Powerpc™ Microprocessor Common Hardware Reference Platform: a System Architecture
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 8 Instruction Set
Chapter 8 Instruction Set 80 80 This chapter lists the PowerPC instruction set in alphabetical order by mnemonic. Note that each entry includes the instruction formats and a quick reference ‘legend’ that provides such information as the level(s) of the PowerPC architecture in which the instruction may be found—user instruction set architecture (UISA), virtual environment architecture U (VEA), and operating environment architecture (OEA); and the privilege level of the V instruction—user- or supervisor-level (an instruction is assumed to be user-level unless the O legend specifies that it is supervisor-level); and the instruction formats. The format diagrams show, horizontally, all valid combinations of instruction fields; for a graphical representation of these instruction formats, see Appendix A, “PowerPC Instruction Set Listings.” The legend also indicates if the instruction is 64-bit, , 64-bit bridge, and/or optional. A description of the instruction fields and pseudocode conventions are also provided. For more information on the PowerPC instruction set, refer to Chapter 4, “Addressing Modes and Instruction Set Summary.” Note that the architecture specification refers to user-level and supervisor-level as problem state and privileged state, respectively. 8.1 Instruction Formats Instructions are four bytes long and word-aligned, so when instruction addresses are U presented to the processor (as in branch instructions) the two low-order bits are ignored. Similarly, whenever the processor develops an instruction address, its two low-order bits are zero. Bits 0–5 always specify the primary opcode. Many instructions also have an extended opcode. The remaining bits of the instruction contain one or more fields for the different instruction formats. -
Book E: Enhanced Powerpc™ Architecture
Book E: Enhanced PowerPC Architecture Version 1.0 May 7, 2002 Third Edition (Dec 2001) The following paragraph does not apply to the United Kingdom or any country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS DOCUMENT “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions; therefore, this statement may not apply to you. IBM does not warrant that the use of the information herein shall be free from third party intellectual property claims. IBM does not warrant that the contents of this document will meet your requirements or that the document is error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the document. IBM may make improvements and or changes in the product(s) and/or program(s) described in this document at any time. This document does not imply a commitment by IBM to supply or make generally available the product(s) described herein. No part of this document may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the written permission of IBM. Address comments about this document to: IBM Corporation Department B5H / Building 667 3039 Cornwallis Road P.O. Box 12195 Research Triangle Park, NC 27709 Portions of the information in this document may have been published previously in the following related documents: The PowerPC Architecture: A Specification for a New Family of RISC Processors, Second Edition (1994) The IBM PowerPC Embedded Environment: Architectural Specifications for IBM PowerPC Embedded Controllers, Second Edition (1998) IBM may have patents or pending patent applications covering the subject matter in this document. -
The Intel Microprocessors: Architecture, Programming and Interfacing Introduction to the Microprocessor and Computer
Microprocessors (0630371) Fall 2010/2011 – Lecture Notes # 1 The Intel Microprocessors: Architecture, Programming and Interfacing Introduction to the Microprocessor and computer Outline of the Lecture Evolution of programming languages. Microcomputer Architecture. Instruction Execution Cycle. Evolution of programming languages: Machine language - the programmer had to remember the machine codes for various operations, and had to remember the locations of the data in the main memory like: 0101 0011 0111… Assembly Language - an instruction is an easy –to- remember form called a mnemonic code . Example: Assembly Language Machine Language Load 100100 ADD 100101 SUB 100011 We need a program called an assembler that translates the assembly language instructions into machine language. High-level languages Fortran, Cobol, Pascal, C++, C# and java. We need a compiler to translate instructions written in high-level languages into machine code. Microprocessor-based system (Micro computer) Architecture Data Bus, I/O bus Memory Storage I/O I/O Registers Unit Device Device Central Processing Unit #1 #2 (CPU ) ALU CU Clock Control Unit Address Bus The figure shows the main components of a microprocessor-based system: CPU- Central Processing Unit , where calculations and logic operations are done. CPU contains registers , a high-frequency clock , a control unit ( CU ) and an arithmetic logic unit ( ALU ). o Clock : synchronizes the internal operations of the CPU with other system components using clock pulsing at a constant rate (the basic unit of time for machine instructions is a machine cycle or clock cycle) One cycle A machine instruction requires at least one clock cycle some instruction require 50 clocks. o Control Unit (CU) - generate the needed control signals to coordinate the sequencing of steps involved in executing machine instructions: (fetches data and instructions and decodes addresses for the ALU). -
Introduction to MS-DOS
1.Introduction to MS-DOS : MS-DOS (Microsoft Disk Operating System) was the Microsoft-marketed version of the first widely-installed operating system in personal computers. It was essentially the same operating system that (Bill Gates's) young company developed for IBM as Personal Computer - Disk Operating System in 1981. Most users of either DOS system simply referred to their system as Disk Operating System. Like PC-DOS, MS-DOS was (and still is) a non-graphical line-oriented command- driven operating system, with a relatively simple interface but not overly "friendly" user interface. Its prompt to enter a command looks like this: C:\> MS-DOS does not care about anything called an icon, wallpaper or screen saver. Rather than being considered as a Graphical User Interface (GUI) MS-DOS is what is known as a command-line interface. You type commands on what is called the command line. MS-DOS is a single-user, single-tasking computer operating system. In spite of its very small size and relative simplicity, it is one of the most successful operating systems that has been developed to date. In DOS, a file name consists of eight character followed by a 3 character file extension. The size of a file is restricted to a 4 byte file descriptor, which limits a file’s maximum size to approximately 4 billion characters. The first release of DOS could not read or write to disk drives so users could only read and write to a floppy disc. DOS was not a state of the art operating system, even for its time. -
Chapter 1. Origins of Mac OS X
1 Chapter 1. Origins of Mac OS X "Most ideas come from previous ideas." Alan Curtis Kay The Mac OS X operating system represents a rather successful coming together of paradigms, ideologies, and technologies that have often resisted each other in the past. A good example is the cordial relationship that exists between the command-line and graphical interfaces in Mac OS X. The system is a result of the trials and tribulations of Apple and NeXT, as well as their user and developer communities. Mac OS X exemplifies how a capable system can result from the direct or indirect efforts of corporations, academic and research communities, the Open Source and Free Software movements, and, of course, individuals. Apple has been around since 1976, and many accounts of its history have been told. If the story of Apple as a company is fascinating, so is the technical history of Apple's operating systems. In this chapter,[1] we will trace the history of Mac OS X, discussing several technologies whose confluence eventually led to the modern-day Apple operating system. [1] This book's accompanying web site (www.osxbook.com) provides a more detailed technical history of all of Apple's operating systems. 1 2 2 1 1.1. Apple's Quest for the[2] Operating System [2] Whereas the word "the" is used here to designate prominence and desirability, it is an interesting coincidence that "THE" was the name of a multiprogramming system described by Edsger W. Dijkstra in a 1968 paper. It was March 1988. The Macintosh had been around for four years. -
Unit 8 : Microprocessor Architecture
Unit 8 : Microprocessor Architecture Lesson 1 : Microcomputer Structure 1.1. Learning Objectives On completion of this lesson you will be able to : ♦ draw the block diagram of a simple computer ♦ understand the function of different units of a microcomputer ♦ learn the basic operation of microcomputer bus system. 1.2. Digital Computer A digital computer is a multipurpose, programmable machine that reads A digital computer is a binary instructions from its memory, accepts binary data as input and multipurpose, programmable processes data according to those instructions, and provides results as machine. output. 1.3. Basic Computer System Organization Every computer contains five essential parts or units. They are Basic computer system organization. i. the arithmetic logic unit (ALU) ii. the control unit iii. the memory unit iv. the input unit v. the output unit. 1.3.1. The Arithmetic and Logic Unit (ALU) The arithmetic and logic unit (ALU) is that part of the computer that The arithmetic and logic actually performs arithmetic and logical operations on data. All other unit (ALU) is that part of elements of the computer system - control unit, register, memory, I/O - the computer that actually are there mainly to bring data into the ALU to process and then to take performs arithmetic and the results back out. logical operations on data. An arithmetic and logic unit and, indeed, all electronic components in the computer are based on the use of simple digital logic devices that can store binary digits and perform simple Boolean logic operations. Data are presented to the ALU in registers. These registers are temporary storage locations within the CPU that are connected by signal paths of the ALU. -
Implementing Powerpc Linux on System I Platform
Front cover Implementing POWER Linux on IBM System i Platform Planning and configuring Linux servers on IBM System i platform Linux distribution on IBM System i Platform installation guide Tips to run Linux servers on IBM System i platform Yessong Johng Erwin Earley Rico Franke Vlatko Kosturjak ibm.com/redbooks International Technical Support Organization Implementing POWER Linux on IBM System i Platform February 2007 SG24-6388-01 Note: Before using this information and the product it supports, read the information in “Notices” on page vii. Second Edition (February 2007) This edition applies to i5/OS V5R4, SLES10 and RHEL4. © Copyright International Business Machines Corporation 2005, 2007. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . vii Trademarks . viii Preface . ix The team that wrote this redbook. ix Become a published author . xi Comments welcome. xi Chapter 1. Introduction to Linux on System i platform . 1 1.1 Concepts and terminology . 2 1.1.1 System i platform . 2 1.1.2 Hardware management console . 4 1.1.3 Virtual Partition Manager (VPM) . 10 1.2 Brief introduction to Linux and Linux on System i platform . 12 1.2.1 Linux on System i platform . 12 1.3 Differences between existing Power5-based System i and previous System i models 13 1.3.1 Linux enhancements on Power5 / Power5+ . 14 1.4 Where to go for more information . 15 Chapter 2. Configuration planning . 17 2.1 Concepts and terminology . 18 2.1.1 Processor concepts . -
A Developer's Guide to the POWER Architecture
http://www.ibm.com/developerworks/linux/library/l-powarch/ 7/26/2011 10:53 AM English Sign in (or register) Technical topics Evaluation software Community Events A developer's guide to the POWER architecture POWER programming by the book Brett Olsson , Processor architect, IBM Anthony Marsala , Software engineer, IBM Summary: POWER® processors are found in everything from supercomputers to game consoles and from servers to cell phones -- and they all share a common architecture. This introduction to the PowerPC application-level programming model will give you an overview of the instruction set, important registers, and other details necessary for developing reliable, high performing POWER applications and maintaining code compatibility among processors. Date: 30 Mar 2004 Level: Intermediate Also available in: Japanese Activity: 22383 views Comments: The POWER architecture and the application-level programming model are common across all branches of the POWER architecture family tree. For detailed information, see the product user's manuals available in the IBM® POWER Web site technical library (see Resources for a link). The POWER architecture is a Reduced Instruction Set Computer (RISC) architecture, with over two hundred defined instructions. POWER is RISC in that most instructions execute in a single cycle and typically perform a single operation (such as loading storage to a register, or storing a register to memory). The POWER architecture is broken up into three levels, or "books." By segmenting the architecture in this way, code compatibility can be maintained across implementations while leaving room for implementations to choose levels of complexity for price/performances trade-offs. The levels are: Book I. -
IBM Powerpc 970 (A.K.A. G5)
IBM PowerPC 970 (a.k.a. G5) Ref 1 David Benham and Yu-Chung Chen UIC – Department of Computer Science CS 466 PPC 970FX overview ● 64-bit RISC ● 58 million transistors ● 512 KB of L2 cache and 96KB of L1 cache ● 90um process with a die size of 65 sq. mm ● Native 32 bit compatibility ● Maximum clock speed of 2.7 Ghz ● SIMD instruction set (Altivec) ● 42 watts @ 1.8 Ghz (1.3 volts) ● Peak data bandwidth of 6.4 GB per second A picture is worth a 2^10 words (approx.) Ref 2 A little history ● PowerPC processor line is a product of the AIM alliance formed in 1991. (Apple, IBM, and Motorola) ● PPC 601 (G1) - 1993 ● PPC 603 (G2) - 1995 ● PPC 750 (G3) - 1997 ● PPC 7400 (G4) - 1999 ● PPC 970 (G5) - 2002 ● AIM alliance dissolved in 2005 Processor Ref 3 Ref 3 Core details ● 16(int)-25(vector) stage pipeline ● Large number of 'in flight' instructions (various stages of execution) - theoretical limit of 215 instructions ● 512 KB L2 cache ● 96 KB L1 cache – 64 KB I-Cache – 32 KB D-Cache Core details continued ● 10 execution units – 2 load/store operations – 2 fixed-point register-register operations – 2 floating-point operations – 1 branch operation – 1 condition register operation – 1 vector permute operation – 1 vector ALU operation ● 32 64 bit general purpose registers, 32 64 bit floating point registers, 32 128 vector registers Pipeline Ref 4 Benchmarks ● SPEC2000 ● BLAST – Bioinformatics ● Amber / jac - Structure biology ● CFD lab code SPEC CPU2000 ● IBM eServer BladeCenter JS20 ● PPC 970 2.2Ghz ● SPECint2000 ● Base: 986 Peak: 1040 ● SPECfp2000 ● Base: 1178 Peak: 1241 ● Dell PowerEdge 1750 Xeon 3.06Ghz ● SPECint2000 ● Base: 1031 Peak: 1067 Apple’s SPEC Results*2 ● SPECfp2000 ● Base: 1030 Peak: 1044 BLAST Ref. -
HOW FAST? the Current Intel® Core™ Processor Has 43,000,000% More Transistors Than the 4004 Processor
40yrs of Intel® microprocessor innovation Following Moore’s Law the whole way Intel co-founder Gordon Moore once made a famous prediction that transistor The world’s first microprocessor count for computer chips would —the Intel® 4004—was “born” in 1971, double every two years. 10 years before the first PC came along. Using Moore’s Law as a guiding principle, Intel has provided ever-increasing functionality, performance and energy efficiency to its products. Just think: What if the world had followed this golden rule the last 40 years? HOW FAST? The current Intel® Core™ processor has 43,000,000% more transistors than the 4004 processor. If a village with a 1971 population of 100 had grown as quickly, it would now be by far the largest city in the world. War and Peace? Wait a second. The 4004 processor executed 92,000 instructions per second, while today’s Intel® Core™ i7 processor can run 92 billion. If your typing had accelerated at that rate, you’d be able to type Tolstoy’s classic in just over 1 second. 0101010101010101… You would need 25,000 years to turn a light switch on and off 1.5 trillion times, but today’s processors can do that in less than a second. A PENNY SAVED… When released in 1981, the first well- equipped IBM PC cost about $11,250 in inflation-adjusted 2011 dollars. Today, much more powerful PCs are available in the $500 range (or even less). Fly me to the moon If space travel had come down in price as much as transistors have since 1971, the Apollo 11 mission, which cost around $355 million in 1969, would cost about as much as a latte. -
Are We There Yet? }} 27 | INDEX Acer Recommends Windows 8
thejournal.com April 2014 • Volume 41, No. 4 TRANSFORMING EDUCATION THROUGH IN THIS ISSUE TECHNOLOGY 9 | MAKERS IN CLASS A hands-on approach engages students, JOURNAL but how does project-based learning connect with standardized testing? 12 | ADAPTIVE LEARNING A tantalizing ed tech buzzword is moving closer to becoming a classroom reality. 17 | DIGITAL CITIZENSHIP The Digital Driver’s License is helping students prove that they can navigate the dangers of the Internet. 20 | HARDWARE CHOICES Despite the growth of mobile learning, desktops still play five important roles in the 21st century classroom. 23 | SPREADING STEM Private and public sector groups are joining the effort to steer students toward tech education and careers. DEPARTMENTS 3 | OUR SPACE Common Core’s numbers game Adaptive 4 | HERE & NOW Good news from PISA scores Learning: 7 | PRODUCT ROUNDUP New projectors and more 8 | INNOVATOR Joe Mazza, connected educator Are We There Yet? }} 27 | INDEX Acer recommends Windows 8. Explore More Sleeping Beauty. Beautiful and serene in appearance, Mount Fuji is actually considered an active volcano, last erupting in the early 1700s. Some apps sold separately; vary by market. Make learning possible everywhere. Give your students the Iconia W510 and the world becomes their classroom. It’s modern technology that’s nimble, powerful and easy to use. And with Educare, you’ll have peace of mind knowing Acer will be there for you with dedicated service you can depend on for years to come. www.exploremorewithacer.com ©2014. All rights reserved. Acer America Corporation. Information and prices are subject to change without notice. Acer and Iconia Tab are registered trademarks of Acer Inc. -
Trends in Processor Architecture
A. González Trends in Processor Architecture Trends in Processor Architecture Antonio González Universitat Politècnica de Catalunya, Barcelona, Spain 1. Past Trends Processors have undergone a tremendous evolution throughout their history. A key milestone in this evolution was the introduction of the microprocessor, term that refers to a processor that is implemented in a single chip. The first microprocessor was introduced by Intel under the name of Intel 4004 in 1971. It contained about 2,300 transistors, was clocked at 740 KHz and delivered 92,000 instructions per second while dissipating around 0.5 watts. Since then, practically every year we have witnessed the launch of a new microprocessor, delivering significant performance improvements over previous ones. Some studies have estimated this growth to be exponential, in the order of about 50% per year, which results in a cumulative growth of over three orders of magnitude in a time span of two decades [12]. These improvements have been fueled by advances in the manufacturing process and innovations in processor architecture. According to several studies [4][6], both aspects contributed in a similar amount to the global gains. The manufacturing process technology has tried to follow the scaling recipe laid down by Robert N. Dennard in the early 1970s [7]. The basics of this technology scaling consists of reducing transistor dimensions by a factor of 30% every generation (typically 2 years) while keeping electric fields constant. The 30% scaling in the dimensions results in doubling the transistor density (doubling transistor density every two years was predicted in 1975 by Gordon Moore and is normally referred to as Moore’s Law [21][22]).