Domains of Perfect Local Homeomorphisms

Total Page:16

File Type:pdf, Size:1020Kb

Domains of Perfect Local Homeomorphisms NEW ZEALAND JOURNAL OF MATHEMATICS Volume 28 (1999), 285-297 DOMAINS OF PERFECT LOCAL HOMEOMORPHISMS M a t h e w Tim m (Received May 1997) Abstract. The structure of domains of perfect local homeomorphisms is inves­ tigated. Finiteness conditions for domains of perfect local homeomorphisms are presented. A sufficient condition for all components of the domain of a perfect local homeomorphism to be open is given. 1. In tro d u c tio n In this paper all maps f : X —+ Y between topological spaces X and Y are continuous functions. All one point sets are closed and a neighborhood about x is an open set that contains x. A map / : X —> Y is a local homeomorphism if for each x € X there is a neighborhood Ux about x and a neighborhood Vx about y = f(x) such that the restriction ( / | Ux) : Ux —► Vx is a surjective homeomorphism. A map f : X —> Y is proper, or compact, if and only if, given any compact subset K c Y, it follows that f~ 1(K) is compact. A map p : X —> Y is perfect if and only if, for every y € Y, p~l (y) is compact. Note that it is not assumed that perfect maps are closed, even though this seems to be fairly common in the literature. The cardinality of a set S is denoted by |5|. The main result of Jungck and Timm [3], stated below, is a decomposition theorem for the domain of a proper surjective local homeomorphism. It is a gen­ eralization of Jungck’s result [2, 2.1] that is a decomposition theorem for point inverses under proper local homeomorphisms. Theorem 1.1 ([3, 1.4]).Let X and Y be Hausdorff. Assume that Y is connected. If p : X —> Y is a proper, surjective, local homeomorphism then X = Xo U ... U X n for some n >0, with each X ja component of X . Furthermore (p \ X j): X j —► Y is a proper, surjective, local homeomorphism. The proof of the above theorem, together with the collection of examples we had at the time, prompted the question (stated as Question 2.3 in Jungck and Timm [3]) of whether it was necessary to assume that a surjective local homeomorphism p : X —> Y be proper, in order to assure that every component of X is open in X. In addition, one is struck by the fact that both the result from Jungck [2, 2.1] and that from Jungck and Timm [3, 1.4] can be thought of as giving finiteness conditions on domains of proper local homeomorphisms. Recent attempts to answer Question 2.3 [3], as well as an attempt to gain a deeper understanding of the ideas presented in [3] have generated the questions below. 1991 AMS Mathematics Subject Classification: Primary 54C10; Secondary 54E40, 54F15. Key words and phrases: perfect map, proper map, compact map, finiteness conditions. 286 MATHEW TIMM Question 1.2. Given a map p : X —► Y, what conditions on p, X , or Y (other than the obvious one) will assure that the domain X is a union of finitely many components? In particular, to what degree can the requirement of [3, 1.4], thatp be proper, be relaxed? Specifically, ifp : X —> Y is a perfect local homeomorphism, what sorts of finiteness conditions can be obtained on Y? If one cannot find reason­ able conditions under which a non-proper local homeomorphism’s domain must be a union of at most finitely many components, what can be said about the domain in this situation? This paper presents a collection of interesting examples and results suggested by these examples. In Section 2, what is known about relationships between proper, perfect, and closed are summarized. In Section 3, the finiteness conditions onX that follow from the assumption that p : X —► Y is a perfect local homeomorphism are studied. It is in this context that most of the examples are presented. Also in this context we develop analogs of the results [2, 2.1] and [3, 2.1] and present a solution to Question 2.3 [3] for perfect local homeomorphisms. Section 4 contains a brief investigation of what happens if one attempts to assume that the local homeomorphism p : X —» Y satisfies some sort of “local properness” condition. While I am most interested in the situation when p is a local homeomorphism, some of the results are stated more generally. The reader should compare the finiteness conditions obtained in this paper to those that can be obtained when one assumes that the spaces or maps have additional structure imposed upon them. In addition to the works mentioned above, a reasonable summary of these sorts of results can be found in McAuley and Robinson [4]. There are illustrations that accompany several of the examples. All the illustrations are at the end of the manuscript. I thank Jerry Jungck and Ollie Nanyes for our frequent conversations about the material in this paper. Jo Heath and Andrew Lelek are thanked for their readings of an earlier version of the paper. The referee is thanked for the care which (s)he took reading the manuscript and in particular for pointing out Example 3.15. Thanks to Mike McAsey and Alberto Delgado for their assistance with the Tex version of the manuscript. Finally, thanks to Morgan Rose for taking naps. 2. On Relationships Between Proper, Perfect, and Closed After an inspection of the proof of [3, 1.4] one is tempted to include the condi­ tion, as occurs frequently in the literature, that a perfect map be closed. But, if a map is perfect and closed, then it is proper, so this is too strong a requirement. It immediately places one in situations already studied in Jungck [2] and Jungck and Timm [3]. However, for the sake of completeness, this section include a brief treatment of what is known about the relationships between the three properties: perfect, closed and proper. The proofs of the results in this section are straight­ forward and are all similar. One of the proofs is included to illustrate the general method. Related results are contained in the papers by Ho [1] and Palais [5]. Lemma 2.1. Let p : X —> Y be a map. Then p is closed if and only if for each y E Y and each open subset U of X such that p-1(y) C U, there is an open V C Y such that y € V and p_1(y) C p-1(V) C U. Lemma 2.2. Let p : X —*Y be a perfect closed map. Then p is proper. DOMAINS OF PERFECT LOCAL HOMEOMORPHISMS 287 Proof. Let K c Y be compact. Let U = {Ua : a E 1} be an open cover of p 1(K). Since p is perfect, for each y E Y, there is a finite collection Uayl, ... ,UayNy of U that covers p~1{y). Since p is closed we may apply Lemma 2.1 and for each y e Y obtain an open set Vy in X , such that p~1(y) C p~1{V) C Uk h ^ a yk- But K is compact, so there are finitely many t/’s, say yi, ■ ■ ■ , yM such that Vyi,... , VyM N " covers K. So it follows that U ^=1(Uj=iUay ) is a union of finitely many sets in U that covers p~x(K). Therefore, p~1(K) is compact. □ Note that if p : X —> Y is, in particular, a perfect closed local homeomorphism, then it is a proper local homeomorphism. It then follows, by Jungck [2, 2.7], that if X and Y are first countable Hausdorff spaces, Y is connected, and p : X —»Y is a surjective, perfect, closed local homeomorphism, then X is a finite sheeted covering space of Y with covering projection p. This section closes with a list of some of the relationships between the three concepts: perfect, closed, and proper. Recall that a Hausdorff space X is a k-space if and only if whenever F C X is such that for every compact K C X, K fl F is closed, it follows that F is closed. Following the fact are examples that elucidate these results. Fact 2.3. Let p : X —> Y be a map. (a) If p is open (in particular, if p is a local homeomorphism) then p is proper if and only if it is perfect and closed. (b) If X is first countable and Y is Hausdorff then p is proper if and only if it is perfect and closed. (c) If Y is first countable and Hausdorff then p is proper if and only if it is perfect and closed. (d) If X is compact and Y Hausdorff then p is closed. So, if p is perfect, then it is proper. (e) (Palais [5]) IfY is a fc-space and p is proper, then p is closed. So, if Y is a fc-space, then p is proper if and only if it is perfect and closed. Example 2.4. This example illustrates the necessity of the assumption that p be closed in Facts 2.3 (a) and (c) and the assumption that Y be Hausdorff in Fact 2.3 (b) and (d). Let Yq = {(0,0)}U{(l/n, : 0)n E N}. Lety* denote a fixed point not in Yo- Let Y = Yo U {y*}. The basic open sets about points z E Yo are those inherited from the standard topology on M2. The basic open sets about y* are all those of the form {y*} U {(1/n, 0) :n > no} for noE N.
Recommended publications
  • On Λ-Perfect Maps
    Turkish Journal of Mathematics Turk J Math (2017) 41: 1087 { 1091 http://journals.tubitak.gov.tr/math/ ⃝c TUB¨ ITAK_ Research Article doi:10.3906/mat-1512-86 On λ-perfect maps Mehrdad NAMDARI∗, Mohammad Ali SIAVOSHI Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran Received: 22.12.2015 • Accepted/Published Online: 20.10.2016 • Final Version: 25.07.2017 Abstract: λ-Perfect maps, a generalization of perfect maps (i.e. continuous closed maps with compact fibers) are presented. Using Pλ -spaces and the concept of λ-compactness some classical results regarding λ-perfect maps will be extended. In particular, we show that if the composition fg is a λ-perfect map where f; g are continuous maps with fg well-defined, then f; g are α-perfect and β -perfect, respectively, on appropriate spaces, where α, β ≤ λ. Key words: λ-Compact, λ-perfect, Pλ -space, Lindel¨ofnumber 1. Introduction A perfect map is a kind of continuous function between topological spaces. Perfect maps are weaker than homeomorphisms, but strong enough to preserve some topological properties such as local compactness that are not always preserved by continuous maps. Let X; Y be two topological spaces such that X is Hausdorff. A continuous map f : X ! Y is said to be a perfect map provided that f is closed and surjective and each fiber f −1(y) is compact in X . In [3], the authors study a generalization of compactness, i.e. λ-compactness. Motivated by this concept we are led to generalize the concept of perfect mapping.
    [Show full text]
  • Midterm Exam
    Prof. Alexandru Suciu MATH 4565 TOPOLOGY Spring 2018 MIDTERM EXAM 1. Consider the following two topologies on R2: (i) The Zariski topology, T1, where a base of open sets is formed by the comple- ments of zero sets of polynomials in two variables. (ii) The topology T2, the weakest topology where all straight lines are closed sets. 2 2 Show that (R ; T1) and (R ; T2) are not homeomorphic. 2. Define a topology T on the closed interval X = [−1; 1] by declaring a set to be open if it either does not contain the point 0, or it does contain (−1; 1). (a) Verify that T is indeed a topology. (b) What are the limit points of X? (c) Is X a T0 space? (I.e., given a pair of distinct points in X, does at least one of them have a neighborhood not containing the other?) (d) Is X a T1 space? (I.e., given a pair of distinct points in X, does each one of them have a neighborhood not containing the other?) (e) Show that X is compact. (f) Show that X locally path-connected. 3. Prove or disprove the following: (a) If X and Y are path-connected, then X × Y is path-connected. (b) If A ⊂ X is path-connected, then A is path-connected. (c) If X is locally path-connected, and A ⊂ X, then A is locally path-connected. (d) If X is path-connected, and f : X ! Y is continuous, then f(X) is path- connected. (e) If X is locally path-connected, and f : X ! Y is continuous, then f(X) is locally path-connected.
    [Show full text]
  • Locally Compact, $Omega 1$-Compact Spaces
    LOCALLY COMPACT, !1-COMPACT SPACES PETER NYIKOS AND LYUBOMYR ZDOMSKYY Abstract. An !1-compact space is a space in which every closed discrete subspace is countable. We give various general conditions under which a locally compact, !1-compact space is σ-countably compact, i.e., the union of countably many countably compact spaces. These conditions involve very elementary properties. Many results shown here are independent of the usual (ZFC) axioms of set theory, and the consistency of some may involve large cardinals. For example, it is independent of the ZFC axioms whether every locally compact, !1-compact space of cardinality @1 is σ- countably compact. Whether @1 can be replaced with @2 is a difficult unsolved problem. Modulo large cardinals, it is also ZFC-independent whether every hereditarily normal, or every monotonically normal, locally compact, !1-compact space is σ-countably compact. As a result, it is also ZFC-independent whether there is a locally compact, !1-compact Dowker space of cardinality @1, or one that does not contain both an uncountable closed discrete subspace and a copy of the ordinal space !1. On the other hand, it is a theorem of ZFC that every locally compact, locally connected and connected, monotonically normal space is σ-countably compact. More generally, every locally compact space with a monotonically normal compactification is the topological direct sum of σ-countably compact spaces; and if it is totally disconnected, every summand can be made countably compact. Set theoretic tools used for the consistency results include |, the Proper Forcing Axiom (PFA), and models generically referred to as \MM(S)[S]".
    [Show full text]
  • Arxiv:0905.2616V2 [Math.GN] 31 Aug 2012 Xdcniuu Cino Asofftplgclgroup Topological Hausdorff a of Action Continuous fixed Rmcnct(Mexico)
    PROPER ACTIONS ON TOPOLOGICAL GROUPS: APPLICATIONS TO QUOTIENT SPACES SERGEY A. ANTONYAN Abstract. Let X be a Hausdorff topological group and G a locally compact subgroup of X. We show that the natural action of G on X is proper in the sense of R. Palais. This is applied to prove that there exists a closed set F ⊂ X such that FG = X and the restriction of the quotient projection X → X/G to F is a perfect map F → X/G. This is a key result to prove that many topological properties (among them, paracompactness and normality) are transferred from X to X/G, and some others are transferred from X/G to X. Yet another application leads to the inequality dim X ≤ dim X/G +dim G for every paracompact topological group X and a locally compact subgroup G of X having a compact group of connected components. 1. Introduction By a G-space we mean a completely regular Hausdorff space together with a fixed continuous action of a Hausdorff topological group G on it. The notion of a proper G-space was introduced in 1961 by R. Palais [23] with the purpose to extend a substantial portion of the theory of compact Lie group actions to the case of noncompact ones. A G-space X is called proper (in the sense of Palais [23, Definition 1.2.2]), if each point of X has a, so called, small neighborhood, i.e., a neighborhood V such that for every point of X there is a neighborhood U with the property that the set hU, V i = {g ∈ G | gU ∩ V 6= ∅} has compact closure in G.
    [Show full text]
  • MTH 304: Metric Spaces and Topology Practice Assignment III: Compactness
    MTH 304: Metric Spaces and Topology Practice Assignment III: Compactness 1. Reading assignment: Read the proofs of following assertions from section 1.12 - (ix), (xix), (xvii), (xxiv), (xxvii), & (xxix). 2. Show that a compact subspace of a metric space is bounded. Given a counterexample to show that the converse does not hold true. 3. Let X be a space, and Y be a compact space. (a) Show that the projection map π1 : X × Y ! X is a closed map. (b) Let Y be Hausdorff space and f : X ! Y be a map. Then f is continuous if, and only if, the graph of f Gf = f(x; y) j (x; y) 2 X × Y and y = f(x)g is a closed subset of X × Y . 4. Let p : X ! Y be a continuous surjective map such that each fiber of f is compact (such a map is called a perfect map). Show that if Y is compact, then X is compact. 5. Show that for n ≥ 1, Sn is the one point compactification of Rn. 6. In each of the following topologies on R, determine whether the closed interval [a; b] is compact, limit point compact, sequentially coompact, and locally compact. (a) Cofinite topology. (b) Cocomplement topology. (c) R`. (d) RK . 7. A space X is a said to countably compact if every countable open covering of X has a finite subcovering. Show that in a T1 space, countable compactness is equivalent to limit point compactness. 8. Let (X; dx) and (Y; dY ) be metric spaces. A map f : X ! Y is called an isometry if dX (a; b) = dY (f(a); f(b)); 8a; b 2 X: If X be compact, and f : X ! Y is a surjective isometry, then show that f is a homeomorphism.
    [Show full text]
  • Maps and F-Normal Spaces
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Topology and its Applications 153 (2006) 2735–2744 www.elsevier.com/locate/topol Maps and f -normal spaces John J. Schommer a,∗, Biswajit Mitra b,1 a Department of Mathematics and Statistics, The University of Tennessee at Martin, Martin, TN 38238, USA b Department of Pure Mathematics, University of Calcutta, 35, Ballygaunge Circular Road, Kolkata 700019, West Bengal, India Received 17 May 2005; received in revised form 14 November 2005; accepted 15 November 2005 Abstract It has long been known that hyper-real maps preserve realcompactness. In this paper we show that hyper-real maps preserve nearly realcompactness as well. We will also introduce the concepts of ε-perfect maps and f -normal spaces and explore them in a way that mirrors Rayburn’s 1978 study of δ-perfect maps and h-normal spaces. © 2005 Elsevier B.V. All rights reserved. MSC: primary 54C10; secondary 54D60, 54D99 Keywords: Nearly realcompact space; f -normal space; Fast set; Hyper-real map; Perfect map; ε-perfect map; Zenor map; WZ-map 1. Introduction There are three different approaches to the study of nearly realcompact spaces in the literature. Johnson and Man- delker referred to nearly realcompact spaces as η-compact spaces in [12] , characterizing them in terms of ideals of continuous functions. Blair and van Douwen produced quite a few results by characterizing nearly realcompact spaces in terms of their relatively pseudocompact cozero-sets in [2]. In this paper we continue the development of nearly re- alcompact spaces begun in [17], one which parallels Henriksen and Rayburn’s approach to nearly pseudocompact spaces initiated in [8].
    [Show full text]
  • Applications of Almost One-To-One Maps
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Topology and its Applications 153 (2006) 1571–1585 www.elsevier.com/locate/topol Applications of almost one-to-one maps Alexander Blokh a,∗,1, Lex Oversteegen a,2, E.D. Tymchatyn b,3 a Department of Mathematics, University of Alabama at Birmingham, Birmingham, AL 35294-1170, USA b Department of Mathematics, Saskatchewan University, Canada Received 20 June 2003; accepted 1 March 2004 Abstract A continuous map f : X → Y of topological spaces X, Y is said to be almost 1-to-1 if the set − of the points x ∈ X such that f 1(f (x)) ={x} is dense in X;itissaidtobelight if pointwise preimages are 0-dimensional. In a previous paper we showed that sometimes almost one-to-one light maps of compact and σ -compact spaces must be homeomorphisms or embeddings. In this paper we introduce a similar notion of an almost d-to-1 map and extend the above results to them and other related maps. In a forthcoming paper we use these results and show that if f is a minimal self- mapping of a 2-manifold then point preimages under f are tree-like continua and either M is a union of 2-tori, or M is a union of Klein bottles permuted by f . © 2005 Elsevier B.V. All rights reserved. MSC: primary 54F15; secondary 54C05 Keywords: Almost one-to-one map; Embedding; Homeomorphism; Light map; Confluent map * Corresponding author. E-mail addresses: [email protected] (A.
    [Show full text]
  • MTG 6316 HOMEWORK Spring 2017 101. (Section 26, #12) Let P : X ! Y Be a Closed Continuous Surjective Map Such That P 1(Y) Is Co
    MTG 6316 HOMEWORK Spring 2017 101. (Section 26, #12) Let p : X Y be a closed continuous surjective map such that p 1(y) ! − is compact, for each y Y . (Such a map is called a perfect map.) Show that if Y is 2 1 compact, then X is compact. [Hint: If U is an open set containing p− (y), there is a 1 neighborhood W of y such that p− (W ) is contained in U.] Proof. Suppose that Y is compact and there exists a perfect map p : X Y . ! Let U↵ ↵ I be an open cover of X. Fix an arbitrary point y Y .Sincep is 2 { } 1 2 a perfect map, then p− (y) is a nonempty compact subspace of X. By Lemma y Ny 1 26.1 (on page 164), there is a finite subcover Ui i=1 U↵ ↵ I of p− (y). Let { } ⇢ { } 2 U y = Ny U y.ThenU y is open in X, and p 1(y) U y.ThusX U y is closed i=1 i − ⇢ \ in X, and p 1(y) (X U y)= ,soy/p (X U y). Since p is a closed map, S − \ \ ; 2 \ p (X U y) is closed in Y . Consider \ V y = Y [p (X U y)] , \ \ y y y then V is open in Y and y V .Thus, V y Y forms an open cover for Y , and 2 { } 2 since Y is compact, there exists a finite subcover V yi N of Y . We want to show { }i=1 that U yi N covers X.
    [Show full text]
  • Topological Extension Properties 367
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 210, 1975 TOPOLOGICALEXTENSION PROPERTIES BY R. GRANT WOODSi1) ABSTRACT. It is known that if a topological property P of Tychonoff spaces is closed-hereditary, productive, and possessed by all compact P-regular spaces, then each P-regular space A" is a dense subspace of a space y„X with P such that if Y has P and /: X —►Y is continuous, then / extends continuously to /': y„X—► Y. Such topological properties are called extension properties; y-X is called the maximal P-extension of X. In this paper we study the rela- tionships between pairs of extension properties and their maximal extensions. A basic tool is the concept of P-pseudocompactness, which is studied in detail (a P-regular space X is P-pseudocompact if y^X is compact). A classification of extension properties is attempted, and several means of constructing exten- sion properties are studied. A number of examples are considered in detail. 1. Introduction. Topologists have long been fascinated by the problem of determining when a continuous function from a topological space X to a space Y can be continuously extended to a space T containing X as a subspace. If Y is the space of real numbers, this leads to the study of C*-embedding and C-embed- ding; these concepts are discussed in detail in the Gillman-Jerison text [12]. If, for each normal space T and each closed subspace X of T, each continuous func- tion from X to y can be continuously extended to T, then Y is called an absolute retract.
    [Show full text]
  • Arxiv:1803.08556V1 [Math.GN] 22 Mar 2018
    REALIZING SPACES AS PATH-COMPONENT SPACES TARAS BANAKH, JEREMY BRAZAS Abstract. The path component space of a topological space X is the quotient space π0(X) whose points are the path components of X. We show that every Tychonoff space X is the path-component space of a Tychonoff space Y of weight w(Y) = w(X) such that the natural quotient map Y π (Y) = X is a perfect map. Hence, many ! 0 topological properties of X transfer to Y. We apply this result to construct a compact space X R3 for which the fundamental group π (X; x ) is an uncountable, cosmic, ⊂ 1 0 k!-topological group but for which the canonical homomorphism : π (X; x ) 1 0 ! πˇ 1(X; x0) to the first shape homotopy group is trivial. 1. Introduction The path-component space of a topological space X is the set π0(X) of path compo- nents of X equipped with the natural quotient topology inherited from X, i.e the natural map X π (X) identifying each path component to a point is a quotient ! 0 map. The path-component space of the space Ω(X; x ) of based loops S1 X is 0 ! the usual fundamental group π1(X; x0) equipped with a functorial topology that gives it the structure of a quasitopological group. Recent interest and applications of homotopy groups enriched with such topologies has brought more relevance to path-component spaces. It is a beautiful and surprising result of Douglas Harris that every topological space is a path-component space [19].
    [Show full text]
  • Weakly Quotient Map and Space
    Special Issue - 2020 International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 RTICCT - 2020 Conference Proceedings Weakly Quotient Map and Space Chidanand Badiger T Venkatesh Department of Mathematics, Department of Mathematics, Rani Channamma University, Belagavi-591 156, Rani Channamma University, Belagavi-591 156, Karnataka, INDIA. Karnataka, INDIA. Abstract- In this paper, we introduce the new weakly quotient Definition 2.1 [9] A subset F of a space M is said to be map (briefly, 푤-quotient map), strongly 푤-quotient map and Weakly closed (briefly, w-closed) if cl(F) ⊆ U whenever 푤*-quotient map. Here will discuss composition of few such F ⊆ U and U is semi-open in M. Respectively called w-open quotient maps. Also, we investigate some important properties set, if M ∖ F is w-closed set in M. We denote the set of all w- and consequences associated with usual quotient and bi, tri- quotient maps. open sets in M by wO(M). Definition 2.2 A map h: M → N is said to be 푤-continuous −1 Key Words: 푤-quotient map, strongly 푤-quotient map, 푤*-quotient map, if h (F) is 푤-closed set of M, for every closed set F of map, 푤-quotient space. N. AMS Classification: 54A05, 54C10, 54H99. Definition 2.3 A map h: M → N is said to be 푤-irresolute map, if h−1(F) is 푤-closed set of M, for every 푤-closed set F I. INTRODUCTION of N. Construction is needed in any branch of science, Definition 2.4 A bijection h: M → N is called 푤- which can be sufficiently achieved by the theory of quotient homeomorphism, if both h and h−1 are 푤-continuous.
    [Show full text]
  • (Countable-)Compact-Covering. a Surjection F : X ~ Y Is Inductively Perfect If There Is a Cover X' ~ X of Y Such That the Restriction Fix' Is Perfect
    Topology Proceedings Web: http://topology.auburn.edu/tp/ Mail: Topology Proceedings Department of Mathematics & Statistics Auburn University, Alabama 36849, USA E-mail: [email protected] ISSN: 0146-4124 COPYRIGHT °c by Topology Proceedings. All rights reserved. Topology Proceedings Vol 17, 1992 PRESERVATION PROPERTIES OF TRI-QUOTIENT MAPS WITH SIEVE-COMPLETE FIBRES WINFRIED JUST* AND HOWARD WICKE Abstract: We show that regular images of regular monotonic p-spaces under tri-quotient maps with sieve-complete fibres are of pointwise countable type, and are first countable if the do­ main has also a base of countable order. It is also shown that such maps are always countable-compact-covering. None of the above remains true if one replaces "tri-quotient" by "bi­ quotient." o. INTRODUCTION The concept of a tri-quotient map was introduced in [M 77]. It is a generalization of both the concepts of an open map and a perfect map. One would therefore expect that topological properties preserved by both open maps and perfect maps are also preserved by tri-quotient maps. In this paper, we establish some results of this kind. Our focus is on tri-quotient maps with sieve-complete fibres (not necessarily for a fixed sieve on the domain) which have regular monotonic p-spaces or spaces with a base of countable order as their domains. These spaces behave well with respect to perfect maps and open maps in the presence of uniform completeness of the fibres (see [WW 67] and [WW 73]. A summary of results can be found in [CCN]). • Partially supported by NSF grant DMS-9016021.
    [Show full text]