Survival of B Cell Development, Differentiation, and Stages Element

Total Page:16

File Type:pdf, Size:1020Kb

Survival of B Cell Development, Differentiation, and Stages Element Differential Role for Cyclic AMP Response Element Binding Protein-1 in Multiple Stages of B Cell Development, Differentiation, and Survival This information is current as of September 25, 2021. Hui-Chen Chen, John C. Byrd and Natarajan Muthusamy J Immunol 2006; 176:2208-2218; ; doi: 10.4049/jimmunol.176.4.2208 http://www.jimmunol.org/content/176/4/2208 Downloaded from References This article cites 66 articles, 36 of which you can access for free at: http://www.jimmunol.org/content/176/4/2208.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Differential Role for Cyclic AMP Response Element Binding Protein-1 in Multiple Stages of B Cell Development, Differentiation, and Survival1 Hui-Chen Chen,† John C. Byrd,*§¶ and Natarajan Muthusamy2*†‡¶ CREB-1 is expressed in the bone marrow and in developing B cells. To determine the role of CREB-1 in developing B cells in the bone marrow, several lines of transgenic (Tg) mice overexpressing a dominant-negative Ser119-ala phosphomutant CREB-1 in the bone marrow were generated. Analysis of RNA and protein revealed expression of the transgene in the bone marrow. Flow cytometric analysis of bone marrow cells from Tg mice revealed ϳ70% increase in pre-B1 (CD43؉B220؉CD24؉(int)) and ϳ60% decreased pre-BII (CD43؉B220؉CD24؉؉(high)) cells, indicating a developmental block in pre-BI to pre-BII transition. Consistent with this, the Tg mice showed ϳ4-fold decrease in immature and mature B cells in the bone marrow. RT-PCR analysis of RNA from Tg mice revealed increased JunB and c-Jun in pre-BII cells associated with decreased S-phase entry. Adoptive transfer of bone marrow cells into Downloaded from -RAG-2؊/؊ mice resulted in reconstitution of non-Tg but not Tg bone marrow-derived CD43؉B220؉CD24high population that is nor mally absent in RAG-2؊/؊ mice. In the periphery, the Tg mice exhibited decreased CD21dimCD23highIgM؉ follicular B cells in the spleen and increased B1a and B1b B cells in the peritoneum. While exhibiting normal Ab responses to T-independent Ags and primary response to the T-dependent Ag DNP-keyhole limpet hemocyanin, the Tg mice exhibited severely impaired secondary Ab responses. These studies provide the first evidence for a differential role for CRE-binding proteins in multiple stages of B cell development, functional maturation, and B1 and B2 B cells. The Journal of Immunology, 2006, 176: 2208–2218. http://www.jimmunol.org/ yclic AMP response element binding protein-1 belongs Activation of resting murine B and T cells through antigen re- to the basic leucine zipper family of transcription factors. ceptors leads to the phosphorylation of CREB-1 at critical Ser133, C CREB-1 binds to CRE, which is composed of which is essential for the transcriptional activation function of the TGANNTCA sequences as homo- and heterodimers in association protein (22–24). Stimulation through the BCR resulted in a dose- with members of the CREB/activating transcription factor (ATF)3 dependent induction of CREB-1-binding activity that is subjected family of proteins, including ATF-1 and cAMP response element to negative regulation by IFN-␥ in a STAT-1-dependent manner modulator, as well as AP-1 family members such as c-Jun (1–5). (25). Consistent with a role for CREB-1 in the regulation of cell 133 The activation-induced phosphorylation of CREB-1 at Ser (or growth, the expression of immediate early growth response genes, by guest on September 25, 2021 Ser119) in an alternatively spliced form increased the DNA-binding such as c-fos and junB, and cell cycle regulatory genes, such as the activity of the protein in some but not other cell types (4–7). Phos- proliferating cell nuclear Ag (PCNA), is regulated by Ser133-phos- phorylation at Ser133 activates CREB-1, at least in part, by facil- phorylated CREB-1 through direct binding and activation of the itating its binding to CREB-binding protein (CBP). This, in turn, promoter region of these genes (26–30). interacts with and activates the components of basal transcriptional A requirement for CREB-1 in mature B cell survival is impli- machinery (8–13). Multiple signaling pathways, including cAMP- cated by the CREB-1-dependent induction of the bcl-2 gene in responsive protein kinase A, protein kinase C, calcium/calmodu- human B cell lines and transgenic (Tg) mice (31–33). Ser133-phos- lin-dependent CaM kinases II and IV, and a Ras-dependent serine/ phorylated CREB-1 binds to the CRE element in promoter regions threonine kinase RSK2, mediate phosphorylation and activation of of antiapoptotic genes such as Bcl-2 and Mcl-1 and regulate their CREB-1 in different cell types (14–22). expression. CREB-1Ϫ/Ϫ mice die shortly after birth, thus preclud- ing the analysis of the immune function of mature B cells (34). The lack of a strong phenotype in some CREB family member knock- *Division of Hematology and Oncology, Department of Internal Medicine, †Molec- ular Virology, Immunology and Medical Genetics, ‡Veterinary BioSciences, §Divi- out studies suggested the functional redundancy among the mem- sion of Medicinal Chemistry, College of Pharmacy, and ¶OSU Comprehensive Can- bers of this family (35). To determine the in vivo role of CRE- cer Center, The Ohio State University, Columbus, OH 43210 binding proteins in early B cell development and functional Received for publication April 28, 2005. Accepted for publication October 18, 2005. maturation, we generated four independent Tg mice lines overex- The costs of publication of this article were defrayed in part by the payment of page pressing a dominant-negative phosphomutant CREB-1 in devel- charges. This article must therefore be hereby marked advertisement in accordance oping B cells in the bone marrow. Characterization of these Tg with 18 U.S.C. Section 1734 solely to indicate this fact. mice revealed a critical role for CRE binding proteins in different 1 This work was supported by grants from the American Cancer Society (to N.M.), Leukemia and Lymphoma Society of America (to J.C.B.), and The D. Warren Brown stages of B cell development and functional maturation. Foundation (to J.C.B. and N.M.). H.-C.C. is a recipient of a Raymon E. Mason Foundation Fellowship for graduate research. 2 Address correspondence and reprint requests to Dr. Natarajan Muthusamy, Chronic Materials and Methods Lymphocytic Leukemia, Experimental Therapeutics Laboratory, Division of Hema- Animals tology and Oncology, 1132C, James Cancer Hospital, 300 West 10th Avenue, Co- lumbus, OH 43210. E-mail address: [email protected] Mutant CREB-1-Tg animals described were generated at the OSU CCC/CCRI 3 Abbreviations used in this paper: ATF, activating transcription factor; CBP, CREB- transgenic facility. The Tg expression vector pBH was constructed by clon- binding protein; PCNA, proliferating cell nuclear Ag; Tg, transgenic; KLH, keyhole ing the EcoRI fragment of pEPB splice-neo (a gift from Drs. W. Muller and limpet hemocyanin; TNP, trinitrophenyl; NTg, nontransgenic; mCRE, mutant CRE K. Rajewsky, Institute for Genetics, University of Cologne, Cologne, Ger- oligonucleotide; HPRT, hypoxanthine phosphoribosyltransferase. many) containing the Ig H chain promoter and intronic enhancer and the Copyright © 2006 by The American Association of Immunologists, Inc. 0022-1767/06/$02.00 The Journal of Immunology 2209 SV40 splice and poly(A) into the EcoRI site of pBluescript KS II(ϩ). The moved by purification in G50 Sephadex spin columns. The binding reactions dominant-negative CREB-1 cDNA was produced by PCR-mediated mu- were conducted, at room temperature, with 3 ␮g of nuclear extract, 30,000 tagenesis of the human ⌬CREB-1 cDNA at Ser119 (Ser119 to Ala) (30). The dpm (0.1–0.5 ng) of radiolabeled oligonucleotide probe, in 5ϫ Ficoll-binding hCREB-1Ser119-Ala was cloned into the BglII site of the pBH Tg vector. buffer (10 mM Tris (pH 7.5), 1 mM DTT, 1 mM EDTA, and 4% Ficoll), 250 Four independent founder lines were identified by PCR using primers 5Ј- ng of poly(deoxyinosinic-deoxycytidylic acid) in 75 mM KCl and double- Ј Ј ␮ AAAACCACTTCTTCAAACCACAGC-3 and 5 -CTGCTGGAGAA distilled H2O to make the volume to 15 l. The DNA-protein complexes were GAAGGGACATC-3Ј corresponding to the Ig H chain intronic enhancer fractionated by electrophoresis in 4% nondenaturing polyacrylamide gel, run and the Ig H chain promoter, which amplified ϳ700 bp fragment in the Tg in 0.25ϫ Tris-borate-EDTA, at 4°C. The gel was then dried on 3M Whatman tail DNA. The lines were further confirmed by Southern blot analysis. paper and subjected to autoradiography. In vitro transcribed and translated Recombination activating gene-2-deficient (Rag-2Ϫ/Ϫ) mice were obtained CREB-1 protein generated using rabbit reticulolysate system was used as a originally from Dr. F. Alt (Harvard Medical School, Boston, MA). Female positive control (30). FVB/N mice were obtained from Harlan Sprague Dawley.
Recommended publications
  • IHC) Outreach Services
    IIImmunohistochemistry (IHC) Outreach Services Note type of fixative used if not neutral buffered formalin. Note type of tissue/specimen Unless specified otherwise, positive and negative controls react satisfactorily. Available Chromogen – All markers have been validated with 3,3’-Diaminobenzidine Tetrahydrochloride (DAB) which results in a brown/black precipitate. DAB is the routine chromogen. In addition, some markers have also been validated using the Fast Red (RED), which results in a red precipitate. If available with both chromogens and one is not selected, the def ault will be the DAB chromogen. Antibody Common Applications St aining Charac teristi cs Actin (muscl e sp eci fic ) Smoo th, ske letal & ca rdiac musc le Cytoplasm ic Actin (smoo th muscle ) Smoo th muscl e an d myoep itheli al cel ls Cytoplasm ic and memb rane ALK Pr otein ALK1 posi tive lymp homa s Cytoplasm ic and/or nuclea r Alph a-1-Antitr ypsi n Demo nstr ates A-1-AT in liver Cytoplasm ic (A-1-AT) Bcl-2 Oncop rotein Foll icula r lymph oma an d so ft tiss ue Cytoplasm ic tumors Bcl-6 Foll icula r lymph oma Nucl ear Ber-EP 4, Epithelia l Antige n Aden oca rcin oma vs. meso the liom a Memb rane and cytoplasm ic. The and epithelial tumors membrane staining is preferentially basolateral. Beta-Amyloid Pos t mo rt em dia gnos is of demen tia E xtr acel lular de pos ition (am yloid plaques), vascular deposition (amyloid angiopathy) BRS T-3, (B72.3) Aden oca rcin oma vs.
    [Show full text]
  • CD Markers Are Routinely Used for the Immunophenotyping of Cells
    ptglab.com 1 CD MARKER ANTIBODIES www.ptglab.com Introduction The cluster of differentiation (abbreviated as CD) is a protocol used for the identification and investigation of cell surface molecules. So-called CD markers are routinely used for the immunophenotyping of cells. Despite this use, they are not limited to roles in the immune system and perform a variety of roles in cell differentiation, adhesion, migration, blood clotting, gamete fertilization, amino acid transport and apoptosis, among many others. As such, Proteintech’s mini catalog featuring its antibodies targeting CD markers is applicable to a wide range of research disciplines. PRODUCT FOCUS PECAM1 Platelet endothelial cell adhesion of blood vessels – making up a large portion molecule-1 (PECAM1), also known as cluster of its intracellular junctions. PECAM-1 is also CD Number of differentiation 31 (CD31), is a member of present on the surface of hematopoietic the immunoglobulin gene superfamily of cell cells and immune cells including platelets, CD31 adhesion molecules. It is highly expressed monocytes, neutrophils, natural killer cells, on the surface of the endothelium – the thin megakaryocytes and some types of T-cell. Catalog Number layer of endothelial cells lining the interior 11256-1-AP Type Rabbit Polyclonal Applications ELISA, FC, IF, IHC, IP, WB 16 Publications Immunohistochemical of paraffin-embedded Figure 1: Immunofluorescence staining human hepatocirrhosis using PECAM1, CD31 of PECAM1 (11256-1-AP), Alexa 488 goat antibody (11265-1-AP) at a dilution of 1:50 anti-rabbit (green), and smooth muscle KD/KO Validated (40x objective). alpha-actin (red), courtesy of Nicola Smart. PECAM1: Customer Testimonial Nicola Smart, a cardiovascular researcher “As you can see [the immunostaining] is and a group leader at the University of extremely clean and specific [and] displays Oxford, has said of the PECAM1 antibody strong intercellular junction expression, (11265-1-AP) that it “worked beautifully as expected for a cell adhesion molecule.” on every occasion I’ve tried it.” Proteintech thanks Dr.
    [Show full text]
  • Induces Antigen Presentation in B Cells Cell-Activating Factor of The
    B Cell Maturation Antigen, the Receptor for a Proliferation-Inducing Ligand and B Cell-Activating Factor of the TNF Family, Induces Antigen Presentation in B Cells This information is current as of September 27, 2021. Min Yang, Hidenori Hase, Diana Legarda-Addison, Leena Varughese, Brian Seed and Adrian T. Ting J Immunol 2005; 175:2814-2824; ; doi: 10.4049/jimmunol.175.5.2814 http://www.jimmunol.org/content/175/5/2814 Downloaded from References This article cites 54 articles, 36 of which you can access for free at: http://www.jimmunol.org/content/175/5/2814.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology B Cell Maturation Antigen, the Receptor for a Proliferation-Inducing Ligand and B Cell-Activating Factor of the TNF Family, Induces Antigen Presentation in B Cells1 Min Yang,* Hidenori Hase,* Diana Legarda-Addison,* Leena Varughese,* Brian Seed,† and Adrian T.
    [Show full text]
  • CD43 Expression in Malignant Melanoma: a Diagnostic Pitfall
    Asian Archives of Pathology 2014; Vol. 10 No.4, 97-109 Case Report CD43 Expression in Malignant Melanoma: A Diagnostic Pitfall Sanya Sukpanichnant Received: 24 September 2014; accepted 30 October 2014. ABSTRACT CD43 is commonly concerned as a marker for hematopoietic cells and, at times, a preferential T-cell marker. However, a number of non-hematologic cancers, mostly carcinoma, can express CD43. Recently, a case of malignant melanoma mimicking malignant lymphoma by cytomorphology was reported to express CD43 as well as melanoma markers but the other hematologic markers [Buehler et al. Diagn Cytopathol 2012;40:619- 23]. This is another case report. A 52-year-old man suffered from a rapidly growing left tonsillar mass for one month causing slurred speech. An incisional biopsy showed gray tissue and, beneath the epithelium, a sheet of - lastic lymphoma, as the original workup showed focal and faint CD138 expression but negative keratins and CD45. On consultation, hematologic malignancy and malignant melanoma were considered. The tumor cells express CD43, CD68 (focal), S-100, HMB45, Melan A, and vimentin. The negative markers included CD3, CD20, CD30, CD79a, MUM1, PAX5, kappa, lambda, and CK5/6. The proliferation index was high (70-75%) another case report of malignant melanoma with CD43 expression, mimicking malignant lymphoma, raises the awareness of diagnostic pitfall when dealing with undifferentiated tumors showing only CD43 expression among various hematologic markers. A panel for keratins, vimentin, S-100, CD45, CD30, and CD138 will be helpful when dealing with undifferentiated large cell tumor. Keywords: melanoma *This case report has been presented partly in a poster session in the 12th Japanese-Korean Lymphoreticular- Workshop 2014 in conjunction with the 5th Asian Hematopathology Symposium on January 25, 2014 at Nagoya University Hospital Lecture Hall.
    [Show full text]
  • Altered O-Glycan Synthesis in Lymphocytes from Patients with Wiskott-Aldrich Syndrome by Friedrich Piller,* Frangoise Le Deist, Kenneth 1
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Altered O-Glycan Synthesis in Lymphocytes from Patients with Wiskott-Aldrich Syndrome By Friedrich Piller,* Frangoise Le Deist, Kenneth 1 . Weinberg,§ Robertson Parkman,S and Minoru Fukuda* From the *La Jolla Cancer Research Foundation, La Jolla, California 92037, the #INSERM U132, Hopital Necker/Enfants Malades, F7S01S Paris, France; and the §Division of Research Immunology/Bone Marrow Transplantation, Childrens Hospital, Los Angeles, California 90033 Summary The only molecular defect reported for the X-linked immunodeficiency WiskottAldrich syndrome (WAS) is the abnormal electrophoretic behavior of the major T lymphocyte sialoglycoprotein CD43. Since the 70 to 80 O-linked carbohydrate chains of CD43 are known to influence markedly its electrophoretic mobility, we analyzed the structure and the biosynthesis of O-glycans of CD43 in lymphocytes from patients with WAS. Immunofluorescence analysis with the carbohydrate dependent anti-CD43 antibody T305 revealed that in 10 out ofthe 12 WAS patients tested increased numbers ofT lymphocytes carry on CD43 an epitope which on normal lymphocytes is expressed only after activation. Other activation antigens were absent from WAS lymphocytes . Western blots of WAS cell lysates displayed a high molecular mass form of CD43 which reacted with the T305 antibody and which could be found on in vivo activated lymphocytes but was absent from normal unstimulated lymphocytes. To examine the O-glycan structures, carbohydrate labeled CD43 was immunoprecipitated and the released oligosaccharides identified. WAS lymphocyte CD43 was found to carry predominantly the branched structure NeuNAca2-3Gala1--"3 (NeuNAca2-3Ga101-4G1cNAc01-6) Ga1NAcOH whereas normal lymphocytes carry the structure NeuNAca2-3Ga101--"3 (NeuNAca2--"6) Ga1NAcOH.
    [Show full text]
  • SUPPLEMENTARY APPENDIX Improved Classification of Leukemic B-Cell Lymphoproliferative Disorders Using a Transcriptional and Genetic Classifier
    SUPPLEMENTARY APPENDIX Improved classification of leukemic B-cell lymphoproliferative disorders using a transcriptional and genetic classifier Alba Navarro, 1,2* Guillem Clot, 1,2* Alejandra Martínez-Trillos, 1,2 Magda Pinyol, 2,3 Pedro Jares, 1,2 Blanca González-Farré, 1,2 Daniel Martínez, 1,2 Nicola Trim, 4 Verónica Fernández, 1 Neus Villamor, 1,2 Dolors Colomer, 1,2 Dolors Costa, 1,2 Itziar Salaverria, 1,2 , David Martín- Garcia, 1,2 Wendy Erber, 5 Cristina López, 6,7 Sandrine Jayne, 8 Reiner Siebert, 6,7 Martin J. S. Dyer, 8 Adrian Wiestner, 9 Wyndham H. Wilson, 10 Marta Aymerich, 1,2 Armando López-Guillermo, 1,2 Àlex Sánchez, 11,12 Elías Campo, 1,2 Estella Matutes 2 and Sílvia Beà 1,2 *AN and GC contributed equally to this work 1Institut d’Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Universitat de Barcelona, Spain; 2Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain; 3Genomics Unit, IDIBAPS, Barcelona, Spain; 4West Midlands Regional Genetics Laboratory, Birmingham, UK; 5School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, WA, Australia; 6Institute of Human Genetics, University Kiel, Germany; 7In - stitute of Human Genetics, University Hospital of Ulm, Germany; 8Ernest and Helen Scott Haematological Research Institute, Department of Biochemistry, Uni - versity of Leicester, UK; 9National Heart, Lung, and Blood Institute, Bethesda, MD, USA; 10 Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; 11 Department of Genetics Microbiology and Statistics, University of Barcelona, Spain and 12 Statistic and Bioin - formatics Unit, Vall d’Hebron Research Institute, Barcelona, Spain Correspondence: [email protected] doi:10.3324/haematol.2016.160374 SUPPLEMENTARY INFORMATION Improved classification of leukemic B-cell lymphoproliferative disorders using a transcriptional and genetic classifier Navarro A & Clot G, et al.
    [Show full text]
  • The Role of Nucleolin in B-Cell Lymphomas and Fas-Mediated Apoptotic Signaling
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 5-2013 The Role of Nucleolin in B-cell Lymphomas and Fas-Mediated Apoptotic Signaling Jillian F. Wise Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Cancer Biology Commons, and the Medicine and Health Sciences Commons Recommended Citation Wise, Jillian F., "The Role of Nucleolin in B-cell Lymphomas and Fas-Mediated Apoptotic Signaling" (2013). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 339. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/339 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. The Role of Nucleolin in B-cell Lymphomas and Fas-Mediated Apoptotic Signaling by Jillian F Wise, BS Approved: ___________________________________________________ Felipe
    [Show full text]
  • An Overview of B Cells – from Discovery to Therapy Mini Review
    An Overview of B Cells – from Discovery to Therapy Mini Review Immunology In the past two decades, significant advances have been made in B cell biology. These critical immune cells remain an active area of research particularly because disruption of B cell development or function results in a number of autoimmune diseases and malignancies. In addition to producing antibodies, B cells are professional antigen presenting cells that can present antigens to T cells to generate effective immune responses. B cells are however, a heterogeneous population of cells at different stages of maturation along the lineage, each with unique functional properties. This mini-review provides a brief history of the discovery of B cells, as well as describes the characteristics of each B cell lineage and the processes of B cell development, maturation and activation. Finally, we highlight the application of B cell biology in the development of novel therapeutics for the treatment of B cell mediated diseases. Contents 1. A brief history of the discovery of B cells 2. B cell development and maturation 3. B cell activation and the humoral immune response 4. B cells as therapeutic targets 1. A brief history of the discovery of B cells B cells are an integral part of the adaptive immune response. They represent a distinct lineage, with separate and unique functions from T cells. In addition to producing antibodies, they perform critical immune functions such as generating immunological memory, antigen presentation and regulatory cytokine production. Our current understanding of B cell biology was initiated in 1965 with a landmark study by Max Cooper and Robert Good.
    [Show full text]
  • Reproducible Diagnosis of CLL by Flow Cytometry: an ERIC & ESCCA
    Reproducible diagnosis of CLL by flow cytometry: an ERIC & ESCCA harmonisation project Andy C. Rawstron, Karl-Anton Kreuzer, Asha Soosapilla, Martin Spacek, Peter Gambell, Neil McIver-Brown, Katherina Psarra, Maria Arroz, Raffaella Milani, Javier de la Serna, M. Teresa Cedena, Ozren Jaksic, Josep Nomdedeu, Carol Moreno, Gian Matteo Rigolin, Antonio Cuneo, Preben Johansen, Hans Johnsen, Richard Rosenquist Brandell, Carston Utoft Niemann, David Westerman, Marek Trneny, Stephen Mulligan, Peter Hillmen, David Oscier, Michael Hallek, Paolo Ghia, Emili Montserrat. On behalf of the European Research Initiated on CLL (ERIC) and the European Society for Clinical Cell Analysis (ESCCA) Current criteria: flexibility in marker expression • WHO criteria: • IWCLL guidelines: • CLL cells usually co-express CD5 and • CLL cells co-express the T-cell CD23 antigen CD5 and B-cell surface • Using flow cytometry, the tumour cells antigens CD19, CD20, and CD23. express dim surface IgM/IgD, CD20, CD22, CD5, CD19, CD79a, CD23, CD43 • The levels of surface Ig, CD20, & and CD11c (weak). CD10 is negative CD79b are characteristically low. and FMC& and CD79b are usually negative or weakly expressed in typical • Each clone is restricted to expression CLL. of either kappa or lambda. • Some cases may have an atypical • Variations of the intensity of immunophenotype (e.g. CD5- or expression of these markers may CD23-, FMC7+ or CD11c+, strong sIg, or CD79b+). exist and do not prevent inclusion of a patient in clinical trials for CLL. Trial cases referred to a central lab: ~2-5% not CLL & ~2-5% sub-optimal for MRD monitoring but this may vary according to trial treatment options • ADMIRE/ARCTIC trial: FCR-based treatment (n=421) • 97% typical phenotype (2% with no CD200 or CD43 expression) • 3% CD23neg, usually with additional aberrant markers but no t(11;14).
    [Show full text]
  • Chimeric Antigen Receptor Macrophage Therapy for Breast Tumours Mediated by Targeting the Tumour Extracellular Matrix
    www.nature.com/bjc ARTICLE Translational Therapeutics Chimeric antigen receptor macrophage therapy for breast tumours mediated by targeting the tumour extracellular matrix Wenlong Zhang1, Ling Liu1, HuiFang Su1, Qin Liu2, Jie Shen2, Hanren Dai1, Wei Zheng1,YanLu1, Weijie Zhang3, Yuncheng Bei4 and Pingping Shen1 BACKGROUND: The extracellular matrix (ECM) is essential for malignant tumour progression, as it is a physical barrier to various kinds of anticancer therapies. Matrix metalloproteinase (MMPs) can degrade almost all ECM components, and macrophages are an important source of MMPs. Studies using macrophages to treat tumours have shown that macrophages can enter tumour tissue to play a regulatory role. METHODS: We modified macrophages with a designed chimeric antigen receptor (CAR), which could be activated after recognition of the tumour antigen HER2 to trigger the internal signalling of CD147 and increase the expression of MMPs. RESULTS: Although CAR-147 macrophage treatment did not affect tumour cell growth in vitro compared with control treatment. However, we found that the infusion of CAR-147 macrophages significantly inhibited HER2-4T1 tumour growth in BALB/c mice. Further investigation showed that CAR-147 macrophages could reduce tumour collagen deposition and promote T-cell infiltration into tumours, which were consistent with expectations. Interestingly, the levels of the inflammatory cytokines TNF-α and IL-6, which are key factors in cytokine release syndrome, were significantly decreased in the peripheral blood in CAR-147 macrophage- transfused mice. CONCLUSION: Our data suggest that targeting the ECM by engineered macrophages would be an effective treatment strategy for solid tumours. British Journal of Cancer (2019) 121:837–845; https://doi.org/10.1038/s41416-019-0578-3 BACKGROUND pressure further prevents the extravasation of T cells.
    [Show full text]
  • Signaling by the Epstein–Barr Virus LMP1 Protein Induces Potent
    Signaling by the Epstein–Barr virus LMP1 protein + + induces potent cytotoxic CD4 and CD8 T cell responses Il-Kyu Choia,b, Zhe Wanga,b, Qiang Kea,c, Min Honga,d, Yu Qiana,b, Xiujuan Zhaoa,e, Yuting Liuf, Hye-Jung Kimg, Jerome Ritza,b, Harvey Cantorg, Klaus Rajewskyh,1, Kai W. Wucherpfennigg, and Baochun Zhanga,b,g,1 aDepartment of Medical Oncology, Dana–Farber Cancer Institute, Boston, MA 02215; bDepartment of Medicine, Harvard Medical School, Boston, MA 02115; cDepartment of Diagnostics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; dDepartment of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; eDepartment of Cell Biology, Tianjin Medical University, Tianjin 300070, China; fProgram in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115; gDepartment of Cancer Immunology and Virology, Dana–Farber Cancer Institute, Boston, MA 02215; and hImmune Regulation and Cancer, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany Contributed by Klaus Rajewsky, December 9, 2017 (sent for review August 3, 2017; reviewed by Alan B. Rickinson and Susan L. Swain) The B-lymphotropic Epstein–Barr virus (EBV), pandemic in humans, pressive molecules that foster local immune privilege (9, 10). is rapidly controlled on initial infection by T cell surveillance; there- Apparently, host immune cells, particularly T cells, keep EBV- after, the virus establishes a lifelong latent infection in the host. If infected cells under constant surveillance, and EBV-driven ma- surveillance fails, fatal lymphoproliferation and lymphomagenesis + lignancies only arise when surveillance fails. ensue. The initial T cell response consists of predominantly CD8 + T cell responses against EBV-infected or transformed B cells cytotoxic T cells and a smaller expansion of CD4 cells.
    [Show full text]
  • BAFF and APRIL Expression in B Cells in Vitro and in Vivo
    In Vitro and In Vivo Activation Induces BAFF and APRIL Expression in B Cells Van Trung Chu, Philipp Enghard, Gabriela Riemekasten and Claudia Berek This information is current as of September 27, 2021. J Immunol 2007; 179:5947-5957; ; doi: 10.4049/jimmunol.179.9.5947 http://www.jimmunol.org/content/179/9/5947 Downloaded from References This article cites 40 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/179/9/5947.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 27, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology In Vitro and In Vivo Activation Induces BAFF and APRIL Expression in B Cells1 Van Trung Chu,* Philipp Enghard,† Gabriela Riemekasten,† and Claudia Berek2* B cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL) play key roles in peripheral B cell survival, maturation, and differentiation.
    [Show full text]