Tumor-Associated Antigen Prame Targets Tumor Suppressor P14/ARF for Degradation As the Receptor Protein of Crl2prame Complex

Total Page:16

File Type:pdf, Size:1020Kb

Tumor-Associated Antigen Prame Targets Tumor Suppressor P14/ARF for Degradation As the Receptor Protein of Crl2prame Complex Cell Death & Differentiation (2021) 28:1926–1940 https://doi.org/10.1038/s41418-020-00724-5 ARTICLE Tumor-associated antigen Prame targets tumor suppressor p14/ARF for degradation as the receptor protein of CRL2Prame complex 1,2,3 1,3 1 1,3 3 4,5,6 1 7,8 Wenjuan Zhang ● Lihui Li ● Lili Cai ● Yupei Liang ● Junfeng Xu ● Yue Liu ● Lisha Zhou ● Chen Ding ● 4,5,6 4,5,6 7,8 2,3 9 1 Yanmei Zhang ● Hu Zhao ● Jun Qin ● Zhimin Shao ● Wenyi Wei ● Lijun Jia Received: 16 March 2020 / Revised: 30 November 2020 / Accepted: 27 December 2020 / Published online: 27 January 2021 © The Author(s) 2021. This article is published with open access Abstract Protein Preferentially Expressed Antigen in Melanoma (Prame), a tumor-associated antigen, has been found to frequently overexpress in various cancers, which indicates advanced cancer stages and poor clinical prognosis. Moreover, previous reports noted that Prame functions as a substrate recognizing receptor protein of Cullin RING E3 ligases (CRLs) to mediate potential substrates degradation through Ubiquitin Proteasome System (UPS). However, none of the Prame specific substrate has been identified so far. In this study, proteomic analysis of RBX1-interacting proteins revealed p14/ARF, a well-known tumor suppressor, as a novel ubiquitin target of RBX1. Subsequently, immunoprecipitation and in vivo ubiquitination assay 1234567890();,: 1234567890();,: determined Cullin2-RBX1-Transcription Elongation Factor B Subunit 2 (EloB) assembled CRL2 E3 ligase complex to regulate the ubiquitination and subsequent degradation of p14/ARF. Finally, through siRNA screening, Prame was identified as the specific receptor protein responsible for recognizing p14/ARF to be degraded. Additionally, via bioinformatics analysis of TCGA database and clinical samples, Prame was determined to overexpress in tumor tissues vs. paired adjacent tissues and associated with poor prognosis of cancer patients. As such, downregulation of Prame expression significantly restrained cancer cell growth by inducing G2/M phase cell cycle arrest, which could be rescued by simultaneously knocking down of p14/ARF. Altogether, targeting overexpressed Prame in cancer cells inactivated RBX1-Cullin2-EloB-Prame E3 ligase (CRL2Prame) and halted p14/ARF degradation to restrain tumor growth by inducing G2/M phase cell cycle arrest. Introduction CRL is the largest multiunit E3 ubiquitin ligase family that regulates diverse biological processes through mediating the These authors contributed equally: Wenjuan Zhang, Lihui Li, Lili Cai ubiquitination and degradation of a variety of substrates Edited by V. D'Angiolella including signal transducers, cell cycle regulators, tran- scription factors, tumor suppressors and oncoproteins [1–3]. Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41418- The CRL complex contains one of Cullin proteins (Cullin 020-00724-5 1, 2, 3, 4A/4B, 5 and 7) that functions largely as molecular * Lijun Jia 5 Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan [email protected] University, Shanghai 200040, China 6 Research Center on Aging and Medicine, Fudan University, 1 Cancer Institute, Longhua Hospital, Shanghai University of Shanghai 2000402, China Traditional Chinese Medicine, Shanghai 200032, China 7 State Key Laboratory of Proteomics, Beijing Proteome Research 2 Department of Breast Surgery, Key Laboratory of Breast Cancer in Center, Beijing Institute of Radiation Medicine, Beijing 102206, Shanghai, Fudan University Shanghai Cancer Center, China Shanghai 200032, China 8 National Center for Protein Sciences, The PHOENIX Center, 3 Cancer Institute, Fudan University Shanghai Cancer Center, Beijing 102206, China Shanghai 200032, China 9 Department of Pathology, Beth Israel Deaconess Medical Center, 4 Department of Clinical Laboratory, Huadong Hospital, Fudan Harvard Medical School, Boston 02115 MA, USA University, Shanghai 200040, China Tumor-associated antigen Prame targets tumor suppressor p14/ARF for degradation as the receptor. 1927 scaffold, an adaptor protein alone or together with a of ARF is to suppress aberrant cell growth in response to substrate specific receptor protein at the N-terminus oncogenic insults in part through activating the p53 tumor and a RING protein (RBX1/Roc1 or SAG/Roc2) at the suppressive pathway [33–35]. By blocking ubiquitin ligases C-terminus [1–3]. Activation of CRL requires the expres- MDM2 (MDM2 proto-oncogene) and ARF-BP1/Mule sion of those essential components consisting CRL complex (ARF-binding protein1/Mcl1-ubiquitin ligase E3) mediated as well as neddylation modification on Cullin protein [4–6]. p53 degradation, ARF stabilizes and stimulates p53 activity Protein neddylation is a three-step enzymatic cascade, [36, 37]. ARF also has the ability to restrain cell growth which conjugates neural precursor cell expressed devel- independently of p53. To this end, p53-independent func- opmentally downregulated 8 (NEDD8), a ubiquitin-like tion of ARF is thought to attenuate ribosomal RNA tran- molecule, to targeted proteins and thus modulates multiple scription and processing in part by binding to NPM1 biological processes [7–11]. Once NEDD8 is attached to the (nucleophosmin1) [38, 39]. Moreover, ARF interacts with C-terminus lysine residue of Cullin [4, 6], the structure of and antagonizes the transcriptional function of Myc and CRL complex would change from a closed conformation to E2F1 independently of p53 [37]. ARF also prevents an open one via conformational rearrangement, which angiogenesis by limiting the translation of existing VEGFA subsequently leads to CRL activation [5, 12, 13]. mRNAs [40]. As an important tumor suppressor, the Prame is a tumor-associated antigen that was first iden- expression of ARF is tightly controlled at transcriptional tified in metastatic cutaneous melanoma and is subsequently and post-translational levels [41, 42]. Previous study found to frequently overexpress in various cancers, which reported that β-TrCP2, an F-box protein as well as a sub- also associates with advanced stages and poor clinical strate receptor of SKP1–Cullin1–F-box protein (SCF, a outcomes [14–16]. On the contrast, normal healthy tissues subfamily of CRL E3 ligases) complex, regulates the are not known to express Prame except for testis, ovary, degradation of p19/ARF, but not p14/ARF [43]. Therefore, placenta, adrenals and endometrium [17]. Because of its it is unclear whether CRL E3 ligase regulates p14/ARF expression profile, targeting Prame for cancer treatment and degradation. exploring it as a potential biomarker for diagnosis or We reported here that, by utilizing a non-biased pro- prognosis arouse great clinical interest in recent years teomics approach, p14/ARF is identified as a novel ubi- [15, 18, 19]. At the N-terminus of Prame, there is a BC box quitin substrate of CRL2Prame in human cancers. Moreover, or Cul-2 box mediating the interaction with Cullin2 substrate recognizing receptor protein Prame is determined [19, 20]. The C-terminus of Prame is the consensus to be overexpressed in human cancers and negatively cor- LXXLL-binding domain mediating the interaction with- related with patients’ prognosis. Targeting overexpressed potential substrates [19, 20]. However, substrate of Prame in human cancer cell lines blocks p14/ARF degra- CRL2Prame E3 ligase complex has not been reported so dation and induces G2/M phase cell cycle arrest, thus far [21]. inhibits cancer cell proliferation. Our study reveals a pre- As the core structure of CRL, RBX1 is a high evolu- viously unknown regulatory mechanism of p14/ARF in tionarily conserved RING-H2 finger domain-containing human cancer and validates CRL2Prame E3 ligase complex protein, which interacts with all Cullin family members as a promising anti-cancer target. except Cullin 5, and is required for CRL E3 ligase activity [22, 23]. In addition to function as the essential component of CRL, RBX1 also serves as a NEDD8 E3 ligase to pro- Results mote Cullin (1, 2/5, 3, 4A/4B and 7) neddylation [24, 25]. Previous studies reported that RBX1 is overexpressed in P14/ARF is identified as a novel RBX1-interacting several human cancers and associates with poor prognosis protein of cancer patients [26–28]. In contrast, downregulation of RBX1 expression triggers multiple death and growth arrest Given that RBX1, the core subunit of CRL E3 Ligases, has pathways to effectively suppress the malignant phenotypes been well identified as an oncogenic factor, we performed of cancer cells [26–28]. These findings highlight RBX1 as proteomic analysis of RBX1-interacting proteins to reveal an oncogenic factor during tumorigenesis and an attractive potential mechanisms underlying RBX1-regulating biolo- target for cancer therapy. gical effects. Immunoprecipitation with RBX1 Ab followed Alternate Reading Frame (ARF), known as p14/ARF in by mass spectrometry was performed to identify those human and p19/ARF in mouse, is encoded by Ink4a/ARF proteins specifically interacting with RBX1 in cells (CDKN2A) locus that also encodes the p16/INK4A tumor (Fig. 1A). As shown in Fig. 1B, those well-known RBX1- suppressor [29]. ARF null-mice develop spontaneous interacting proteins such as Cullins (Cullin 1–3, 4A, 4B, 7, tumors at an early age, demonstrating its tumor suppressive 9), corresponding adaptor proteins (Skp1, EloB/C, DDB1, functions [30–32]. One of the most well-defined functions etc.) and target recognizing subunits (substrate receptor 1928 W. Zhang et al. A. B. Cullin Adaptor Receptor proteins proteins
Recommended publications
  • Effects of Chemotherapy Agents on Circulating Leukocyte Populations: Potential Implications for the Success of CAR-T Cell Therapies
    cancers Review Effects of Chemotherapy Agents on Circulating Leukocyte Populations: Potential Implications for the Success of CAR-T Cell Therapies Nga T. H. Truong 1, Tessa Gargett 1,2,3, Michael P. Brown 1,2,3,† and Lisa M. Ebert 1,2,3,*,† 1 Translational Oncology Laboratory, Centre for Cancer Biology, University of South Australia and SA Pathology, North Terrace, Adelaide, SA 5000, Australia; [email protected] (N.T.H.T.); [email protected] (T.G.); [email protected] (M.P.B.) 2 Cancer Clinical Trials Unit, Royal Adelaide Hospital, Port Rd, Adelaide, SA 5000, Australia 3 Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia * Correspondence: [email protected] † These authors contributed equally. Simple Summary: CAR-T cell therapy is a new approach to cancer treatment that is based on manipulating a patient’s own T cells such that they become able to seek and destroy cancer cells in a highly specific manner. This approach is showing remarkable efficacy in treating some types of blood cancers but so far has been much less effective against solid cancers. Here, we review the diverse effects of chemotherapy agents on circulating leukocyte populations and find that, despite some negative effects over the short term, chemotherapy can favourably modulate the immune systems of cancer patients over the longer term. Since blood is the starting material for CAR-T cell Citation: Truong, N.T.H.; Gargett, T.; production, we propose that these effects could significantly influence the success of manufacturing, Brown, M.P.; Ebert, L.M.
    [Show full text]
  • The Retinoblastoma Tumor-Suppressor Gene, the Exception That Proves the Rule
    Oncogene (2006) 25, 5233–5243 & 2006 Nature Publishing Group All rights reserved 0950-9232/06 $30.00 www.nature.com/onc REVIEW The retinoblastoma tumor-suppressor gene, the exception that proves the rule DW Goodrich Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA The retinoblastoma tumor-suppressor gene (Rb1)is transmission of one mutationally inactivated Rb1 allele centrally important in cancer research. Mutational and loss of the remaining wild-type allele in somatic inactivation of Rb1 causes the pediatric cancer retino- retinal cells. Hence hereditary retinoblastoma typically blastoma, while deregulation ofthe pathway in which it has an earlier onset and a greater number of tumor foci functions is common in most types of human cancer. The than sporadic retinoblastoma where both Rb1 alleles Rb1-encoded protein (pRb) is well known as a general cell must be inactivated in somatic retinal cells. To this day, cycle regulator, and this activity is critical for pRb- Rb1 remains an exception among cancer-associated mediated tumor suppression. The main focus of this genes in that its mutation is apparently both necessary review, however, is on more recent evidence demonstrating and sufficient, or at least rate limiting, for the genesis of the existence ofadditional, cell type-specific pRb func- a human cancer. The simple genetics of retinoblastoma tions in cellular differentiation and survival. These has spawned the hope that a complete molecular additional functions are relevant to carcinogenesis sug- understanding of the Rb1-encoded protein (pRb) would gesting that the net effect of Rb1 loss on the behavior of lead to deeper insight into the processes of neoplastic resulting tumors is highly dependent on biological context.
    [Show full text]
  • DNA Microarrays (Gene Chips) and Cancer
    DNA Microarrays (Gene Chips) and Cancer Cancer Education Project University of Rochester DNA Microarrays (Gene Chips) and Cancer http://www.biosci.utexas.edu/graduate/plantbio/images/spot/microarray.jpg http://www.affymetrix.com Part 1 Gene Expression and Cancer Nucleus Proteins DNA RNA Cell membrane All your cells have the same DNA Sperm Embryo Egg Fertilized Egg - Zygote How do cells that have the same DNA (genes) end up having different structures and functions? DNA in the nucleus Genes Different genes are turned on in different cells. DIFFERENTIAL GENE EXPRESSION GENE EXPRESSION (Genes are “on”) Transcription Translation DNA mRNA protein cell structure (Gene) and function Converts the DNA (gene) code into cell structure and function Differential Gene Expression Different genes Different genes are turned on in different cells make different mRNA’s Differential Gene Expression Different genes are turned Different genes Different mRNA’s on in different cells make different mRNA’s make different Proteins An example of differential gene expression White blood cell Stem Cell Platelet Red blood cell Bone marrow stem cells differentiate into specialized blood cells because different genes are expressed during development. Normal Differential Gene Expression Genes mRNA mRNA Expression of different genes results in the cell developing into a red blood cell or a white blood cell Cancer and Differential Gene Expression mRNA Genes But some times….. Mutations can lead to CANCER CELL some genes being Abnormal gene expression more or less may result
    [Show full text]
  • FBXW8 (NM 153348) Human Recombinant Protein Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TP761689 FBXW8 (NM_153348) Human Recombinant Protein Product data: Product Type: Recombinant Proteins Description: Purified recombinant protein of Human F-box and WD repeat domain containing 8 (FBXW8), transcript variant 1, full length, with N-terminal HIS tag, expressed in E. coli, 50ug Species: Human Expression Host: E. coli Tag: N-His Predicted MW: 67.2 kDa Concentration: >50 ug/mL as determined by microplate BCA method Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining Buffer: 50mM Tris, pH8.0,8M Urea. Storage: Store at -80°C. Stability: Stable for 12 months from the date of receipt of the product under proper storage and handling conditions. Avoid repeated freeze-thaw cycles. RefSeq: NP_699179 Locus ID: 26259 UniProt ID: Q8N3Y1 RefSeq Size: 4871 Cytogenetics: 12q24.22 RefSeq ORF: 1794 Synonyms: FBW6; FBW8; FBX29; FBXO29; FBXW6 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 FBXW8 (NM_153348) Human Recombinant Protein – TP761689 Summary: This gene encodes a member of the F-box protein family, members of which are characterized by an approximately 40 amino acid motif, the F-box. The F-box proteins constitute one of the four subunits of ubiquitin protein ligase complex called SCFs (SKP1- cullin-F-box), which function in phosphorylation-dependent ubiquitination.
    [Show full text]
  • Synergistic Tumor Suppression by Combined Inhibition of Telomerase
    Synergistic tumor suppression by combined inhibition PNAS PLUS of telomerase and CDKN1A Romi Guptaa, Yuying Donga, Peter D. Solomona, Hiromi I. Wetterstenb, Christopher J. Chengc,d, JIn-Na Mina,e, Jeremy Hensonf,g, Shaillay Kumar Dograh, Sung H. Hwangi, Bruce D. Hammocki, Lihua J. Zhuj, Roger R. Reddelf,g, W. Mark Saltzmanc, Robert H. Weissb,k, Sandy Changa,e, Michael R. Greenl,1, and Narendra Wajapeyeea,1 Departments of aPathology and eLaboratory Medicine, Yale University School of Medicine, New Haven, CT 06510; iDepartment of Entomology and bDivision of Nephrology, Department of Internal Medicine, University of California, Davis, California 95616; Departments of cBiomedical Engineering and dMolecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511; fSydney Medical School, University of Sydney, NSW 2006, Australia; gCancer Research Unit, Children’s Medical Research Institute, Westmead, NSW 2145, Australia; hSingapore Institute of Clinical Sciences, Agency for Science Technology and Research (A*STAR), Brenner Center for Molecular Medicine, Singapore 117609; lHoward Hughes Medical Institute and jPrograms in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Massachusetts 01605; and kDepartment of Medicine, Mather VA Medical Center, Sacramento, CA 9565 Contributed by Michael R. Green, June 19, 2014 (sent for review June 8, 2014) Tumor suppressor p53 plays an important role in mediating growth dition to its role in cell cycle regulation, p21 has been shown in inhibition upon telomere dysfunction. Here, we show that loss of a variety of studies to repress apoptosis (9–13). the p53 target gene cyclin-dependent kinase inhibitor 1A (CDKN1A, Here,westudytheroleofp21inthe context of telomerase in- also known as p21WAF1/CIP1) increases apoptosis induction following hibition.
    [Show full text]
  • Full Text (PDF)
    ResearchArticle DNA Damage–Dependent Translocation of B23 and p19ARF Is Regulated by the Jun N-Terminal Kinase Pathway Orli Yogev,1 Keren Saadon,1 Shira Anzi,1 Kazushi Inoue,2 and Eitan Shaulian1 1Department of Experimental Medicine and Cancer Research, Hebrew University Medical School, Jerusalem, Israel and 2Departments of Pathology/Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, North Carolina Abstract arrest or apoptosis. However, increased tumor development in The dynamic behavior of the nucleolus plays a role in the triple knockout mice nullizygous for ARF, p53, and Mdm2 showed detection of and response to DNA damage of cells. Two that ARF acts also in a p53-independent manner (11). Some of the nucleolar proteins, p14ARF/p19ARF and B23, were shown to p53-independent activity is attributed to its ability to reduce rRNA translocate out of the nucleolus after exposure of cells to DNA- processing (12, 13) and inhibit oncogene-induced transcription damaging agents. This translocation affects multiple cellular (14, 15). functions, such as DNA repair, proliferation, and survival. In ARF augments p53 activity mainly in response to oncogenic this study, we identify a pathway and scrutinize the mecha- stress. Its expression is up-regulated in response to deregulated nisms leading to the translocation of these proteins after oncogenic activity due to elevated transcription governed by several transcription factors, such as E2F (16), c-myc (17), AP-1 exposure of cells to DNA-damaging agents. We show that redistribution of B23 and p19ARF after the exposure to (18), or by oncogenic Ras (19). A second mechanism regulating ARF activity involves the control of its subcellular localization (3).
    [Show full text]
  • BC-Box Protein Domain-Related Mechanism for VHL Protein Degradation
    BC-box protein domain-related mechanism for VHL protein degradation Maria Elena Pozzebona,1,2, Archana Varadaraja,1, Domenico Mattoscioa, Ellis G. Jaffrayb, Claudia Miccoloa, Viviana Galimbertic, Massimo Tommasinod, Ronald T. Hayb, and Susanna Chioccaa,3 aDepartment of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy; cSenology Division, European Institute of Oncology, 20141 Milan, Italy; dInternational Agency for Research on Cancer, World Health Organization, 69372 Lyon, France; and bCentre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, United Kingdom Edited by William G. Kaelin, Jr., Harvard Medical School, Boston, MA, and approved September 23, 2013 (received for review June 18, 2013) The tumor suppressor VHL (von Hippel–Lindau) protein is a sub- effects of the wild-type Gam1 protein (18, 20, 21), supporting the strate receptor for Ubiquitin Cullin Ring Ligase complexes (CRLs), idea that these effects may depend on Gam1 ability to act as containing a BC-box domain that associates to the adaptor Elongin substrate-receptor protein. B/C. VHL targets hypoxia-inducible factor 1α to proteasome- VHL (von Hippel–Lindau) protein is a cellular BC box-con- dependent degradation. Gam1 is an adenoviral protein, which also taining substrate receptor and associates with Cullin2-based E3 possesses a BC-box domain that interacts with the host Elongin B/C, ligases (22–24). VHL is a tumor suppressor, and its loss leads to – thereby acting as a viral substrate receptor. Gam1 associates with the von Hippel Lindau syndrome that often develops into renal both Cullin2 and Cullin5 to form CRL complexes targeting the host clear-cell carcinoma and other highly vascularized tumors (25, 26).
    [Show full text]
  • P14ARF Inhibits Human Glioblastoma–Induced Angiogenesis by Upregulating the Expression of TIMP3
    P14ARF inhibits human glioblastoma–induced angiogenesis by upregulating the expression of TIMP3 Abdessamad Zerrouqi, … , Daniel J. Brat, Erwin G. Van Meir J Clin Invest. 2012;122(4):1283-1295. https://doi.org/10.1172/JCI38596. Research Article Oncology Malignant gliomas are the most common and the most lethal primary brain tumors in adults. Among malignant gliomas, 60%–80% show loss of P14ARF tumor suppressor activity due to somatic alterations of the INK4A/ARF genetic locus. The tumor suppressor activity of P14ARF is in part a result of its ability to prevent the degradation of P53 by binding to and sequestering HDM2. However, the subsequent finding of P14ARF loss in conjunction with TP53 gene loss in some tumors suggests the protein may have other P53-independent tumor suppressor functions. Here, we report what we believe to be a novel tumor suppressor function for P14ARF as an inhibitor of tumor-induced angiogenesis. We found that P14ARF mediates antiangiogenic effects by upregulating expression of tissue inhibitor of metalloproteinase–3 (TIMP3) in a P53-independent fashion. Mechanistically, this regulation occurred at the gene transcription level and was controlled by HDM2-SP1 interplay, where P14ARF relieved a dominant negative interaction of HDM2 with SP1. P14ARF-induced expression of TIMP3 inhibited endothelial cell migration and vessel formation in response to angiogenic stimuli produced by cancer cells. The discovery of this angiogenesis regulatory pathway may provide new insights into P53-independent P14ARF tumor-suppressive mechanisms that have implications for the development of novel therapies directed at tumors and other diseases characterized by vascular pathology. Find the latest version: https://jci.me/38596/pdf Research article P14ARF inhibits human glioblastoma–induced angiogenesis by upregulating the expression of TIMP3 Abdessamad Zerrouqi,1 Beata Pyrzynska,1,2 Maria Febbraio,3 Daniel J.
    [Show full text]
  • Single Cell Mutational Profiling and Clonal Phylogeny in Cancer Nicola E
    Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press For GENOME RESEARCH (Methods) Single cell mutational profiling and clonal phylogeny in cancer Nicola E Potter – Institute of Cancer Research, UK Luca Ermini – Institute of Cancer Research, UK Elli Papaemmanuil – Wellcome Trust Sanger Institute, UK Giovanni Cazzaniga - Clinica Pediatrica, Italy Gowri Vijayaraghavan – Institute of Cancer Research, UK Ian Titley – Institute of Cancer Research, UK Anthony Ford – Institute of Cancer Research, UK Peter Campbell - Wellcome Trust Sanger Institute, UK Lyndal Kearney – Institute of Cancer Research, UK Mel Greaves – Institute of Cancer Research, UK Corresponding Author - Professor Mel Greaves FRS, Head, Haemato-Oncology Research Unit, Division of Molecular Pathology, Brookes Lawley Building, 15 Cotswold Road, Sutton, Surrey SM2 5NG T +44 (0)20 8722 4073 (direct) E [email protected] Running title: Genetic analysis of single cancer cells Keywords: Heterogeneity, Single cells, Cancer, Phylogeny 1 Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT The development of cancer is a dynamic evolutionary process in which intra-clonal, genetic diversity provides a substrate for clonal selection and a source of therapeutic escape. The complexity and topography of intra-clonal genetic architecture has major implications for biopsy-based prognosis and for targeted therapy. High depth, next generation sequencing (NGS) efficiently captures the mutational load of individual tumours or biopsies. But, being a snapshot portrait of total DNA, it disguises the fundamental features of sub-clonal variegation of genetic lesions and of clonal phylogeny. Single cell genetic profiling provides a potential resolution to this problem but methods developed to date all have limitations.
    [Show full text]
  • Expression of the POTE Gene Family in Human Ovarian Cancer Carter J Barger1,2, Wa Zhang1,2, Ashok Sharma 1,2, Linda Chee1,2, Smitha R
    www.nature.com/scientificreports OPEN Expression of the POTE gene family in human ovarian cancer Carter J Barger1,2, Wa Zhang1,2, Ashok Sharma 1,2, Linda Chee1,2, Smitha R. James3, Christina N. Kufel3, Austin Miller 4, Jane Meza5, Ronny Drapkin 6, Kunle Odunsi7,8,9, 2,10 1,2,3 Received: 5 July 2018 David Klinkebiel & Adam R. Karpf Accepted: 7 November 2018 The POTE family includes 14 genes in three phylogenetic groups. We determined POTE mRNA Published: xx xx xxxx expression in normal tissues, epithelial ovarian and high-grade serous ovarian cancer (EOC, HGSC), and pan-cancer, and determined the relationship of POTE expression to ovarian cancer clinicopathology. Groups 1 & 2 POTEs showed testis-specifc expression in normal tissues, consistent with assignment as cancer-testis antigens (CTAs), while Group 3 POTEs were expressed in several normal tissues, indicating they are not CTAs. Pan-POTE and individual POTEs showed signifcantly elevated expression in EOC and HGSC compared to normal controls. Pan-POTE correlated with increased stage, grade, and the HGSC subtype. Select individual POTEs showed increased expression in recurrent HGSC, and POTEE specifcally associated with reduced HGSC OS. Consistent with tumors, EOC cell lines had signifcantly elevated Pan-POTE compared to OSE and FTE cells. Notably, Group 1 & 2 POTEs (POTEs A/B/B2/C/D), Group 3 POTE-actin genes (POTEs E/F/I/J/KP), and other Group 3 POTEs (POTEs G/H/M) show within-group correlated expression, and pan-cancer analyses of tumors and cell lines confrmed this relationship. Based on their restricted expression in normal tissues and increased expression and association with poor prognosis in ovarian cancer, POTEs are potential oncogenes and therapeutic targets in this malignancy.
    [Show full text]
  • Monoclonal Antibody Therapeutics and Apoptosis
    Oncogene (2003) 22, 9097–9106 & 2003 Nature Publishing Group All rights reserved 0950-9232/03 $25.00 www.nature.com/onc Monoclonal antibody therapeutics and apoptosis Dale L Ludwig*,1, Daniel S Pereira1, Zhenping Zhu1, Daniel J Hicklin1 and Peter Bohlen1 1ImClone Systems Incorporated, 180 Varick Street, New York, NY 10014, USA The potential for disease-specific targeting and low including the generation of human antibody phage toxicity profiles have made monoclonal antibodies attrac- display libraries, human immunoglobulin-producing tive therapeutic drug candidates. Antibody-mediated transgenic mice, and directed affinity maturation meth- target cell killing is frequently associated with immune odologies, have further improved on the efficiency, effector mechanisms such as antibody-directed cellular specificity, and reactivity of monoclonal antibodies for cytotoxicity, but they can also be induced by apoptotic their target antigens (Schier et al., 1996; Mendez et al., processes. Antibody-directed mechanisms, including anti- 1997; de Haard et al., 1999; Hoogenboom and Chames, gen crosslinking, activation of death receptors, and 2000; Knappik et al., 2000). As a result, the isolation of blockade of ligand-receptor growth or survival pathways, high-affinity fully human monoclonal antibodies is now can elicit the induction of apoptosis in targeted cells. commonplace. Owing to their inherent specificity for a Depending on their mechanism of action, monoclonal particular target antigen, monoclonal antibodies pro- antibodies can induce targeted cell-specific killing alone or mise precise selectivity for target cells, avoiding non- can enhance target cell susceptibility to chemo- or reacting normal cells. radiotherapeutics by effecting the modulation of anti- To be effective as therapeutics for cancer, antibodies apoptotic pathways.
    [Show full text]
  • Oncogene Associated Cdna Microarray Analysis Shows PRAME
    J Clin Exp Hematopathol Vol. 49, No. 1, May 2009 Original Article Oncogene Associated cDNA Microarray Analysis Shows PRAME Gene Expression is a Marker for Response to Anthracycline Containing Chemotherapy in Patients with Diffuse Large B-cell Lymphoma Riko Kawano,1,3) Kennosuke Karube,3) Masahiro Kikuchi,2) Morishige Takeshita,2) Kazuo Tamura,1) Naokuni Uike,4) Tetsuya Eto,5) Koichi Ohshima,3) and Junji Suzumiya1,6) CHOP (cyclophosphamide, adriamycin, vincristine, and prednisolone) therapy achieves a response in more than 60% patients with diffuse large B-cell lymphomas (DLBCLs). However, DLBCL shows a heterogeneous response to chemotherapy, and some patients are refractory to CHOP therapy. This difference in response to therapy is most likely due to differences in biological characteristics. We used cDNA microarray analysis to identify genes differentially expressed in anthracycline containing chemotherapy-resistant DLBCLs (7 patients) compared with anthracycline containing chemotherapy-sensitive DLBCLs (6 patients). Nine genes on the cDNA chip showed increased expression in anthracycline containing chemotherapy- resistant patients. We chose the preferentially expressed antigen of melanoma (PRAME) gene because it showed the highest expression in anthracycline containing chemotherapy-resistant DLBCLs on the cDNA chip, and it has been linked to prognosis of hematological malignancies. We also examined the relationship between PRAME gene expression and progression-free survival (PFS) in 45 patients with DLBCL. The progression-free survival
    [Show full text]