mathematics (Received for Publication; May 23, 2014) TAKAHASHI, T and TAKEUCHI, N.: Clad Helices and Developable Surfaces. Bull. Tokyo Gakugei Univ. Div. Nat. Sci., 66: 1-9 (2014) ISSN 1880-4330 Abstract We define new special curves in Euclidean 3-space which are generalizations of the notion of helices. Then we find a geometric invariant of a space curve which is related to the singularities of the special developable surface of the original curve. Keywords: cylindrical helices, slant helices, clad helices, g-clad helices, developable surfaces, singularities Department of Mathematics, Tokyo Gakugei University, 4-1-1 Nukuikita-machi, Koganei-shi, Tokyo 184-8501, Japan 1. Introduction In this paper we define the notion of clad helices and g-clad helices which are generalizations of the notion of helices. Then we can find them as geodesics on the tangent developable(cf., §3). In §2 we describe basic notions and properties of space curves. We review the classification of singularities of the Darboux developable of a space curve in §4. We introduce the notion of the principal normal Darboux developable of a space curve. Then we find a geometric invariant of a clad helix which is related to the singularities of the principal normal Darboux developable of the original curve. -
Exploring Locus Surfaces Involving Pseudo Antipodal Points
Proceedings of the 25th Asian Technology Conference in Mathematics Exploring Locus Surfaces Involving Pseudo Antipodal Points Wei-Chi YANG [email protected] Department of Mathematics and Statistics Radford University Radford, VA 24142 USA Abstract The discussions in this paper were inspired by a college entrance practice exam from China. It is extended to investigate the locus curve that involves a point on an ellipse and its pseudo antipodal point with respect to a xed point. With the help of technological tools, we explore 2D locus for some regular closed curves. Later, we investigate how a locus curve can be extended to the corresponding 3D locus surfaces on surfaces like ellipsoid, cardioidal surface and etc. Secondly, we use the de nition of a developable surface (including tangent developable surface) to construct the corresponding locus surface. It is well known that, in robotics, antipodal grasps can be achieved on curved objects. In addition, there are many applications already in engineering and architecture about the developable surfaces. We hope the discussions regarding the locus surfaces can inspire further interesting research in these areas. 1 Introduction Technological tools have in uenced our learning, teaching and research in mathematics in many di erent ways. In this paper, we start with a simple exam problem and with the help of tech- nological tools, we are able to turn the problem into several challenging problems in 2D and 3D. The visualization bene ted from exploration provides us crucial intuition of how we can analyze our solutions with a computer algebra system. Therefore, while implementing techno- logical tools to allow exploration in our curriculum is de nitely a must. -
AN INTRODUCTION to the CURVATURE of SURFACES by PHILIP ANTHONY BARILE a Thesis Submitted to the Graduate School-Camden Rutgers
AN INTRODUCTION TO THE CURVATURE OF SURFACES By PHILIP ANTHONY BARILE A thesis submitted to the Graduate School-Camden Rutgers, The State University Of New Jersey in partial fulfillment of the requirements for the degree of Master of Science Graduate Program in Mathematics written under the direction of Haydee Herrera and approved by Camden, NJ January 2009 ABSTRACT OF THE THESIS An Introduction to the Curvature of Surfaces by PHILIP ANTHONY BARILE Thesis Director: Haydee Herrera Curvature is fundamental to the study of differential geometry. It describes different geometrical and topological properties of a surface in R3. Two types of curvature are discussed in this paper: intrinsic and extrinsic. Numerous examples are given which motivate definitions, properties and theorems concerning curvature. ii 1 1 Introduction For surfaces in R3, there are several different ways to measure curvature. Some curvature, like normal curvature, has the property such that it depends on how we embed the surface in R3. Normal curvature is extrinsic; that is, it could not be measured by being on the surface. On the other hand, another measurement of curvature, namely Gauss curvature, does not depend on how we embed the surface in R3. Gauss curvature is intrinsic; that is, it can be measured from on the surface. In order to engage in a discussion about curvature of surfaces, we must introduce some important concepts such as regular surfaces, the tangent plane, the first and second fundamental form, and the Gauss Map. Sections 2,3 and 4 introduce these preliminaries, however, their importance should not be understated as they lay the groundwork for more subtle and advanced topics in differential geometry. -
J.M. Sullivan, TU Berlin A: Curves Diff Geom I, SS 2015 This Course Is an Introduction to the Geometry of Smooth Curves and Surf
J.M. Sullivan, TU Berlin A: Curves Diff Geom I, SS 2015 This course is an introduction to the geometry of smooth The length of an arbitrary curve can be defined (Jordan) as curves and surfaces in Euclidean space (usually R3). The lo- total variation: cal shape of a curve or surface is described in terms of its Xn curvatures. Many of the big theorems in the subject – such len(α) = TV(α) = sup α(ti) − α(ti−1) . as the Gauss–Bonnet theorem, a highlight at the end of the ··· ∈ t0< <tn I i=1 semester – deal with integrals of curvature. Some of these in- tegrals are topological constants, unchanged under deforma- This is the supremal length of inscribed polygons. (One can tion of the original curve or surface. show this length is finite over finite intervals if and only if α Usually not as level sets (like x2 + y2 = 1) as in algebraic has a Lipschitz reparametrization (e.g., by arclength). Lips- geometry, but parametrized (like (cos t, sin t)). chitz curves have velocity defined a.e., and our integral for- Of course, by Euclidean space [DE: euklidischer Raum] we mulas for length work fine.) n mean the vector space R 3 x = (x1,..., xn) with the stan- If J is another interval and ϕ: J → I is an orientation- dard scalar product [DE: Skalarprodukt] (also called an in- preserving homeomorphism, i.e., a strictly increasing surjec- P n ner product√ ) ha, bi = a · b = aibi and its associated norm tion, then α◦ϕ: J → R is a parametrized curve with the same |a| = ha, ai). -
2 Regular Surfaces
2 Regular Surfaces In this half of the course we approach surfaces in E3 in a similar way to which we considered curves. A parameterized surface will be a function1 x : U ! E3 where U is some open subset of the plane R2. Our purpose is twofold: 1. To be able to measure quantities such as length (of curves), angle (between curves on a surface), area using the parameterization space U. This requires us to create some method of taking tangent vectors to the surface and ‘pulling-back’ to U where we will perform our calculations.2 2. We want to find ways of defining and measuring the curvature of a surface. Before starting, we recall some of the important background terms and concepts from other classes. Notation Surfaces being functions x : U ⊆ R2 ! E3, we will preserve some of the notational differences between R2 and E3. Thus: • Co-ordinate points in the parameterization space U ⊂ R2 will be written as lower case letters or, more commonly, row vectors: for example p = (u, v) 2 R2. • Points in E3 will be written using capital letters and row vectors: for example P = (3, 4, 8) 2 E3. 2 • Vectors in E3 will be written bold-face or as column-vectors: for example v = −1 . p2 Sometimes it will be convenient to abuse notation and add a vector v to a point P, the result will be a new point P + v. Open Sets in Rn The domains of our parameterized functions will always be open 2 sets in R . These are a little harder to describe than open intervals rp in R: the definitions are here for reference. -
The Rectifying Developable and the Spherical Darboux Image of a Space Curve
GEOMETRY AND TOPOLOGY OF CAUSTICS — CAUSTICS ’98 BANACH CENTER PUBLICATIONS, VOLUME 50 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1999 THE RECTIFYING DEVELOPABLE AND THE SPHERICAL DARBOUX IMAGE OF A SPACE CURVE SHYUICHIIZUMIYA Department of Mathematics, Hokkaido University Sapporo 060-0810, Japan E-mail: [email protected] HARUYO KATSUMI and TAKAKO YAMASAKI Department of Mathematics, Ochanomizu University Bunkyou-ku Otsuka Tokyo 112-8610, Japan Dedicated to the memory of Professor Yosuke Ogawa Abstract. In this paper we study singularities of certain surfaces and curves associated with the family of rectifying planes along space curves. We establish the relationships between singularities of these subjects and geometric invariants of curves which are deeply related to the order of contact with helices. 1. Introduction. There are several articles concerning singularities of the tangent developable (i.e., the envelope of osculating planes) and the focal developable (i.e., the envelope of normal planes) of a space curve ([3{12]). In these papers the relationships between singularities of these surfaces and classical geometric invariants of space curves have been studied. The notion of the distance-squared functions on space curves is useful for the study of singularities of focal developable [7, 10, 11]. For tangent developable, there are other techniques to study singularities [3{6, 8, 9]. The classical invariants of extrinsic differential geometry can be interpreted as \singularities" of these developable; however, the authors cannot find any article concerning singularities of the rectifying developable (i.e., the envelope of rectifying planes) of a space curve. The rectifying developable is an important surface in the following sense: the space curve γ is always a geodesic of the rectifying developable of itself (cf. -
A Note on Inextensible Flows of Curves on Oriented Surface
A Note on Inextensible Flows of Curves on Oriented Surface Onder Gokmen Yildiza, Soley Ersoy b, Melek Masal c a Department of Mathematics, Faculty of Arts and Sciences Bilecik University, Bilecik/TURKEY b Department of Mathematics, Faculty of Arts and Sciences Sakarya University, Sakarya/TURKEY c Department of Mathematics Teaching , Faculty of Education Sakarya University, Sakarya/TURKEY Abstract In this paper, the general formulation for inextensible flows of curves on oriented surface in R3 is investigated. The necessary and sufficient con- ditions for inextensible curve flow lying an oriented surface are expressed as a partial differential equation involving the geodesic curvature and the geodesic torsion. Moreover, some special cases of inextensible curves on oriented surface are given. Mathematics Subject Classification (2010): 53C44, 53A04, 53A05, 53A35. Keywords: Curvature flows, inextensible, oriented surface. 1 Introduction It is well known that many nonlinear phenomena in physics, chemistry and biology are described by dynamics of shapes, such as curves and surfaces. The evolution of curve and surface has significant applications in computer vision arXiv:1106.2012v1 [math.DG] 10 Jun 2011 and image processing. The time evolution of a curve or surface generated by its corresponding flow in R3 -for this reason we shall also refer to curve and surface evolutions as flows throughout this article- is said to be inextensible if, in the former case, its arclength is preserved, and in the latter case, if its intrinsic curvature is preserved. Physically, the inextensible curve flows give rise to motions in which no strain energy is induced. The swinging motion of a cord of fixed length, for example, or of a piece of paper carried by the wind, can be described by inextensible curve and surface flows. -
Instructions to Prepare a Paper for the European Congress on Computational Methods in Applied Sciences and Engineering
VIII International Conference on Textile Composites and Inflatable Structures STRUCTURAL MEMBRANES 2017 K.-U.Bletzinger, E. Oñate and B. Kröplin (Eds) DESIGN AND CONSTRUCTION OF THE ASYMPTOTIC PAVILION Eike Schling*, Denis Hitrec†, Jonas Schikore* and Rainer Barthel* * Chair of Structural Design, Faculty of Architecture, Technical University of Munich Arcisstr. 21, 80333 Munich, Germany e-mail: [email protected], web page: http://www.lt.ar.tum.de † Faculty of Architecture, University of Ljubljana Zoisova cesta 12, SI – 1000 Ljubljana, Slovenia e-mail: [email protected] - web page: http://www.fa.uni-lj.si Key words: Asymptotic curves, Minimal Surfaces, Strained Gridshell. Summary. Digital tools have made it easy to design freeform surfaces and structures. The challenges arise later in respect to planning and construction. Their realization often results in the fabrication of many unique and geometrically-complex building parts. Current research at the Chair of Structural Design investigates curve networks with repetitive geometric parameters in order to find new, fabrication-aware design methods. In this paper, we present a method to design doubly-curved grid structures with exclusively orthogonal joints from flat and straight strips. The strips are oriented upright on the underlying surface, hence normal loads can be transferred via bending around their strong axis. This is made possible by using asymptotic curve networks on minimal surfaces 1, 2. This new construction method was tested in several prototypes from timber and steel. Our goal is to build a large- scale (9x12m) research pavilion as an exhibition and gathering space for the Structural Membranes Conference in Munich. In this paper, we present the geometric fundamentals, the design and modelling process, fabrication and assembly, as well as the structural analysis based on the Finite Element Method of this research pavilion. -
Changing Views on Curves and Surfaces Arxiv:1707.01877V2
Changing Views on Curves and Surfaces Kathl´enKohn, Bernd Sturmfels and Matthew Trager Abstract Visual events in computer vision are studied from the perspective of algebraic geometry. Given a sufficiently general curve or surface in 3-space, we consider the image or contour curve that arises by projecting from a viewpoint. Qualitative changes in that curve occur when the viewpoint crosses the visual event surface. We examine the components of this ruled surface, and observe that these coincide with the iterated singular loci of the coisotropic hypersurfaces associated with the original curve or surface. We derive formulas, due to Salmon and Petitjean, for the degrees of these surfaces, and show how to compute exact representations for all visual event surfaces using algebraic methods. 1 Introduction Consider a curve or surface in 3-space, and pretend you are taking a picture of that object with a camera. If the object is a curve, you see again a curve in the image plane. For a surface, you see a region bounded by a curve, which is called image contour or outline curve. The outline is the natural sketch one might use to depict the surface, and is the projection of the critical points where viewing lines are tangent to the surface. In both cases, the image curve has singularities that arise from the projection, even if the original curve or surface is smooth. Now, let your camera travel along a path in 3-space. This path naturally breaks up into segments according to how the picture looks like. Within each segment, the picture looks alike, meaning that the topology and singularities of the image curve do not change.