WO 2019/018440 Al 24 January 2019 (24.01.2019) W !P O PCT

Total Page:16

File Type:pdf, Size:1020Kb

WO 2019/018440 Al 24 January 2019 (24.01.2019) W !P O PCT (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2019/018440 Al 24 January 2019 (24.01.2019) W !P O PCT (51) International Patent Classification: CORPORATION [US/US]; 55 Fruit Street, Boston, Mass A61K 35/17 (2015.01) CI2N 5/071 (2010.01) achusetts 021 14 (US). A61P 1/00 (2006.01) G01N 33/50 (2006.01) (72) Inventors: BITON, Moshe; c/o 55 Fruit Street, Boston, (21) International Application Number: Massachusetts 021 14 (US). SHALEK, Alexander K.; c/ PCT/US2018/042554 o 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (US). SMILLIE, Christopher; c/o 77 Massa (22) International Filing Date: chusetts Avenue, Cambridge, Massachusetts 02139 (US). 17 July 2018 (17.07.2018) HERBST, Rebecca H.; c/o 415 Main Street, Cam (25) Filing Language: English bridge, Massachusetts 02142 (US). REGEV, Aviv; c/o 415 Main Street, Cambridge, Massachusetts 02142 (US). OR- (26) Publication Language: English DOVAS-MONTANES, Jose; c/o 77 Massachusetts Av (30) Priority Data: enue, Cambridge, Massachusetts 02139 (US). XAVIER, 62/533,638 17 July 2017 (17.07.2017) US Ramnik; c/o 55 Fruit Street, Boston, Massachusetts 021 14 62/581,424 03 November 2017 (03 .11.20 17) US (US). 62/692,541 29 June 2018 (29.06.2018) US (74) Agent: SCHER, Michael B. et al; Johnson, Marcou & (71) Applicants: THE BROAD INSTITUTE, INC. [US/US]; Isaacs, LLC, P.O. Box 691, Hoschton, Georgia 30548 (US). 415 Main Street, Cambridge, Massachusetts 02142 (US). (81) Designated States (unless otherwise indicated, for every OF MASSACHUSETTS INSTITUTE TECHNOLOGY kind of national protection available): AE, AG, AL, AM, [US/US]; 77 Massachusetts Avenue, Cambridge, Mass AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, achusetts 02139 (US). THE GENERAL HOSPITAL (54) Title: CELL ATLAS OF THE HEALTHY AND ULCERATIVE COLITIS HUMAN COLON healthy UC ' - epithelial ' ·* ¾ ' i i -.'i' o FIG. 1 00 (57) Abstract: The present invention provides for a human cell atlas of the colon from healthy and diseased subjects. The atlas was o obtained by single sequencing of about 117,000 cells. The present invention discloses novel markers for cell types. Moreover, genes associated with disease are identified in the colon and colon specific cell types. The invention provides for diagnostic assays based on gene markers and cell composition, as well as target cell types that express genes associated with disease. Finally, disclosed are novel o cell types and methods of quantitating, detecting and isolating the cell types. o [Continued on nextpage] WO 2019/018440 Al llll II II 11III II I III II I II II II III II I II CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). Published: — with international search report (Art. 21(3)) — before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h)) — with sequence listing part of description (Rule 5.2(a)) CELL ATLAS OF THE HEALTHY AND ULCERATIVE COLITIS HUMAN COLON CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims the benefit of U.S. Provisional Application Nos. 62/533,638, filed July 17, 2017, 62/581,424, filed November 3, 2017 and 62/692,541, filed June 29, 2018. The entire contents of the above-identified applications are hereby fully incorporated herein by reference. STATEMENTREGARDING FEDERALLY SPONSORED RESEARCH [0002] This invention was made with government support under Grant Nos. OD020839, AI089992, CA217377, AI039671, All 18672, HG006193 and CA202820 awarded by the National Institutes of Health. The government has certain rights in the invention. TECHNICAL FIELD [0003] The subject matter disclosed herein is generally directed to a cell atlas of the human colon in healthy and disease states. The subject matter further relates to novel cell specific and disease specific markers. BACKGROUND [0004] Tissues function through the coordinated actions of diverse parenchymal, immune, and stromal cell types responding to local and distal cues. Breakdown in any cellular compartment can lead to disease, due to intrinsic cell dysfunction or through compensations by other cells to restore tissue homeostasis. This intricate interplay among cells makes it difficult to determine the causal cellular mechanisms that initiate or promote disease. In the past, measuring the contribution of each cellular compartment was hampered by the need to average bulk measurements across the entire tissue or to assess known cell subsets or selected genes a priori. [0005] The small intestinal mucosa is a complex system. The mucosa comprises multiple cell types involved in absorption, defense, secretion and more. These cell types are rapidly renewed from intestinal stem cells. The types of cells, their differentiation, and signals controlling differentiation and activation are poorly understood. The small intestinal mucosa also possesses a large and active immune system, poised to detect antigens and bacteria at the mucosal surface and to drive appropriate responses of tolerance or an active immune response. Finally, there is complex luminal milieu which comprises a combination of diverse microbial species and their products as well as derivative products of the diet. It is increasingly clear that a functional balance between the epithelium and the constituents within the lumen plays a central role in both maintaining the normal mucosa and the pathophysiology of many gastrointestinal disorders. Many disorders, such as irritable bowel disease, Crohn's disease, and food allergies, have proven difficult to treat. Inflammatory bowel disease (IBD) is a group of inflammatory conditions of the colon and small intestine, principally including Crohn's disease and ulcerative colitis, with other forms of IBD representing far fewer cases (e.g., collagenous colitis, lymphocytic colitis, diversion colitis, Behcet's disease and indeterminate colitis). Pathologically, Crohn's disease affects the full thickness of the bowel wall (e.g., transmural lesions) and can affect any part of the gastrointestinal tract, while ulcerative colitis is restricted to the mucosa (epithelial lining) of the colon and rectum. Some of the genetic factors predisposing one to IBD are known, as explored in Daniel B . Graham and Ramnik J . Xavier "From Genetics of Inflammatory Bowel Disease Towards Mechanistic Insights" TrendsImmunol. 2013 Aug; 34(8): 371-378 (incorporated herein). The manner in which these multiple factors interact remains unclear. [0006] A case in point is ulcerative colitis (UC), a major subtype of Inflammatory Bowel Disease (IBD), where inflammation begins in the rectum and extends proximally in a contiguous fashion. Left-sided disease is characterized by a sharp demarcation between inflamed and non- inflamed segments. Explaining the geographical restriction of UC remains a challenge. While endoscopic examination followed by histological analysis are the current standard of care, they fail to capture key aspects of the disease, including immune cell activation states, cell-specific cytokine profiles, and disease-related features of stromal cells, and do not distinguish the pathways associated with chronic inflammation from attempts at disease restitution. Furthermore, several genes mapped by genome-wide association studies (GWAS) as associated with disease risk suggests a critical role for the intestinal barrier in preventing IBD, with defects in autophagy, ER stress, oxidative stress, cell death, IL23R/Thl7 biology, immune tolerance, solute transport and perturbed innate and adaptive immune signaling [REF]. However, the cellular compartments and cell-cell interactions in which these GWAS genes and pathways act are often unknown. [0007] Single-cell RNA-Seq (scRNA-Seq) can help advance our understanding of complex disease by comprehensively mapping the cell types and states in the tissue, distinguishing changes in cell-intrinsic expression programs from cell-extrinsic changes in cell frequencies, and predicting how these connect through cell-cell interactions. When comparing healthy and disease tissue, this may help determine with precision: which cell populations are disrupted in disease? Which cell- intrinsic programs are changed? What cell-cell interactions affect cell recruitment during inflammation and disease resolution? What are the cells-of-action of disease risk genes? and, What are the effects of current therapies and how might therapeutic resistance arise? Unlike bulk profiling, which averages across cell types, scRNA-Seq can readily distinguish between cell- intrinsic changes in expression program and cell-extrinsic changes in cell frequencies and cell-cell interactions. Unlike most in situ methods, which require prior knowledge of the genes and proteins of interest, scRNA-Seq can in principle do so systematically across all cells and programs in the tissue ecosystem, including those that may not yet be known to present in the tissue. This approach has been demonstrated for tumors (see, e.g., Tirosh, et al., Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq.
Recommended publications
  • Isyte: Integrated Systems Tool for Eye Gene Discovery
    Lens iSyTE: Integrated Systems Tool for Eye Gene Discovery Salil A. Lachke,1,2,3,4 Joshua W. K. Ho,1,4,5 Gregory V. Kryukov,1,4,6 Daniel J. O’Connell,1 Anton Aboukhalil,1,7 Martha L. Bulyk,1,8,9 Peter J. Park,1,5,10 and Richard L. Maas1 PURPOSE. To facilitate the identification of genes associated ther investigation. Extension of this approach to other ocular with cataract and other ocular defects, the authors developed tissue components will facilitate eye disease gene discovery. and validated a computational tool termed iSyTE (integrated (Invest Ophthalmol Vis Sci. 2012;53:1617–1627) DOI: Systems Tool for Eye gene discovery; http://bioinformatics. 10.1167/iovs.11-8839 udel.edu/Research/iSyTE). iSyTE uses a mouse embryonic lens gene expression data set as a bioinformatics filter to select candidate genes from human or mouse genomic regions impli- ven with the advent of high-throughput sequencing, the cated in disease and to prioritize them for further mutational Ediscovery of genes associated with congenital birth defects and functional analyses. such as eye defects remains a challenge. We sought to develop METHODS. Microarray gene expression profiles were obtained a straightforward experimental approach that could facilitate for microdissected embryonic mouse lens at three key devel- the identification of candidate genes for developmental disor- opmental time points in the transition from the embryonic day ders, and, as proof-of-principle, we chose defects involving the (E)10.5 stage of lens placode invagination to E12.5 lens primary ocular lens. Opacification of the lens results in cataract, a leading cause of blindness that affects 77 million persons and fiber cell differentiation.
    [Show full text]
  • Mouse Kcnip2 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Kcnip2 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Kcnip2 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Kcnip2 gene (NCBI Reference Sequence: NM_145703 ; Ensembl: ENSMUSG00000025221 ) is located on Mouse chromosome 19. 10 exons are identified, with the ATG start codon in exon 1 and the TAG stop codon in exon 10 (Transcript: ENSMUST00000162528). Exon 4 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Kcnip2 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-98F2 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for disruptions in this gene are susceptible to induced cardiac arrhythmias but are otherwise normal. Exon 4 starts from about 27.65% of the coding region. The knockout of Exon 4 will result in frameshift of the gene. The size of intron 3 for 5'-loxP site insertion: 574 bp, and the size of intron 4 for 3'-loxP site insertion: 532 bp. The size of effective cKO region: ~625 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 2 3 4 5 6 7 8 9 10 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Kcnip2 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Protein Interaction Network of Alternatively Spliced Isoforms from Brain Links Genetic Risk Factors for Autism
    ARTICLE Received 24 Aug 2013 | Accepted 14 Mar 2014 | Published 11 Apr 2014 DOI: 10.1038/ncomms4650 OPEN Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism Roser Corominas1,*, Xinping Yang2,3,*, Guan Ning Lin1,*, Shuli Kang1,*, Yun Shen2,3, Lila Ghamsari2,3,w, Martin Broly2,3, Maria Rodriguez2,3, Stanley Tam2,3, Shelly A. Trigg2,3,w, Changyu Fan2,3, Song Yi2,3, Murat Tasan4, Irma Lemmens5, Xingyan Kuang6, Nan Zhao6, Dheeraj Malhotra7, Jacob J. Michaelson7,w, Vladimir Vacic8, Michael A. Calderwood2,3, Frederick P. Roth2,3,4, Jan Tavernier5, Steve Horvath9, Kourosh Salehi-Ashtiani2,3,w, Dmitry Korkin6, Jonathan Sebat7, David E. Hill2,3, Tong Hao2,3, Marc Vidal2,3 & Lilia M. Iakoucheva1 Increased risk for autism spectrum disorders (ASD) is attributed to hundreds of genetic loci. The convergence of ASD variants have been investigated using various approaches, including protein interactions extracted from the published literature. However, these datasets are frequently incomplete, carry biases and are limited to interactions of a single splicing isoform, which may not be expressed in the disease-relevant tissue. Here we introduce a new interactome mapping approach by experimentally identifying interactions between brain-expressed alternatively spliced variants of ASD risk factors. The Autism Spliceform Interaction Network reveals that almost half of the detected interactions and about 30% of the newly identified interacting partners represent contribution from splicing variants, emphasizing the importance of isoform networks. Isoform interactions greatly contribute to establishing direct physical connections between proteins from the de novo autism CNVs. Our findings demonstrate the critical role of spliceform networks for translating genetic knowledge into a better understanding of human diseases.
    [Show full text]
  • Parallel Molecular Evolution in Pathways, Genes, and Sites in High-Elevation Hummingbirds Revealed by Comparative Transcriptomics
    GBE Parallel Molecular Evolution in Pathways, Genes, and Sites in High-Elevation Hummingbirds Revealed by Comparative Transcriptomics Marisa C.W. Lim1,*, Christopher C. Witt2, Catherine H. Graham1,3,andLilianaM.Davalos 1,4 1Department of Ecology and Evolution, Stony Brook University 2 Museum of Southwestern Biology and Department of Biology, University of New Mexico Downloaded from https://academic.oup.com/gbe/article-abstract/11/6/1552/5494706 by guest on 08 June 2019 3Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland 4Consortium for Inter-Disciplinary Environmental Research, Stony Brook University *Corresponding author: E-mail: [email protected]. Accepted: May 12, 2019 Data deposition: The raw read data have been deposited in the NCBI Sequence Read Archive under BioProject: PRJNA543673, BioSample: SAMN11774663-SAMN11774674, SRA Study: SRP198856. All scripts used for analyses are available on Dryad: doi:10.5061/dryad.v961mb4. Abstract High-elevation organisms experience shared environmental challenges that include low oxygen availability, cold temperatures, and intense ultraviolet radiation. Consequently, repeated evolution of the same genetic mechanisms may occur across high-elevation taxa. To test this prediction, we investigated the extent to which the same biochemical pathways, genes, or sites were subject to parallel molecular evolution for 12 Andean hummingbird species (family: Trochilidae) representing several independent transitions to high elevation across the phylogeny. Across high-elevation species, we discovered parallel evolution for several pathways and genes with evidence of positive selection. In particular, positively selected genes were frequently part of cellular respiration, metabolism, or cell death pathways. To further examine the role of elevation in our analyses, we compared results for low- and high-elevation species and tested different thresholds for defining elevation categories.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supporting Information
    Supporting Information Fabbri et al. 10.1073/pnas.1702564114 a. b. GC 4X GCs 20x GC 4X GCs 4X Tonsil epithelium ICN1 CD20 DAPI Fig. S1. ICN1 is expressed in the B-cell fraction populating the mantle zone (M) of the germinal centers (GCs). (A) Double IF staining of ICN1 and AID in a rep- resentative GC in a human tonsil section. (B) Double IF staining of ICN1 and the B-cell–specific surface antigen CD20 at lower magnification (4×) in a human tonsil section. Fabbri et al. www.pnas.org/cgi/content/short/1702564114 1of10 Fig. S2. ICN1 expression analysis in a panel of primary CLL cases and PBMC. (A) IB analysis of ICN1 and control β-actin in a panel of 124 CLL PB primary CLL cases, (B) in primary NOTCH1–wild-type CLL cells treated with the γ-secretase inhibitor Compound E (CpE, 500 nM, 8 h) or control DMSO, and (C) in PBMC protein extracts and representative primary CLL cases expressing ICN1. Samples are color-coded based on the NOTCH1 mutational status [red, clonal NOTCH1 PEST-truncating events; orange, subclonal NOTCH1 PEST-truncating events; blue, RAG-mediated NOTCH1 translocation (83); and black, NOTCH1–wild-type]. Samples in gray were excluded from the analysis because of low quality of the protein lysate, low viability, or low leukemic representation. Color-coded arrows indicate cases subjected to RNA-Seq analysis: dark red denotes NOTCH1-mutated cases expressing ICN1; blue, NOTCH1–wild-type cases expressing ICN1; and green, ICN1− NOTCH1–wild-type cases. Abbreviations: MO+DL1, MO1043 cells cocultured on OP9-DL1 cells (54); s.e., short exposure; l.e., long exposure.
    [Show full text]
  • BIO4342 Exercise 2: Browser-Based Annotation and RNA-Seq Data
    BIO4342 Exercise 2: Browser-Based Annotation and RNA-Seq Data Jeremy Buhler March 15, 2010 This exercise continues your introduction to practical issues in comparative annotation. You’ll be annotating genomic sequence from the dot chromosome of Drosophila mojavensis using your knowledge of BLAST and some improved visualization tools. You’ll also consider how best to integrate information from high-throughput sequencing of expressed RNA. 1 Getting Started To begin, go to our local genome browser at http://gander.wustl.edu/. Select “Genome Browser” from the left-side menu and choose the “Improved Dot” assembly of D. mojavensis for viewing. Finally, hit submit to start looking at the sequence. The entire dot assembly is about 1.69 megabases in length; zoom out to see everything. This assembly is built from a set of overlapping fosmid clones prepared for the 2009 edition of BIO 4342. We’ve added a variety of information to the genome browser to help you annotate, such as: • gene-structure predictions from several different tools; • repeats annotated using the RepeatMasker program; • BLAST hits to D. melanogaster proteins; • RNA-Seq data, which we’ll describe in more detail later. Having all this evidence available at once is somewhat overwhelming. To keep the view to a manageable level, I’d suggest that you initially set all the gene prediction tracks (Genscan, Nscan, SNAP, Geneid), as well as the repeat tracks, to “dense” mode, so that each displays on a single line. Set the BLAST hit track (called “D. mel proteins”) to “pack” to see the locations of all BLAST hits, and set the “RNA-Seq Coverage” track to “full” and the “TopHat junctions” track to “pack” to get a detailed view of these results.
    [Show full text]
  • Genes with 5' Terminal Oligopyrimidine Tracts Preferentially Escape Global Suppression of Translation by the SARS-Cov-2 NSP1 Protein
    Downloaded from rnajournal.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Genes with 5′ terminal oligopyrimidine tracts preferentially escape global suppression of translation by the SARS-CoV-2 Nsp1 protein Shilpa Raoa, Ian Hoskinsa, Tori Tonna, P. Daniela Garciaa, Hakan Ozadama, Elif Sarinay Cenika, Can Cenika,1 a Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA 1Corresponding author: [email protected] Key words: SARS-CoV-2, Nsp1, MeTAFlow, translation, ribosome profiling, RNA-Seq, 5′ TOP, Ribo-Seq, gene expression 1 Downloaded from rnajournal.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract Viruses rely on the host translation machinery to synthesize their own proteins. Consequently, they have evolved varied mechanisms to co-opt host translation for their survival. SARS-CoV-2 relies on a non-structural protein, Nsp1, for shutting down host translation. However, it is currently unknown how viral proteins and host factors critical for viral replication can escape a global shutdown of host translation. Here, using a novel FACS-based assay called MeTAFlow, we report a dose-dependent reduction in both nascent protein synthesis and mRNA abundance in cells expressing Nsp1. We perform RNA-Seq and matched ribosome profiling experiments to identify gene-specific changes both at the mRNA expression and translation level. We discover that a functionally-coherent subset of human genes are preferentially translated in the context of Nsp1 expression. These genes include the translation machinery components, RNA binding proteins, and others important for viral pathogenicity. Importantly, we uncovered a remarkable enrichment of 5′ terminal oligo-pyrimidine (TOP) tracts among preferentially translated genes.
    [Show full text]
  • Chromatin Remodeling in Epstein-Barr Virus After Induction of the Lytic Phase: Molecular Characterization of the Role of Bzlf1 and Its Interactions
    DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES DER FAKULTÄT FÜR BIOLOGIE DER LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN CHROMATIN REMODELING IN EPSTEIN-BARR VIRUS AFTER INDUCTION OF THE LYTIC PHASE: MOLECULAR CHARACTERIZATION OF THE ROLE OF BZLF1 AND ITS INTERACTIONS MARISA SCHÄFFNER Dissertation eingereicht am 30. April 2015 Erstgutachter: Prof. Dr. Dirk Eick Zweitgutachter: Prof. Dr. Heinrich Leonhardt Tag der mündlichen Prüfung: 26.11.2015 ERKLÄRUNG Hiermit erkläre ich, dass die vorliegende Arbeit mit dem Titel „CHROMATIN REMODELING IN EPSTEIN-BARR VIRUS AFTER INDUCTION OF THE LYTIC PHASE: MOLECULAR CHARACTERIZATION OF THE ROLE OF BZLF1 AND ITS INTERACTIONS“ von mir selbstständig und ohne unerlaubte Hilfsmittel angefertigt wurde, und ich mich dabei nur der ausdrücklich bezeichneten Quellen und Hilfsmittel bedient habe. Die Arbeit wurde weder in der jetzigen noch in einer abgewandelten Form einer anderen Prüfungskommission vorgelegt. München, 30. April 2015 Marisa Schäffner CONTENT 1. Introduction....................................................................................................................... 7 1.1 The architecture of chromatin.......................................................................................... 7 1.1.1 Nucleosomes are histone octamers ........................................................................ 7 1.1.1.1 Nucleosome components.................................................................................. 7 1.1.1.2 Histone modifications and histone variants.....................................................
    [Show full text]
  • An Investigation of ADAM-Like Decysin 1 in Macrophage-Mediated Inflammation and Crohn’S Disease
    An Investigation of ADAM-like Decysin 1 in Macrophage-mediated Inflammation and Crohn’s Disease By Nuala Roisin O’Shea A thesis submitted to UCL for the degree of Doctor of Philosophy Division of Medicine Declaration I, Nuala Roisin O’Shea, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract Crohn’s disease (CD) is now recognised as a defective host response to bacteria in genetically susceptible individuals. The role of innate immunity and impaired bacterial clearance are widely accepted. In this thesis the role of ADAM-like, Decysin-1 (ADAMDEC1) in macrophage-mediated inflammation and gut mucosal immunity is explored. Using transcriptomic analysis of monocyte derived macrophages (MDM) ADAMDEC1 was identified as grossly under expressed in a subset of patients with CD. ADAMDEC1 was found to be highly selective to the intestine, peripheral blood monocyte-derived and lamina propria macrophages. It was shown to be an inflammatory response gene, upregulated in response to bacterial antigens and inflammation. ADAMDEC1 was expressed in prenatal and germ free mice, demonstrating exposure to a bacterial antigen is not a prerequisite for expression. Adamdec1 knock out mice were used to investigate the role of ADAMDEC1 in vivo. Adamdec1-/- mice displayed an increased susceptibility to dextran sodium sulphate (DSS), Citrobacter rodentium and Salmonella typhimurium induced colitis. In Adamdec1-/- mice, bacterial translocation and systemic infection were increased in bacterial models of colitis. These results suggest that individuals with grossly attenuated expression of ADAMDEC1 may be at an increased risk of developing intestinal inflammation as a consequence of an impaired ability to handle enteric bacterial pathogens.
    [Show full text]
  • CDH12 Cadherin 12, Type 2 N-Cadherin 2 RPL5 Ribosomal
    5 6 6 5 . 4 2 1 1 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 A A A A A A A A A A A A A A A A A A A A C C C C C C C C C C C C C C C C C C C C R R R R R R R R R R R R R R R R R R R R B , B B B B B B B B B B B B B B B B B B B , 9 , , , , 4 , , 3 0 , , , , , , , , 6 2 , , 5 , 0 8 6 4 , 7 5 7 0 2 8 9 1 3 3 3 1 1 7 5 0 4 1 4 0 7 1 0 2 0 6 7 8 0 2 5 7 8 0 3 8 5 4 9 0 1 0 8 8 3 5 6 7 4 7 9 5 2 1 1 8 2 2 1 7 9 6 2 1 7 1 1 0 4 5 3 5 8 9 1 0 0 4 2 5 0 8 1 4 1 6 9 0 0 6 3 6 9 1 0 9 0 3 8 1 3 5 6 3 6 0 4 2 6 1 0 1 2 1 9 9 7 9 5 7 1 5 8 9 8 8 2 1 9 9 1 1 1 9 6 9 8 9 7 8 4 5 8 8 6 4 8 1 1 2 8 6 2 7 9 8 3 5 4 3 2 1 7 9 5 3 1 3 2 1 2 9 5 1 1 1 1 1 1 5 9 5 3 2 6 3 4 1 3 1 1 4 1 4 1 7 1 3 4 3 2 7 6 4 2 7 2 1 2 1 5 1 6 3 5 6 1 3 6 4 7 1 6 5 1 1 4 1 6 1 7 6 4 7 e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m
    [Show full text]
  • Supp Material.Pdf
    Simon et al. Supplementary information: Table of contents p.1 Supplementary material and methods p.2-4 • PoIy(I)-poly(C) Treatment • Flow Cytometry and Immunohistochemistry • Western Blotting • Quantitative RT-PCR • Fluorescence In Situ Hybridization • RNA-Seq • Exome capture • Sequencing Supplementary Figures and Tables Suppl. items Description pages Figure 1 Inactivation of Ezh2 affects normal thymocyte development 5 Figure 2 Ezh2 mouse leukemias express cell surface T cell receptor 6 Figure 3 Expression of EZH2 and Hox genes in T-ALL 7 Figure 4 Additional mutation et deletion of chromatin modifiers in T-ALL 8 Figure 5 PRC2 expression and activity in human lymphoproliferative disease 9 Figure 6 PRC2 regulatory network (String analysis) 10 Table 1 Primers and probes for detection of PRC2 genes 11 Table 2 Patient and T-ALL characteristics 12 Table 3 Statistics of RNA and DNA sequencing 13 Table 4 Mutations found in human T-ALLs (see Fig. 3D and Suppl. Fig. 4) 14 Table 5 SNP populations in analyzed human T-ALL samples 15 Table 6 List of altered genes in T-ALL for DAVID analysis 20 Table 7 List of David functional clusters 31 Table 8 List of acquired SNP tested in normal non leukemic DNA 32 1 Simon et al. Supplementary Material and Methods PoIy(I)-poly(C) Treatment. pIpC (GE Healthcare Lifesciences) was dissolved in endotoxin-free D-PBS (Gibco) at a concentration of 2 mg/ml. Mice received four consecutive injections of 150 μg pIpC every other day. The day of the last pIpC injection was designated as day 0 of experiment.
    [Show full text]