The Structure of a Social Science Collaboration Network: Disciplinary Cohesion from 1963 to 1999

Total Page:16

File Type:pdf, Size:1020Kb

The Structure of a Social Science Collaboration Network: Disciplinary Cohesion from 1963 to 1999 #1471-ASR 69:2 filename:69204-moody The Structure of a Social Science Collaboration Network: Disciplinary Cohesion from 1963 to 1999 James Moody The Ohio State University Has sociology become more socially integrated over the last 30 years? Recent work in the sociology of knowledge demonstrates a direct linkage between social interaction patterns and the structure of ideas, suggesting that scientific collaboration networks affect scientific practice. I test three competing models for sociological collaboration networks and find that a structurally cohesive core that has been growing steadily since the early 1960s characterizes the discipline’s coauthorship network. The results show 518-456-2041 • FAX 518-456-0109 • E-MAIL: [email protected] 518-456-2041 • FAX INC. MARCZAK BUSINESS SERVICES, that participation in the sociology collaboration network depends on research specialty and that quantitative work is more likely to be coauthored than non-quantitative work. However, structural embeddedness within the network core given collaboration is largely unrelated to specialty area. This pattern is consistent with a loosely overlapping specialty structure that has potentially integrative implications for theoretical development in sociology. Science, carved up into a host of detailed stud- ecent work in the sociology of knowledge ies that have no link with one another, no longer R|suggests that the set of ideas one holds to forms a solid whole. be true is largely a function of the group of Durkheim, 1933 [1984] p. 294 people one interacts with and references to authorities recognized by the group. This claim has been demonstrated in small groups (Martin 2002) and is consistent with literature on the Direct correspondence to James Moody, The Ohio social production of scientific knowledge State University, Department of Sociology, 372 (Babchuk et al. 1999; Crane 1972; Friedkin Bricker Hall, 190 N. Oval Mall, Columbus, OH, 1998; Kuhn 1970). Scientists embedded in col- 43210 ([email protected]). This work is laboration networks share ideas, use similar supported in part by NSF ITR/SOC-0080860 and techniques, and otherwise influence each other’s the Ohio State Initiative in Population Research. The SECOND PROOF work. Such effects have been studied in specif- author thanks jimi adams and Sara Bradley for help ic settings (Friedkin 1998) and implicated in lab with data collection and manuscript preparation; and ethnographies (Collins 1998; Owen-Smith Mark Handcock, Mark Newman, and Paul von Hipple for help with data or analysis. The author thanks the 2001), but this social interaction structure has following people for reading prior versions of the not been explored for entire disciplines. paper and providing helpful comments: Art Alderson, Although we might expect the link between Susanne Bunn, Ben Cornwell, Bill Form, David networks and ideas to be strongest in small Jacobs, Lisa Keister, Dan Lichter, Dan McFarland, groups, a logical extension suggests that long- Jason Owen-Smith, Woody Powell, and the partici- term trends in scientific work might depend on pants of the Stanford University SCANCOR semi- the broader pattern of disciplinary social net- nar and the University of Chicago Business School works.1 Organizations and Markets Workshop. The author thanks the ASR reviewers and editors (Camic and Wilson) for being extremely helpful; and reviewer John A. Stewart, in particular, for providing numer- 1 Much literature on citation networks suggests ous suggestions that improved this paper. similar subgroup effects and captures one facet of the AMERICAN SOCIOLOGICAL REVIEW, 2004, VOL. 69 (April:213–238) #1471-ASR 69:2 filename:69204-moody 214—–AMERICAN SOCIOLOGICAL REVIEW Commentaries on sociology often describe a shapes the short-run course of a discipline lack of theoretical consensus without reference (Allison et al. 1982; Cole and Cole 1973; Merton to social cohesion, though the two should be 1968; Zuckerman 1977; see also Crane 1972). linked because structural cohesion is thought to Scientific stars attract a disproportionate level of generate coherent idea systems (Durkheim research funding, high-profile appointments, [1933] 1984; Hagstrom 1965; Hargens 1975; and many students and collaborators. Star sys- Martin 2002; Moody and White 2003; Whitley tems suggest an unequal distribution of involve- 2000). A network influence model suggests that ment in collaboration networks. Finally, changes if scientists exchange ideas, research questions, in research practice might interact with perme- methods, and implicit rules for evaluating evi- able theoretical boundaries to allow wide-rang- dence with their collaborators, then structural- ing collaborations that are not constrained by ly cohesive social networks should generate research specialty (Abbott 2001; Hudson 1996). consensus, at least with respect to problems For example, an increase in sophisticated quan- and methods if not on particular claims about titative methods, which are (at least on the sur- the empirical world (Friedkin 1998).2 This work face) substantively neutral, would allow suggests that understanding theoretical diversity collaboration between people with general tech- within a discipline requires understanding its nical skills and those working on particular collaboration structure. empirical questions. This process suggests a 518-456-0109 • E-MAIL: [email protected] 518-456-2041 • FAX INC. MARCZAK BUSINESS SERVICES, While a direct mapping from the idea space wide-reaching structurally cohesive collabora- to network structure is often not transparent, tion network. claims about theoretical consensus in sociology In this paper, I describe the structure of a suggest three distinct collaboration structures. social science collaboration network over time, and I link this structure to claims about social sci- First, many have noted that the discipline has no 3 overarching theory but, instead, is theoretically entific practice. I first review literature on net- fractured and composed of multiple discon- work structure and idea spaces, and link three nected research specialties. Authors argue that descriptions of the current state of sociological reactions against functionalism, rapid growth, practice to hypotheses about the structure of the institutional pressures for productivity, changing network. I then describe collaboration trends and examine explanations for increasing col- research techniques, and/or changes in the fund- laboration over time. After describing the data ing environment for social sciences have inter- source and measures, I first model participation acted to generate self-contained research in the collaboration network and then model specialties, with unique research techniques and position within the network given participation. standards for the evaluation of evidence (Collins I note two key findings. First, specialty areas dif- 2001; Davis 2001; Lieberson and Lynn 2002; fer in the likelihood of collaboration, and much Stinchcombe 2001). This description suggests a (but not all) of this difference is due to use of highly clustered social network. Second, others quantitative methods. Second, the resulting col- have argued that scientific production depends laboration network has a large structurally cohe- crucially on a few scientific stars, whose work SECOND PROOF sive core that has been growing steadily since the late 1960s (both absolutely and relative to ran- dom expectation given growth in the discipline). intellectual integration of scientific disciplines (Crane While research specialty predicts having col- and Small 1992; Hargens 2000). Citation networks laborated, specialty is only weakly related to are not social networks, however, and thus do not cap- ture the informal interaction structure described in position within the collaboration network, sug- work on social integration. Recent work has looked gesting a relatively equal representation of spe- at the global structure of large-scale collaboration net- cialties across the disciplinary network. works in the natural sciences (Newman 2001), but has not attempted to explain the features of such networks with respect to scientific practice. 3 While the majority of all authors in the data I use 2 That is, scientific competition for distinction are sociologists, the database does cover sociologi- should produce a race toward new empirical expla- cally relevant work produced by other disciplines. As nations, but to gain status within a field those claims such, while it is technically more accurate to speak must conform to the general rules of evidence cur- of “a social science” collaboration network, I will rent within the scientific network. often use “sociology” for simplicity. #1471-ASR 69:2 filename:69204-moody STRUCTURE OF SOCIAL SCIENCE COLLABORATION NETWORK—–215 SOCIAL AND THEORETICAL sciences from descriptions of scientific practice INTEGRATION and speculate about the potential for scientific consensus in a field based on the observed col- NETWORK STRUCTURES AND IDEA SPACES laboration pattern. There is increasing interest in linking the dis- tribution of cultural ideas and practices to the THEORY AND PRACTICE IN SOCIAL SCIENCE interaction structure of social communities (Bearman 1993; Burt 1987; Crane 1972; Martin THEORETICAL FRAGMENTATION. There is much lit- 2002; Swidler and Arditi 1994). Theorists have erature on the lack of theoretical consensus in sociology (Abbott 2000; Collins 1986; Connell long argued that one’s ideas are a function of 5 position in a social setting,
Recommended publications
  • Aaron Clauset
    Aaron Clauset Contact Department of Computer Science voice: 303{492{6643 Information University of Colorado at Boulder fax: 303{492{2844 430 UCB email: [email protected] Boulder CO, 80309-0430 USA web: www.santafe.edu/∼aaronc Research Network science (methods, theories, applications); Data science, statistical inference, machine learn- Interests ing; Models and simulations; Collective dynamics and complex systems; Rare events, power laws and forecasting; Computational social science; Computational biology and biological computation. Education Ph.D. Computer Science, University of New Mexico (with distinction) 2002 { 2006 B.S. Physics, Haverford College (with honors and concentration in Computer Science) 1997 { 2001 Academic Associate Professor, Computer Science Dept., University of Colorado, Boulder 2018 { present Positions Core Faculty, BioFrontiers Institute, University of Colorado, Boulder 2010 { present External Faculty, Santa Fe Institute 2012 { present Affiliated Faculty, Ecology & Evo. Biology Dept., University of Colorado, Boulder 2011 { present Affiliated Faculty, Applied Mathematics Dept., University of Colorado, Boulder 2012 { present Affiliated Faculty, Information Dept., University of Colorado, Boulder 2015 { present Assistant Professor, Computer Science Dept., University of Colorado, Boulder 2010 { 2018 Omidyar Fellow, Santa Fe Institute 2006 { 2010 Editorial Deputy Editor, Science Advances, AAAS 2017 { present Positions Associate Editor, Science Advances, AAAS 2014 { 2017 Associate Editor, Journal of Complex Networks, Oxford University Press 2012 { 2017 Honors & Top 20 Teachers, College of Engineering, U. Colorado, Boulder 2016 Awards Erd}os-R´enyi Prize in Network Science 2016 (Selected) NSF CAREER Award 2015 { 2020 Kavli Fellow 2014 Santa Fe Institute Public Lecture Series (http://bit.ly/I6t9gf) 2010 Graduation Speaker, U. New Mexico School of Engineering Convocation 2006 Outstanding Graduate Student Award, U.
    [Show full text]
  • Cristopher Moore
    Cristopher Moore Santa Fe Institute Santa Fe, NM 87501 [email protected] August 23, 2021 1 Education Born March 12, 1968 in New Brunswick, New Jersey. Northwestern University, B.A. in Physics, Mathematics, and the Integrated Science Program, with departmental honors in all three departments, 1986. Cornell University, Ph.D. in Physics, 1991. Philip Holmes, advisor. Thesis: “Undecidability and Unpredictability in Dynamical Systems.” 2 Employment Professor, Santa Fe Institute 2012–present Professor, Computer Science Department with a joint appointment in the Department of Physics and Astronomy, University of New Mexico, Albuquerque 2008–2012 Associate Professor, University of New Mexico 2005–2008 Assistant Professor, University of New Mexico 2000–2005 Research Professor, Santa Fe Institute 1998–1999 City Councilor, District 2, Santa Fe 1994–2002 Postdoctoral Fellow, Santa Fe Institute 1992–1998 Lecturer, Cornell University Spring 1991 Graduate Intern, Niels Bohr Institute/NORDITA, Copenhagen Summers 1988 and 1989 Teaching Assistant, Cornell University Physics Department Fall 1986–Spring 1990 Computer programmer, Bio-Imaging Research, Lincolnshire, Illinois Summers 1984–1986 3 Other Appointments Visiting Researcher, Microsoft Research New England Fall 2019 Visiting Professor, Ecole´ Normale Sup´erieure October–November 2016 Visiting Professor, Northeastern University October–November 2015 Visiting Professor, University of Michigan, Ann Arbor September–October 2005 Visiting Professor, Ecole´ Normale Sup´erieure de Lyon June 2004 Visiting Professor,
    [Show full text]
  • Curriculum Vitae of Danny Dorling
    January 2021 1993 to 1996: British Academy Fellow, Department of Geography, Newcastle University 1991 to 1993: Joseph Rowntree Foundation Curriculum Vitae Fellow, Many Departments, Newcastle University 1987 to 1991: Part-Time Researcher/Teacher, Danny Dorling Geography Department, Newcastle University Telephone: +44(0)1865 275986 Other Posts [email protected] skype: danny.dorling 2020-2023 Advisory Board Member: ‘The political economies of school exclusion and their consequences’ (ESRC project ES/S015744/1). Current appointment: Halford Mackinder 2020-Assited with the ‘Time to Care’ Oxfam report. Professor of Geography, School of 2020- Judge for data visualisation competition Geography and the Environment, The Nuffield Trust, the British Medical Journal, the University of Oxford, South Parks Road, British Medical Association and NHS Digital. Oxford, OX1 3QY 2019- Judge for the annual Royal Geographical th school 6 form essay competition. 2019 – UNDP (United Nations Development Other Appointments Programme) Human Development Report reviewer. 2019 – Advisory Broad member: Sheffield Visiting Professor, Department of Sociology, University Nuffield project on an Atlas of Inequality. Goldsmiths, University of London, 2013-2016. 2019 – Advisory board member - Glasgow Centre for Population Health project on US mortality. Visiting Professor, School of Social and 2019- Editorial Board Member – Bristol University Community Medicine, University of Bristol, UK Press, Studies in Social Harm Book Series. 2018 – Member of the Bolton Station Community Adjunct Professor in the Department of Development Partnership. Geography, University of Canterbury, NZ 2018-2022 Director of the Graduate School, School of Geography and the Environment, Oxford. 2018 – Member of the USS review working group of the Council of the University of Oxford.
    [Show full text]
  • A Preferential Attachment Paradox: How Preferential Attachment Combines with Growth to Produce Networks with Log-Normal In-Degree Distributions
    A Preferential Attachment Paradox: How Preferential Attachment Combines with Growth to Produce Networks with Log-normal In-degree Distributions Paul Sheridan1,* and Taku Onodera2 1Hirosaki University, Department of Active Life Promotion Science, Hirosaki, 036-8562, Japan 2The University of Tokyo, Institute of Medical Science, Human Genome Center, Tokyo, 108-8639, Japan *[email protected] ABSTRACT Every network scientist knows that preferential attachment combines with growth to produce networks with power-law in-degree distributions. How, then, is it possible for the network of American Physical Society journal collection citations to enjoy a log-normal citation distribution when it was found to have grown in accordance with preferential attachment? This anomalous result, which we exalt as the preferential attachment paradox, has remained unexplained since the physicist Sidney Redner first made light of it over a decade ago. Here we propose a resolution. The chief source of the mischief, we contend, lies in Redner having relied on a measurement procedure bereft of the accuracy required to distinguish preferential attachment from another form of attachment that is consistent with a log-normal in-degree distribution. There was a high-accuracy measurement procedure in use at the time, but it would have have been difficult to use it to shed light on the paradox, due to the presence of a systematic error inducing design flaw. In recent years the design flaw had been recognised and corrected. We show that the bringing of the newly corrected measurement procedure to bear on the data leads to a resolution of the paradox. Introduction The physicist Sidney Redner reported a rather curious anomaly in a decade-old study on the citation statistics of the American Physical Society (APS) journal collection1.
    [Show full text]
  • Network Modularity Controls the Speed of Information Diffusion
    Network Modularity Controls the Speed of Information Diffusion 1 2 1 3, Hao Peng, Azadeh Nematzadeh, Daniel M. Romero, and Emilio Ferrara ∗ 1School of Information, University of Michigan 2S&P Global 3Information Sciences Institute, University of Southern California (Dated: July 31, 2020) The rapid diffusion of information and the adoption of social behaviors are of critical importance in situations as diverse as collective actions, pandemic prevention, or advertising and marketing. Although the dynamics of large cascades have been extensively studied in various contexts, few have systematically examined the impact of network topology on the efficiency of information diffusion. Here, by employing the linear threshold model on networks with communities, we demonstrate that a prominent network feature—the modular structure—strongly affects the speed of information diffusion in complex contagion. Our simulations show that there always exists an optimal network modularity for the most efficient spreading process. Beyond this critical value, either a stronger or a weaker modular structure actually hinders the diffusion speed. These results are confirmed by an analytical approximation. We further demonstrate that the optimal modularity varies with both the seed size and the target cascade size, and is ultimately dependent on the network under investigation. We underscore the importance of our findings in applications from marketing to epidemiology, from neuroscience to engineering, where the understanding of the structural design of complex systems focuses on the efficiency of information propagation. I. INTRODUCTION and viral marketing [13, 22]. However, some studies re- vealed that the threshold model is more applicable to the The spread of information in complex networks con- spread of risky or contentious social behaviors for which trols or modulates fundamental processes that can have each additional exposure increases the likelihood of adop- local effects on individual actors and groups thereof, and tion [1, 5, 25, 31, 37].
    [Show full text]
  • Small-World File-Sharing Communities
    Small-World File-Sharing Communities Adriana Iamnitchi, Matei Ripeanu, Ian Foster Department of Computer Science The University of Chicago Chicago, IL 60637 {anda, matei, foster}@cs.uchicago.edu Abstract— Web caches, content distribution networks, ration for designing efficient mechanisms for large-scale, peer-to-peer file sharing networks, distributed file systems, dynamic, self-organizing resource-sharing communities. and data grids all have in common that they involve a We look at these communities in a novel way: we community of users who generate requests for shared study the relationships that form among users based on data. In each case, overall system performance can be the data in which they are interested. We capture and improved significantly if we can first identify and then quantify these relationships by modeling the community exploit interesting structure within a community’s access patterns. To this end, we propose a novel perspective on file as a data-sharing graph. To this end, we propose a sharing based on the study of the relationships that form new structure that captures common user interests in among users based on the files in which they are interested. data (Section III) and justify its utility with studies We propose a new structure that captures common user on three data-distribution systems (Section IV): a high- interests in data—the data-sharing graph— and justify its energy physics collaboration, the Web, and the Kazaa utility with studies on three data-distribution systems: a peer-to-peer network. We find small-world patterns in the high-energy physics collaboration, the Web, and the Kazaa data-sharing graphs of all three communities (SectionV).
    [Show full text]
  • Annual Report 2010-11
    Institute for the Study of the Americas Annual Report 2010-2011 Mission and Aims Institute for the Study of the Americas Annual Report 2010-2011 Table of Contents Governance 2 Te Institute was founded in August 2004 through a merger of the Institute of Latin American Studies (ILAS) with Staf List 3 the Institute of United States Studies (IUSS), both of which had been founded in 1965 at 31 Tavistock Square. Like its predecessors, the new Institute forms part of the University of London’s School of Advanced Study. Director’s Report 4 ISA occupies a unique position at the core of academic study of the region in the UK. Internationally recognised as a centre of excellence for research and research facilitation, ISA also provides resources to the wider academic Academic Staf Profles 8 community, serving and strengthening national networks of North Americanist, Latin Americanist and Caribbeanist Fellowships 20 scholars. Te Institute actively maintains and builds ties with cultural, diplomatic and business organisations with interests in the Americas and, as part of the School of Advanced Study within the University of London, benefts from Events 25 academic opportunities, facilities and stimulation across and between a wide range of subject felds in the humanities and social sciences. Postgraduate Programmes 36 Te Council of the University of London approved the establishment of ISA on the understanding that it would be dedicated to teaching and research, not just on the USA and Latin America, but to the Americas as a whole, with Publications 40 proper attention to Canada and the Caribbean. ISA will uphold the dedication to area studies and multi-disciplinarity that animated its predecessors.
    [Show full text]
  • Complex Systems 535/Physics 508: Network Theory
    Complex Systems 535/Physics 508: Network Theory Fall 2017 Time: Tuesday and Thursday, 10–11:30am Room: 1028 Dana Building Instructor: Mark Newman Office: 322 West Hall Office hours: Mondays 2–4pm Email: [email protected] Web site: Everything on this information sheet, along with a complete syllabus for the semester, can be found on the course web site: http://www.umich.edu/˜mejn/courses/2017/cscs535 Description: This course will introduce and develop the mathematical theory of networks, particularly social and technologi- cal networks, with applications to network-driven phenomena in the Internet, network resilience, search engines, epidemiology, and many other areas. Topics covered will include experimental studies of social, technological, and biological networks; methods and computer algorithms for the analysis and interpretation of network data; graph theory; models of networks including random graphs and preferential attachment models; community structure; percolation theory; network search. Requirements: Students should have studied calculus and linear algebra before taking the course, and should in particular be comfortable with the solution of linear differential equations and with the calculation and properties of eigenvalues and eigenvectors of matrices. In addition, a moderate portion of the course, perhaps four or five lectures, will deal with computer methods for studying networks. Some experience with computer programming will be a great help in understanding this part of the course. Coursework: There will be weekly graded problem sets, consisting both of theory questions and of problems demonstrating applications of theory to example networks. There will be three midterm exams but no final. Grade will be 25% on the homeworks and 25% on each of the midterms.
    [Show full text]
  • Introduction to Complex Networks 1.1.- What Is a (Complex) Network? 1.2.- Types of Networks 1.3.- Basic Concepts About Networks 1.4.- Brief Historical Background
    Applications of Complex Networks Javier M. Buldú http://www.complex.etsit.urjc.es/jmbuldu Complex Systems Group Universidad Rey Juan Carlos (Madrid, Spain) Applications of Complex Networks Lagos de Moreno, México http://www.complex.etsit.urjc.es/ Applications of Complex Networks OUTLINE OF THE COURSE 0.- Bibliography 1.- Introduction to Complex networks 1.1.- What is a (complex) network? 1.2.- Types of networks 1.3.- Basic concepts about networks 1.4.- Brief historical background 2.- Applications of Complex Networks 2.1.- Social Sciences 2.2.- Technological Networks 2.3.- Biological Networks 3.- Future trends (and paranoias!) Applications of Complex Networks (3 de 58) 0.- BIBLIOGRAPHY Review Articles about Complex Networks: M. E. J. Newman, The structure and function of complex networks, SIAM Reviews, 45(2): 167-256, 2003. ( available at arXiv.org/cond-mat/0303516) S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Complex networks: Structure and dynamics, Phys. Rep. 424, 175 (2006). R. Albert and A.-L. Barabasi, Statistical Mechanics of Complex Networks, Rev. Mod. Phys., 74, 47-97 (2002). (available at arXiv.org/cond-mat/0106096) M. Newman, D. Watts, A.-L. Barabási, The Structure and Dynamics of Networks, Princeton University Press, 2006. J.A. Almendral: “Dynamics and Topology in Complex Networks”, Ph.D. Thesis. http://complex.escet.urjc.es/pdfs/almendral_tesis.pdf Review articles about REAL complex Networks: Luciano da F.Costa et al., Analyzing and Modeling Real-World Phenomena with Complex Networks: A Survey of Applications. (available at http://arxiv.org/abs/0711.3199) Aaron Clauset et al., Power-law distributions in empirical data, arXiv:0706.1062v2.
    [Show full text]
  • Complex Systems 535/Physics 508: Network Theory
    Complex Systems 535/Physics 508: Network Theory Fall 2015 Time: Tuesday and Thursday, 10–11:30am Room: 1060 East Hall Instructor: Mark Newman Office: 322 West Hall Office hours: Mondays 2–4pm Email: [email protected] Web site: Everything on this information sheet, along with a complete syllabus for the semester, can be found on the course web site: http://umich.edu/˜mejn/courses/2015/cscs535 Description: This course will introduce and develop the mathematical theory of networks, particularly social and techno- logical networks, with applications to network-driven phenomena in the Internet, network resilience, search engines, epidemiology, and many other areas. Topics covered will include experimental studies of social, tech- nological, and biological networks; methods and computer algorithms for the analysis and interpretation of network data; graph theory; models of networks including random graphs and preferential attachment models; spectral methods and random matrix theory; maximum likelihood methods; percolation theory; network search. Requirements: Students should have studied calculus and linear algebra before taking the course, and should in particular be comfortable with the solution of linear differential equations and with the calculation and properties of eigenvalues and eigenvectors of matrices. In addition, a moderate portion of the course, perhaps four or five lectures, will deal with computer methods for studying networks. Some experience with computer programming will be a great help in understanding this part of the course. Coursework: There will be weekly graded problem sets, consisting both of theory questions and of problems demonstrating applications of theory to example networks. There will be three midterm exams but no final.
    [Show full text]
  • Arxiv:1707.05213V4 [Cs.SI] 28 Sep 2017 Called Nodes), Which Can Represent Either Physical Or Abstract Entities[New03, NBW11]
    Balance of thrones: a network study on Game of Thrones that unveils predictable popularity of the story Dianbo Liu1;2;3 and Luca Albergante1;4;5;6;7 1School of Life Sciences, University of Dundee, Dow Street, Dundee, UK 2Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge,MA,USA 3The Broad Institute of MIT and Harvard,Cambridge,MA,USA 4Computational and Systems Biology of Cancer, Institut Curie, Paris, France 5PSL Research University, Paris, France 6Institut National de la Santé et de la Recherche Médicale U900, Paris, France 7Mines ParisTech, Paris, France Correspondence to [email protected] or [email protected] September 29, 2017 Abstract TV dramas make a important part of the entertainment industry, with popular TV series attracting millions of audiences. Formal analyses of these shows are very interesting, not only to understand which features of the show may be associated their popularity, but also to explore to which extent the dynamics of such fictional world match the dynamics the real world. To tackle this question, we employed network analysis and machine learning to systematically and quantitatively analyze the relationships among noble houses and how the web of alliances and conflicts changed over time in the fantasy drama TV series Game of Thrones. Network analysis proved to be a powerful tool in capturing interaction structures and dynamics of the story and was able to highlight the invisible threads that connected different houses. In Addition, we applied the theory of structural balance to assess how different modes of interaction resulted in various levels of tensions across the houses.
    [Show full text]
  • Complex Network Theory
    Complex Network Theory Lecture 1: Networks: what they are and what they are good for Instructor: S. Mehdi Vahidipour ([email protected]) Thanks A. Rezvanian L. Adamic , A. Barabasi, J. Leskovec University of Kasahn Outline Overview of class topics Course overview Syllabus References Evaluation First topic Types of networks Network models Implications of network structure Next class: Basic definitions & metrics Complex Network Theory, S. Mehdi Vahidipour, . 2 Course overview Ref: Newman, Mark. Networks: an introduction. Oxford University Press, 2010. Goals Introduce the basic mathematical tools to understand the fundamentals of complex networks. Provide the skills that are needed to perform basic analyses of such networks. Means Study fundamental concepts from graph theory and random networks. Lots of exercises in proving properties of various well-known networks Practice the use of network analysis tools Complex Network Theory, S. Mehdi Vahidipour, . 3 Topics Complex network theory Complex network characteristics Complex network models (Erdős–Rényi, watts-strogatz, Barabási– Albert) Network metrics, centralities, measures & algorithms Structural and behavioral analysis (static & dynamic) Subgraphs, cliques and Motifs analysis & algorithms Social network analysis Spectral and random walks techniques on networks Community structure discovery and analysis in complex networks Diffusion models on networks Cascading failures in real networks Network visualizations Supplementary materials Research methods,
    [Show full text]