21 the Endocrine System: Regulation of Energy Metabolism and Growth 603
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 45-Hormones and the Endocrine System Pathway Example – Simple Hormone Pathways Stimulus Low Ph in Duodenum
Chapter 45-Hormones and the Endocrine System Pathway Example – Simple Hormone Pathways Stimulus Low pH in duodenum •Hormones are released from an endocrine cell, S cells of duodenum travel through the bloodstream, and interact with secrete secretin ( ) Endocrine the receptor or a target cell to cause a physiological cell response Blood vessel A negative feedback loop Target Pancreas cells Response Bicarbonate release Insulin and Glucagon: Control of Blood Glucose Body cells •Insulin and glucagon are take up more Insulin antagonistic hormones that help glucose. maintain glucose homeostasis Beta cells of pancreas release insulin into the blood. The pancreas has clusters of endocrine cells called Liver takes islets of Langerhans up glucose and stores it as glycogen. STIMULUS: Blood glucose Blood glucose level level declines. rises. Target Tissues for Insulin and Glucagon Homeostasis: Blood glucose level Insulin reduces blood glucose levels by: (about 90 mg/100 mL) Promoting the cellular uptake of glucose Blood glucose STIMULUS: Slowing glycogen breakdown in the liver level rises. Blood glucose level falls. Promoting fat storage Alpha cells of pancreas release glucagon. Liver breaks down glycogen and releases glucose. Glucagon Glucagon increases blood glucose levels by: Stimulating conversion of glycogen to glucose in the liver Stimulating breakdown of fat and protein into glucose Diabetes Mellitus Type I diabetes mellitus (insulin-dependent) is an autoimmune disorder in which the immune system destroys pancreatic beta cells Type II diabetes -
Secretin and Autism: a Clue but Not a Cure
SCIENCE & MEDICINE Secretin and Autism: A Clue But Not a Cure by Clarence E. Schutt, Ph.D. he world of autism has been shaken by NBC’s broadcast connections could not be found. on Dateline of a film segment documenting the effect of Tsecretin on restoring speech and sociability to autistic chil- The answer was provided nearly one hundred years ago by dren. At first blush, it seems unlikely that an intestinal hormone Bayless and Starling, who discovered that it is not nerve signals, regulating bicarbonate levels in the stomach in response to a but rather a novel substance that stimulates secretion from the good meal might influence the language centers of the brain so cells forming the intestinal mucosa. They called this substance profoundly. However, recent discoveries in neurobiology sug- “secretin.” They suggested that there could be many such cir- gest several ways of thinking about the secretin-autism connec- culating substances, or molecules, and they named them “hor- tion that could lead to the breakthroughs we dream about. mones” based on the Greek verb meaning “to excite”. As a parent with more than a decade of experience in consider- A simple analogy might help. If the body is regarded as a commu- ing a steady stream of claims of successful treatments, and as a nity of mutual service providers—the heart and muscles are the pri- scientist who believes that autism is a neurobiological disorder, I mary engines of movement, the stomach breaks down foods for have learned to temper my hopes about specific treatments by distribution, the liver detoxifies, and so on—then the need for a sys- seeing if I could construct plausible neurobiological mechanisms tem of messages conveyed by the blood becomes clear. -
Glucagon and Gastrointestinal Motility in Relation to Thyroid-Parathyroid Function
Upsala J Med Sci 77: 183-188, 1972 Glucagon and Gastrointestinal Motility in Relation to Thyroid-Parathyroid Function HENRY JOHANSSON and ANDERS SEGERSTROM From the Department of Surgery, University Hospital, Uppsala, Sweden ABSTRACT MATERIAL Gastrointestinal propulsive motility was studied after The material consisted of 109 male albino rats (Sprague- inhgastric deposition of a non-absorbable isotope in Dawley) fed on laboratory food and with free access to rats after subcutaneous glucagon injections. Glucagon water. The animals were distributed at random in fol- administration was followed by retardation of gastric lowing series: emptying. The results indicated that the retarding effect Series I of glucagon on gastrointestinal propulsion was independent The influence of glucagon on gastrointestinal motility in of the presence of both thyroid and parathyroid tissue. intact rats. The observation period was 7 days. The hypocalcemic effect of glucagon was exerted in- dependently of the presence of thyroid tissue, Le. thyro- 1. Intact rats given 1.2 mg glucagon/kg body weight calcitonin. (GN-A, n= 6) 2. Intact rats given 4.8 mg glucagon/kg body weight (GN-B, n= 5) 3. Intact rats given 9.6 mg glucagon/kg body weight INTRODUCTION (GN-C, n= 12) 4. Intact rats given glucine buffert (GLY, n= 10). Glucagon is known to influence gastrointestinal Series I1 motility. In man, Dotevall & Kock (2) observed The influence of glucagon on gastrointestinal motility in that glucagon retarded gastrointestinal motility parathyroidectomized rats. The animals were given 4.8 independently of the hyperglucemia. In dogs, mg glucagon/kg body weight. The observation period glucagon retarded motility of the stomach ani was 90 days. -
AVP-Induced Counter-Regulatory Glucagon Is Diminished in Type 1 Diabetes
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.30.927426; this version posted January 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. AVP-induced counter-regulatory glucagon is diminished in type 1 diabetes Angela Kim1,2, Jakob G. Knudsen3,4, Joseph C. Madara1, Anna Benrick5, Thomas Hill3, Lina Abdul Kadir3, Joely A. Kellard3, Lisa Mellander5, Caroline Miranda5, Haopeng Lin6, Timothy James7, Kinga Suba8, Aliya F. Spigelman6, Yanling Wu5, Patrick E. MacDonald6, Ingrid Wernstedt Asterholm5, Tore Magnussen9, Mikkel Christensen9,10,11, Tina Vilsboll9,10,12, Victoria Salem8, Filip K. Knop9,10,12,13, Patrik Rorsman3,5, Bradford B. Lowell1,2, Linford J.B. Briant3,14,* Affiliations 1Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. 2Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA. 3Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, OX4 7LE, UK. 4Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen. 5Institute of Neuroscience and Physiology, Metabolic Research Unit, University of Göteborg, 405 30, Göteborg, Sweden. 6Alberta Diabetes Institute, 6-126 Li Ka Shing Centre for Health Research Innovation, Edmonton, Alberta, T6G 2E1, Canada. 7Department of Clinical Biochemistry, John Radcliffe, Oxford NHS Trust, OX3 9DU, Oxford, UK. 8Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, W12 0NN, UK. -
Localization of Glucokinase Gene Expression in the Rat Brain Ronald M
Localization of Glucokinase Gene Expression in the Rat Brain Ronald M. Lynch, Linda S. Tompkins, Heddwen L. Brooks, Ambrose A. Dunn-Meynell, and Barry E. Levin The brain contains a subpopulation of glucosensing neu- rons that alter their firing rate in response to elevated glucose concentrations. In pancreatic -cells, gluco- ammalian feeding behavior and general energy kinase (GK), the rate-limiting enzyme in glycolysis, medi- homeostasis appear to be regulated by circu- ates glucose-induced insulin release by regulating intra- lating levels of nutrients (glucose) and pep- cellular ATP production. A similar role for GK is pro- tides (e.g., leptin, insulin). Sensors to detect lev- posed to underlie neuronal glucosensing. Via in situ M els of these factors have been found to reside within specific hybridization, GK mRNA was localized to hypothalamic areas that are thought to contain relatively large popu- nuclei of the hypothalamus (1–8), where central regulation of lations of glucosensing neurons (the arcuate, ventrome- energy homeostasis is believed to be coordinated. For exam- dial, dorsomedial, and paraventricular nuclei and the lat- ple, large changes in blood glucose are correlated with cen- eral area). GK also was found in brain areas without trally mediated responses such as thermogenesis through known glucosensing neurons (the lateral habenula, the activation of the sympathetic nervous system. These changes bed nucleus stria terminalis, the inferior olive, the are monitored by the brain (9–11), and such responses are retrochiasmatic and medial preoptic areas, and the thal- altered in obesity-prone animals (11–13). Moreover, lesions amic posterior paraventricular, interpeduncular, oculo- of the ventromedial hypothalamus (VMH) prevent the hypo- motor, and anterior olfactory nuclei). -
And Oxytocin-Induced Glucagon Secretion in V1b Vasopressin Receptor Knockout Mice
361 Mutual regulation of vasopressin- and oxytocin-induced glucagon secretion in V1b vasopressin receptor knockout mice Yoko Fujiwara, Masami Hiroyama, Atsushi Sanbe, Junji Yamauchi, Gozoh Tsujimoto1 and Akito Tanoue Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan 1Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University Faculty of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan (Requests for offprints should be addressed to A Tanoue; Email: [email protected]) Abstract [Arg8]-vasopressin (AVP) and oxytocin (OT) are neurohy- CL-14-26 further inhibited AVP- and OT-induced glucagon pophysial hormones which exert various actions, including secretions in islets of V1bRC/C mice (57 and 69% of the the control of blood glucose, in some peripheral tissues. To stimulation values respectively). In addition, both AVP and investigate the type of receptors involved in AVP- and OT stimulated glucagon secretion with the same efficacy in OT-induced glucagon secretion, we investigated the effect V1bRK/K mice as in V1bRC/C mice. AVP- and of these peptides on glucagon secretion in islets of OT-induced glucagon secretion in V1bRK/K mice was wild-type (V1bRC/C) and vasopressin V1b receptor significantly inhibited by CL-14-26. These results demonstrate knockout (V1bRK/K) mice. AVP-induced glucagon that V1b receptors can mediate OT-induced glucagon secretion secretion was significantly inhibited by the selective V1b and OTreceptors can mediate AVP-induced glucagon secretion receptor antagonist, SSR149415 (30%), and OT-induced in islets from V1bRC/C mice in the presence of a heterologous glucagon secretion by the specific OT receptor antagonist, antagonist, while AVP and OT can stimulate glucagon secretion ð Þ ½ ð Þ2; 4; 9 d CH2 5 Tyr Me Thr Tyr-NH2 OVT (CL-14-26) through the OTreceptors in V1bRK/K mice, suggesting that C C (45%), in islets of V1bR / mice. -
Biology F – Lesson 4 – Endocrine & Reproductive Systems
Unit: Biology F – Endocrine & Reproduction LESSON 4.1 - AN INTRODUCTION TO THE ENDOCRINE SYSTEM Overview: Students research the location and function of the major endocrine glands and consider some endocrine system disorders. Suggested Timeline: 1 hour Materials: • An Introduction to the Endocrine System (Student Handout) • QUIZ – The Endocrine System (Student Handout) • student access to computers with the internet Method: 1. Allow students to use computers with internet access and other resources from the library to complete their questions on the endocrine system. 2. Students write quiz on the endocrine system. Assessment and Evaluation: • Affective assessment of student understanding of parts of the endocrine system • Student grade on quiz Extension: Assign a student or group of students to ‘be’ a specific endocrine gland. Have them role play for the class to get the idea of the function of the gland across to their classmates. Science 21 Bio F – Endocrine B152 Unit: Biology F – Endocrine & Reproduction Student Handout Name: ______________ Partner(s): _________________________ Date: ____________ Period: _____ An Introduction to the Endocrine System Go to the following website: http://health.howstuffworks.com/adam-200091.htm Watch the video to complete the following questions. 1. The endocrine system is composed primarily of _________________ that produce chemical messengers called __________________. 2. List the names of glands of the endocrine system, as mentioned in the video. Hint: There are 8 in total. 3. The endocrine and ________________ systems work closely together. The brain sends info to the endocrine glands and the endocrine glands send feedback to the brain. 4. The part of the brain that is known as the ‘master switchboard’ and controls the endocrine system is called the _____________________. -
Biomoleculesbiomolecules
1414Unit Objectives BiomoleculesBiomolecules After studying this Unit, you will be able to • explain the characteristics of “It is the harmonious and synchronous progress of chemical biomolecules like carbohydrates, reactions in body which leads to life”. proteins and nucleic acids and hormones; • classify carbohydrates, proteins, A living system grows, sustains and reproduces itself. nucleic acids and vitamins on the The most amazing thing about a living system is that it basis of their structures; is composed of non-living atoms and molecules. The • explain the difference between pursuit of knowledge of what goes on chemically within DNA and RNA; a living system falls in the domain of biochemistry. Living • describe the role of biomolecules systems are made up of various complex biomolecules in biosystem. like carbohydrates, proteins, nucleic acids, lipids, etc. Proteins and carbohydrates are essential constituents of our food. These biomolecules interact with each other and constitute the molecular logic of life processes. In addition, some simple molecules like vitamins and mineral salts also play an important role in the functions of organisms. Structures and functions of some of these biomolecules are discussed in this Unit. 14.114.114.1 Carbohydrates Carbohydrates are primarily produced by plants and form a very large group of naturally occurring organic compounds. Some common examples of carbohydrates are cane sugar, glucose, starch, etc. Most of them have a general formula, Cx(H2O)y, and were considered as hydrates of carbon from where the name carbohydrate was derived. For example, the molecular formula of glucose (C6H12O6) fits into this general formula, C6(H2O)6. But all the compounds which fit into this formula may not be classified as carbohydrates. -
Chapter 20: Endocrine System
EndocrineEndocrine SystemSystem Modified by M. Myers 1 TheThe EndocrineEndocrine SystemSystem 2 EndocrineEndocrine GlandsGlands z The endocrine system is made of glands & tissues that secrete hormones. z Hormones are chemicals messengers influencing a. metabolism of cells b. growth and development c. reproduction, d. homeostasis. 3 HormonesHormones Hormones (chemical messengers) secreted into the bloodstream and transported by blood to specific cells (target cells) Hormones are classified as 1. proteins (peptides) 2. Steroids 4 HormoneHormone ClassificationClassification z Steroid Hormones: – Lipid soluble – Diffuse through cell membranes – Endocrine organs z Adrenal cortex z Ovaries z Testes z placenta 5 HormoneHormone ClassificationClassification z Nonsteroid Hormones: – Not lipid soluble – Received by receptors external to the cell membrane – Endocrine organs z Thyroid gland z Parathyroid gland z Adrenal medulla z Pituitary gland z pancreas 6 HormoneHormone ActionsActions z “Lock and Key” approach: describes the interaction between the hormone and its specific receptor. – Receptors for nonsteroid hormones are located on the cell membrane – Receptors for steroid hormones are found in the cell’s cytoplasm or in its nucleus 7 http://www.wisc- online.com/objects/index_tj.asp?objID=AP13704 8 EndocrineEndocrine SystemSystem z There is a close assoc. b/w the endocrine & nervous systems. z Hormone secretion is usually controlled by either negative feedback or antagonistic hormones that oppose each other’s actions 9 HypothalamusHypothalamus 1. regulates the internal environment through the autonomic system 2. controls the secretions of the pituitary gland. 10 HypothalamusHypothalamus && PituitaryPituitary GlandGland posteriorposterior pituitary/pituitary/ anterioranterior pituitarypituitary 11 PosteriorPosterior PituitaryPituitary The posterior pituitary secretes zantidiuretic hormone (ADH) zoxytocin 12 13 14 AnteriorAnterior pituitarypituitary glandgland 1. -
Dysfunction of the Hypothalamic-Pituitary-Adrenal Axis in HIV Infection and Disease
HORMONES 2008, 7(3):205-216 Review Dysfunction of the Hypothalamic-Pituitary-Adrenal axis in HIV infection and disease Evangelia Zapanti1, Konstantinos Terzidis1, George Chrousos2 11st Department of Endocrinology, “Alexandra” Hospital, Athens, 2Endocrine Unit, Department of Pediatrics, Athens University School of Medicine, “Aghia Sophia” Children’s Hospital, Athens, Greece ABSTRACT Abnormalities of the Hypothalamic-Pituitary-Adrenal (HPA) axis have been documented in HIV patients in the early as well as late stages of the infection and range from subtle subclini- cal disturbances to frank adrenal insufficiency. Potential etiologies of these disorders include opportunistic infections, neoplasms, drugs administered to treat infections, cytokine abnor- malities associated with the HIV disease process and acquired alterations in tissue sensitivity to glucocorticoids. In this article, we present a concise review of HPA abnormalities in HIV infection and disease with regard to their etiology with emphasis on syndromes of hypersen- sitivity/resistance to glucocorticoids associated with antiviral medications and/or the HIV infection itself. Key words: AIDS, Glucocorticoid hypersensitivity, Glucocorticoid resistance, HIV, HPA axis, Vpr INTRODUCTION peptide that plays a central role in coordinating the HPA axis and the systemic response to stress,3 act- HPA axis ing as the main physiologic ACTH stimulus.4 ACTH The HPA axis and the systemic sympathetic/ad- leads to secretion of cortisol (F) and other adrenal renomedullary (sympathoadrenal) system are the steroids, such as dehydroepiandrosterone (DHEA) peripheral branches of the stress system, whose main and aldosterone.5 function is to maintain basal and stress-related ho- meostasis.1 Biologic, physical or psychologic stimuli The HPA axis and the immune-inflammatory activate the stress system, including the HPA axis. -
210825 Endocrine System 5 – the Function of the Pineal and Thymus
Copyright EMAP Publishing 2021 This article is not for distribution except for journal club use Clinical Practice Keywords Endocrine system/ Hormones/Pineal gland/Thymus gland Systems of life This article has been Endocrine system double-blind peer reviewed In this article... ● Endocrine functions of the pineal and thymus glands ● Hormones secreted by the pineal and thymus glands ● Role of the pineal and thymus glands in mediating essential physiological processes Endocrine system 5: the function of the pineal and thymus glands Key points Authors John Knight is associate professor in biomedical science; Zubeyde Bayram- The pineal gland is Weston is senior lecturer in biomedical science; Maria Andrade is honorary associate a neuroendocrine professor in biomedical science; all at College of Human and Health Sciences, gland in the brain, Swansea University. which produces the hormone melatonin Abstract The endocrine system consists of glands and tissues that produce and secrete hormones to regulate and coordinate vital bodily functions. This article, the Melatonin is key to fifth in an eight-part series on the endocrine system, explores the anatomy and synchronising the physiology of the pineal and thymus glands, and describes how they regulate and body’s biological coordinate vital physiological processes in the body through hormonal action. rhythms and has an influence on Citation Knight J et al (2021) Endocrine system 5: pineal and thymus glands. immunity Nursing Times [online]; 117: 9, 54-58. The thymus has both immune and he endocrine system comprises with a rich blood flow of around 4ml/ endocrine functions, glands and tissues that produce min/g, second only to that of the kidneys. -
The Endocrine System from Our Neurotransmitter Chapter: Endocrine Neurotransmitters Convey a Message from the Glands Secrete Sending Neuron to the Receiving Neuron(S)
11/10/2014 The Endocrine System From Our Neurotransmitter Chapter: Endocrine Neurotransmitters convey a message from the glands secrete sending neuron to the receiving neuron(s). “hormones” Hormones, on the other hand, “broadcast” a message directly into throughout the body via the bloodstream, so are able bloodstream. to influence cells in many distant organs/tissues. But we’ll hold off on hormones for the moment, In Chap 11 the because before there could be hormones, there had Hypothalamus, to be genes to develop the glands. Pituitary, Gonads, and Adrenal glands will play a role in sexuality What defines male or female ? Sexual Differentiation in Mammals (Chap 11) How do we become the sexual individuals we are? Differentiation Role of Sex Chromosomes • Genetic sex (XX or XY) is determined by the sperm (X-bearing or Y-bearing) that fertilizes the egg. • Early gonads have potential to be either ovaries or testes for ~6 weeks. • Sex-determining region of the Y chromosome (SRY) is a gene producing a *protein causing the middle of baby gonads to become testes. • If testes develop, they begin to produce androgens like testosterone. • If SRY gene is not present, the outside of the early gonads turns into ovaries. *sometimes called testis-determining factor 1 11/10/2014 Experimental Evidence • Removal of SRY gene from Y XY mouse develops as a female • Add SRY gene to X XX mouse develops as a male • Injection of SRY’s protein in genetic female develops testes • Inject genetic male with drug that blocks the SRY’s protein develops ovaries Figure 13.6 Endocrine Glands – Release hormones directly into bloodstream Although the pituitary is sometimes called the “master gland” in Organizational Effects fact the hypothalamus is the “master” of the pituitary.