Amyloid-Β Pathology Induced in Humans

Total Page:16

File Type:pdf, Size:1020Kb

Amyloid-Β Pathology Induced in Humans NEWS & VIEWS RESEARCH NEURODEGENERATION not found in patients up to a decade older who died of prion diseases that were unrelated to c-hGH treatment. The authors also showed that the c-hGH-treated subjects did not have any of Amyloid-β pathology the known genetic risk factors for Alzheimer’s disease. Moreover, they confirmed a previous report8 that Aβ deposits occur in the pituitary induced in humans glands of people with Alzheimer’s disease, supporting the possibility that aggregates were People who died of the neurodegenerative condition Creutzfeldt-Jakob disease induced by Aβ seeds in the c-hGH. after treatment with cadaver-derived human growth hormone also developed Although an observational study such as some of the pathological traits of Alzheimer’s disease. See Letter p.247 this cannot prove that the Aβ deposits in the patients’ brains were caused by Aβ seeds, studies in genetically modified mice have MATHIAS JUCKER & LARY C. WALKER Another disease of protein misfolding — established that aggregated Aβ can behave and the most prevalent form of dementia — is like prions7,9. Strikingly, when Aβ seeds were n the 1960s and ’70s, researchers discovered Alzheimer’s disease6. The pathological hall- introduced into the abdomens of mice, rather that a rare but deadly human degenerative marks of the disease are insoluble aggregates of than directly into the brain, Aβ deposition was brain disorder called Creutzfeldt–Jakob amyloid-β protein (Aβ) called plaques, which more prominent in cerebral blood vessels than Idisease (CJD) could be transmitted experi- form between neurons; Aβ build-up in the in Aβ plaques10. This finding mirrors the vascu- mentally to animals and, under unusual blood vessels of the brain; and the abnormal lar Aβ accumulation observed by Jaunmuktane circumstances, to other humans1,2. Since then, deposition of tau protein in nerve cells (known et al., and reinforces the supposition that the some have speculated that other neurodegen- as tauopathy). Several lines of evidence indi- Aβ seeds in the affected people travelled to the erative diseases might also be transmissible1,3. cate that the misfolding and accumulation of brain from elsewhere in the body. On page 247 of this issue, Jaunmuktane et al.4 Aβ is an early driver of Alzheimer’s disease, How can future experiments strengthen the present evidence indicating that changes in the and that this process precedes the onset of case for the prion-like seeding of Aβ in humans brain that are characteristic of Alzheimer’s dis- dementia by well over a decade6. But whether and better assess its implications? The original ease have been transmitted between humans. every person with extensive brain Aβ depo- c-hGH extracts, if available, should be assessed Transmission probably occurred through injec- sition will ultimately develop Alzheimer’s for the presence of Aβ seeds using biochemi- tions of contaminated, cadaver-derived human disease is a focus of current research. cal and animal-transmission experiments. growth hormone (c-hGH) that was extracted It is known that Aβ can aggregate in the Although age-matched control patients who from pituitary glands collected at autopsy. brains of animals if their brains are injected died of prion disease had a much lower inci- Before 1985, an estimated 30,000 people — with minute amounts of misfolded Aβ pro- dence of Aβ deposits than did the patients who mostly children with growth deficiency — teins known as seeds7. This indicates that Aβ died of CJD following c-hGH treatment, there re­ceived injections of c-hGH (refs 2, 5). To deposition can be induced through a prion- remains a possibility that CJD itself can pre- obtain sufficient quantities of hormone for like mechanism of corruptive protein templat- cipitate Alzheimer’s-like pathology11. Under- treatment, thousands of pituitary glands ing7. By identifying a similar phenomenon in standing the mechanisms by which these (a tissue found at the base of the brain) were humans, Jaunmuktane and colleagues’ study different disease processes interact in the brain pooled and homo­genized, and c-hGH was provides fresh support for this seeding concept could help to explain the frequent co­existence then chemically extracted (Fig. 1). After dis- in a clinically relevant setting. of multiple degenerative brain diseases ease incubation times ranging from 5 to more The authors describe the findings of autop- in the elderly7. than 40 years, a small percentage of these sies on 8 people who died of CJD at between Aβ seeds are long-lived in the brain, and people (up to 6.3%, according to country2) 36 and 51 years of age, having been treated with may be even more resistant to degradation developed CJD. We now know that the CJD- c-hGH approximately 30 years earlier. In addi- than are prions12. Given the build-up of Aβ in causing contaminant in the pituitary extracts tion to the neurodegenerative changes typical the pituitary glands of people with Alzheimer’s was the prion, a normally produced protein of CJD, four of the subjects showed extensive disease, and the relatively high prevalence of that becomes infectious and toxic by adopt- Aβ deposition in the brain and two had sparse Aβ the disease in the general population, batches ing an abnormal shape that similarly corrupts deposits. Such Alzheimer’s-like changes are of c-hGH are more likely to have been contam- other prion proteins. extremely rare at such a young age, and were inated by Aβ seeds than by prions, which could CJD prions Extract and pool pituitary glands Homogenize Inject 30-year CJD and Aβ incubation deposits Aβ seeds Figure 1 | Contamination of growth-hormone extracts. Before 1985, people glands probably also contained seeds of amyloid-β protein (Aβ), possibly from in need of growth-hormone treatment were treated with cadaver-derived people with Alzheimer’s disease. The pooled glands were homogenized and human growth hormone (c-hGH). To prepare c-hGH, the pituitary gland at the the c-hGH was then extracted and injected into patients. After approximately base of the brain was extracted at autopsy. Of the thousands of glands extracted, 30 years, some recipients died of CJD, owing to a build-up of prions. The a few contained prions from people with the neurodegenerative condition authors show that some of these people also had Aβ deposits in the brain, Creutzfeldt–Jakob disease (CJD). Jaunmuktane et al.4 report that some of the suggestive of incipient Alzheimer’s disease. 10 SEPTEMBER 2015 | VOL 525 | NATURE | 193 © 2015 Macmillan Publishers Limited. All rights reserved RESEARCH NEWS & VIEWS mean that more recipients received injections ATMOSPHERIC SCIENCE containing Aβ seeds. However, it is important to stress that the subjects of this study died of CJD, not of Alzheimer’s disease. Whether those with Aβ lesions would eventually have Sea-spray particles manifested clinical Alzheimer’s disease cannot be known with certainty. Continued surveillance of surviving cause freezing in clouds c-hGH recipients will be essential to deter- mine whether they are at unusually high risk Ice clouds in marine regions at high latitudes might form in warmer and drier air of developing Alzheimer’s disease. An earlier than was previously believed because of freezing induced by airborne particles study8 suggests that, as of 2008, c-hGH-treated that contain organic materials from ocean surface waters. See Letter p.234 patients in the United States are not more likely to develop Alzheimer’s disease than people in the general population, although an LYNN M. RUSSELL and location of ice clouds and the associated incubation period of 30 years or more is pos- precipitation partly on the basis of the particle sible. Interestingly, the subjects in the current he oceans cover two-thirds of Earth’s types and concentrations that are thought to study lacked tauopathy, an essential feature surface and are almost entirely, and be present in the atmosphere. For example, air of Alzheimer’s disease6. Whether tauopathy rather uniformly, composed of water temperature must drop to almost − 40 °C, and would have emerged over a longer incubation Tand inorganic salts1. The remaining fraction the humidity relative to that at which ice can period is unknown. of a per cent of ocean water contains organic form at that temperature must be well above This transmission of Aβ pathology occurred material. This has a variable concentration in 100%, for water to freeze in the atmosphere in the uncommon context of long-term space and time2 and is largely uncharacterized, when no ice-nucleating particles are pre- c-hGH therapy. So far, there is no indication but might be a key component in driving ice sent4,5. But different types of particle can pro- that Alzheimer’s disease can be transmitted formation in the atmosphere. On page 234 of mote freezing when the air is not as cold or as between people under ordinary circumstances. this issue, Wilson et al.3 report that organic humid as that — by contact with, or immersion Furthermore, the replacement of c-hGH by material concentrated in the topmost milli- in, supercooled water droplets (that is, liquid genetically engineered growth hormone has metres of the ocean has the essential crystal- droplets cooled to below the ideal freezing eliminated the risk that growth-hormone forming properties needed to freeze water and temperature), by condensation of water onto treatment will inadvertently transmit brain form ice clouds in the atmosphere — a process particles or by direct deposition of ice from disorders between humans. However, it is called ice nucleation. The findings might help water vapour on the particles (Fig. 1). conceivable that the human transmission of Aβ to refine predictions of future climate. Wilson et al. provide evidence that marine seeds can occur under other conditions, which Ice formation in clouds is central to precipi- particles could support ice-cloud formation at must now be carefully defined.
Recommended publications
  • Little Proteins, Big Clues After a Quarter of a Century, the Amyloid Hypothesis for Alzheimer’S Disease Is Reconnecting to Its Roots in Prion Research
    ALZHEIMER’S DISEASE OUTLOOK SIMON FRASER/JAMES KING-HOLMES/SCIENCE PHOTO LIBRARY PHOTO KING-HOLMES/SCIENCE SIMON FRASER/JAMES At autopsy, the brains of Alzheimer’s patients (right) are filled with amyloid plaques, reminiscent of the plaques seen in the brains of animals with scrapie (left). AMYLOID Little proteins, big clues After a quarter of a century, the amyloid hypothesis for Alzheimer’s disease is reconnecting to its roots in prion research. BY JIM SCHNABEL It is easy to forget how recently Alzheimer’s resembling those seen in scrapie, often sur- disease entered the public consciousness. rounded by dying neurons and their twisted n September 1984, a group of prominent For many decades after it first appeared in the axons and dendrites. When doused with Congo researchers from around the world met in medical literature, the term referred only to red, a standard pathology stain, and illumi- Scotland to discuss a disease that afflicted an obscure, early onset form of dementia. nated with polarized light, the Alzheimer’s Isheep and goats. What we now know as common, late-onset plaques — just like scrapie plaques — displayed Scrapie, as they called it, was important Alzheimer’s was then called ‘senile dementia’ — an apple-green shimmer, a prismatic sign of the for more than agricultural reasons — it was and it was so prevalent among the elderly that hydrogen bonds that held their fibrils tightly also the most easily studied example of an it hardly seemed worth classifying as a disease together. Protein aggregates that had this emerging class of diseases that destroyed (see ‘A problem for our age’, page S2).
    [Show full text]
  • CSF Protein Dynamics in Murine Models of A-Synucleinopathy and Cerebral B-Amyloidosis
    CSF protein dynamics in murine models of a-synucleinopathy and cerebral b-amyloidosis Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften der Mathematisch-Naturwissenschaftlichen Fakultät und der Medizinischen Fakultät der Eberhard-Karls-Universität Tübingen vorgelegt von Timo Eninger aus Bad Saulgau, Deutschland November 2017 Tag der mündlichen Prüfung: 13.11.2017 Dekan der Math.-Nat. Fakultät: Prof. Dr. W. Rosenstiel Dekan der Medizinischen Fakultät: Prof. Dr. I. B. Autenrieth 1. Berichterstatter: Prof. Dr. M. Jucker 2. Berichterstatter: Prof. Dr. B. Maček Prüfungskommission: Prof. Dr. M. Jucker Prof. Dr. B. Maček Dr. D. David Prof. Dr. P. Heutink Erklärung Ich erkläre hiermit, dass ich die zur Promotion eingereichte Arbeit mit dem Titel: “CSF protein dynamics in murine models of a-synucleinopathy and cerebral b-amyloidosis” selbstständig verfasst, nur die angegebenen Quellen und Hilfsmittel benutzt und wörtlich oder inhaltlich übernommene Stellen als solche gekennzeichnet habe. Ich versichere an Eides statt, dass diese Angaben wahr sind und dass ich nichts verschwiegen habe. Mir ist bekannt, dass die falsche Abgabe einer Versicherung an Eides statt mit Freiheitsstrafe bis zu drei Jahren oder einer Geldstrafe bestraft wird. Tübingen, den 18. Juli 2017 Unterschrift Für Elisabeth, meine Eltern und Elena “No great mind has ever existed without a touch of madness.” - Aristotele Summary Parkinson’s (PD) and Alzheimer’s disease (AD) are the two most common neurodegen- erative diseases and of growing importance for the rapidly aging population of indus- trialized countries. A common feature of both diseases is the progressive accumulation of proteins in insoluble aggregates, which are considered to play a fundamental role in the pathogeneses ultimately resulting in marked neuronal loss.
    [Show full text]
  • Annual Report 2017
    CENTER OF NEUROLOGY TÜBINGEN Annual Report 2017 APPENDIX Content ANNUAL REPORT 2017 Appendix U NIVERSITY HOSPITAL OF NEUROLOGY DEPARTMENT OF NEUROLOGY WITH NEUROVASCULAR MEDICINE AND NEURO-ONCOLOGY DEPARTMENT OF NEUROLOGY AND EPILEPTOLOGY DEPARTMENT OF NEURODEGENERATIVE DISEASES DEPARTMENT OF COGNITIVE NEUROLOGY DEPARTMENT OF CELLULAR NEUROLOGY INDEPENDENT RESEARCH GROUPS PUBLICATIONS AND STUDENT TRAINING IN 2017 University Hospital of Neurology Clinical Staff WARD 46 WARD 43 Diana Arko Luther Basa HEAD OF NURSING SERVICES Annette Eisele Meike Besser Karl Andrew Gallar Önder Bilen Dr. Renate D. Fuhr Joann Gallo Roslyn Chin (Head of Nursing Services) Corinna Kalmbach Friedhelm Chmell Gabriele Kern-Braun Michelle Dupke Doris Stenske-Bader Renate Maier-Korneck Rebecca Fais (Deputy Head of Nursing Services) Bettina Mollenhauer Maria Flohr Lisa Nickel Jay Carl Garcia Adriana Hurcikova Iris Sadowski Alice Hoffmann (Division Manager, Ward 46/24/27) Sarah Schneider Tobias Illhardt Ulrike Schweizer Eva Kern Olga Krämer Gudrun Siegl Dorothe Pacholleck (Deputy Division Manager, Birgit Weimar Nicole Steiner Ward 46/24/27) Sina Westbomke Christine Reuter (Ward Manager, Ward 20) Gerda Weise (Deputy Ward Manager, 20) 4 ANNUAL REPORT 2017 WaRD 44 WaRD 45 CASE/OCCUPANCY INTENSIVE CaRE/ MANAGEMENT STROKE UNIT Jane Buo Johanna Eisele Silvia Clement Andrea Albrecht Isaac Emwinghare Christine Rebenschütz Nina Begemann Tatjana Graz Christina Tomschitz Karin Brunner Fatima Hammami Isabel Utsch-Selinow Abrar Döger Werner Hansen Laura Gabriele Sigrid Herter Tobias
    [Show full text]
  • Dr. Melanie Meyer-Luehmann Curriculum Vitae
    Dr. Melanie Meyer-Luehmann Curriculum Vitae Date of Birth: May 11, 1974 in Lahr, Germany Married, 1 daughter (Date of birth March 31, 2007) Academic Education: • 1993-1999: Undergraduate and graduate studies of Biology at the University of Freiburg, Germany • 1999-2000: M.S. (Diplom) Thesis at the University of Michigan, Ann Arbor, USA with Prof. John Wayne Aldridge. Title: Extracellular recordings in the substantia nigra pars reticulate during normal grooming behavior in rats. • 2000: M.S. (Diplom) in Biology, grade: very good, University of Freiburg, Germany • 2000-2004: PhD Thesis at the University of Basel, Switzerland with Prof. Mathias Jucker. Title: Experimental approaches to study cerebral amyloidosis in a transgenic mouse model of Alzheimer`s disease. • 2004: PhD in Neurobiology, grade: summa cum laude, University of Basel, Switzerland Postdoctoral Training: • 2004: Postdoctoral fellow at the Hertie Institute of Clinical Brain Research, Tuebingen, Germany, with Prof. Mathias Jucker • 2005-2008: Postdoctoral fellow at the Massachusetts General Institute for Neurodegenerative Disease (MIND), Harvard Medical School, Boston, USA, with Prof. Bradley T. Hyman Advanced Professional Degrees: • Since October 2008: Independent group leader at the Adolf-Butenandt-Institut, Ludwig-Maximilians-University Munich, Germany Awards and Honours: • Emmy Noether Career Development Grant from the Deutsche Forschungsgemeinschaft DFG (since July 2009) • Member of the "SFB 596 Molecular Mechanisms of Neurodegeneration" (since August 2009) Publications: 1. Koffee, R.M., Meyer-Luehmann, M., Hashimoto, T., Adams, K.W., Mielke, M.L., Garcia-Alloza, M., Micheva, K.D., Smith, S.J., Kim, M.L., Lee, V.M., Hyman, B.T., Spires-Jones, T.L. (2009). Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques.
    [Show full text]
  • EXTRA VIEWS Ab Seeds and Prions
    Prion, 11:215–225, 2017 Published with license by Taylor & Francis ISSN: 1933-68961933-690X online DOI: 10.1080/19336896.2017.1334029 EXTRA VIEWS Ab seeds and prions: How close the fit? Jay Rasmussena,b,c, Mathias Juckera,b, and Lary C. Walkerd aDepartment of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tubingen,€ Tubingen,€ Germany; bGerman Center for Neurodegenerative Diseases (DZNE), Tubingen,€ Germany; cGraduate Training Center of Neuroscience, University of Tubingen,€ Tubingen,€ Germany; dDepartment of Neurology and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA ABSTRACT. The prion paradigm is increasingly invoked to explain the molecular pathogenesis of neurodegenerative diseases involving the misfolding and aggregation of proteins other than the prion protein (PrP). Extensive evidence from in vitro and in vivo studies indicates that misfolded and aggregated Ab peptide, which is the probable molecular trigger for Alzheimer’s disease, manifests all of the key characteristics of canonical mammalian prions. These features include a b-sheet rich architecture, tendency to polymerize into amyloid, templated corruption of like protein molecules, ability to form structurally and functionally variant strains, systematic spread by neuronal transport, and resistance to inactivation by heat and formaldehyde. In addition to Ab, a growing body of research supports the view that the prion-like molecular transformation of specific proteins drives the onset and course of a remarkable variety
    [Show full text]
  • In Focus Neurology.Org/N
    Volume 92, Number 17, April 23, 2019 In Focus Neurology.org/N Robert A. Gross, MD, PhD, FAAN, Editor-in-Chief, Neurology® Notable in Neurology this week This issue features an article that investigates false outcome prediction of the Status Epilepticus Severity Score, specifically the corresponding clinical characteristics; another determines the effectiveness of a quantitative speech measure to identify and monitor motor speech impairment in patients with primary progressive aphasia. A featured Contemporary Issues article examines the current state of knowledge in new-onset refractory status epilepticus and proposes an outline for future research. Articles MORE ONLINE Cognitive phenotypes in temporal lobe epilepsy are associated with Editor's Summary Audio summary of distinct patterns of white matter network abnormalities highlighted articles. Cognitive impairment in patients with temporal lobe NPub.org/edsum epilepsy (TLE) is highly heterogeneous, ranging from no impairment to globally impaired cognition. The authors identify distinct cognitive phenotypes within TLE and reveal network abnormalities associated with each phenotype. Such phenotyping could enable the ability to match patients to treatments, improving cognitive outcomes. Page 791 Racial differences in intervention rates in individuals with ALS: A case-control study This study confirms longer survival in African American patients with amyotrophic lateral sclerosis (ALS) compared to white patients and suggests this difference may be secondary to higher rates of tracheostomy in African American patients. There may be racial differences in patients’ choices regarding supportive care for ALS, which should be considered when working with patients. Page 792 From editorialists Armon & Albert: “In considering the role of ethnicity in end-of-life decisions, great sensitivity is needed, in order not to imply that there is something wrong with opting for [tracheostomy with invasive ventilation].
    [Show full text]
  • Modeling the Prion Aspect of Cerebral Β-‐Amyloidosis in Organotypic Slice
    Modeling the prion aspect of cerebral β-amyloidosis in organotypic slice cultures and mice Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften der Mathematisch-Naturwissenschaftlichen Fakultät und der Medizinischen Fakultät der Eberhard-Karls-Universität Tübingen vorgelegt von Renata Michaela Werner geb. Novotný aus Freiburg im Breisgau, Deutschland März 2016 Tag der mündlichen Prüfung: 14.07.2016 Dekan der Math.-Nat. Fakultät: Prof. Dr. W. Rosenstiel Dekan der Medizinischen Fakultät: Prof. Dr. I. B. Autenrieth 1. Berichterstatter: Prof. Dr. M. Jucker 2. Berichterstatter: Prof. Dr. B. Heimrich Prüfungskommission: Prof. Dr. M. Jucker Prof. Dr. B. Heimrich Prof. Dr. O. Riess Prof. Dr. S. Di Giovanni 2 Erklärung Ich erkläre, dass ich die zur Promotion eingereichte Arbeit mit dem Titel: “Modeling the prion aspect of cerebral β-amyloidosis in organotypic slice cultures and mice” selbständig verfasst, nur die angegebenen Quellen und Hilfsmittel benutzt und wörtlich oder inhaltlich übernommene Stellen als solche gekennzeichnet habe. Ich versichere an Eides statt, dass diese Angaben wahr sind und dass ich nichts verschwiegen habe. Mir ist bekannt, dass die falsche Angabe einer Versicherung des Eides statt mit Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft wird. Tübingen, 16.03.2016 …….………….. Unterschrift 3 For my family 4 Acknowledgements First and foremost I would like to express my special appreciation and gratitude to Prof. Mathias Jucker for giving me the opportunity to pursue my PhD in his department at the Hertie Institute for Clinical Brain Research in Tübingen. I would like to thank him for his supervision as well as his support and advice during my PhD work.
    [Show full text]
  • Aβ Seeds and Prions: How Close the Fit? Jay Rasmussen, University of Tübingen Mathias Jucker, University of Tübingen Lary Walker, Emory University
    Aβ seeds and prions: How close the fit? Jay Rasmussen, University of Tübingen Mathias Jucker, University of Tübingen Lary Walker, Emory University Journal Title: Prion Volume: Volume 11, Number 4 Publisher: Taylor & Francis | 2017-07-04, Pages 215-225 Type of Work: Article | Final Publisher PDF Publisher DOI: 10.1080/19336896.2017.1334029 Permanent URL: https://pid.emory.edu/ark:/25593/s4q1c Final published version: http://dx.doi.org/10.1080/19336896.2017.1334029 Copyright information: Copyright © 2017 The Author(s). Published with license by Taylor & Francis This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nc-nd/4.0/). Accessed September 28, 2021 10:33 PM EDT Prion ISSN: 1933-6896 (Print) 1933-690X (Online) Journal homepage: http://www.tandfonline.com/loi/kprn20 Aβ seeds and prions: How close the fit? Jay Rasmussen, Mathias Jucker & Lary C. Walker To cite this article: Jay Rasmussen, Mathias Jucker & Lary C. Walker (2017) Aβ seeds and prions: How close the fit?, Prion, 11:4, 215-225, DOI: 10.1080/19336896.2017.1334029 To link to this article: http://dx.doi.org/10.1080/19336896.2017.1334029 © 2017 The Author(s). Published with license by Taylor & Francis© Jay Rasmussen, Mathias Jucker, and Lary C. Walker Accepted author version posted online: 28 Jun 2017. Published online: 28 Jun 2017. Submit your article to this journal Article views: 398 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=kprn20 Download by: [Emory University] Date: 14 September 2017, At: 10:45 Prion, 11:215–225, 2017 Published with license by Taylor & Francis ISSN: 1933-68961933-690X online DOI: 10.1080/19336896.2017.1334029 EXTRA VIEWS Ab seeds and prions: How close the fit? Jay Rasmussena,b,c, Mathias Juckera,b, and Lary C.
    [Show full text]
  • Endogenous Murine AΒ Increases Amyloid Deposition In
    Neurobiology of Aging 36 (2015) 2241e2247 Contents lists available at ScienceDirect Neurobiology of Aging journal homepage: www.elsevier.com/locate/neuaging Endogenous murine Ab increases amyloid deposition in APP23 but not in APPPS1 transgenic mice Jasmin Mahler a,b,c, Jose Morales-Corraliza d,e, Julia Stolz a,b,c, Angelos Skodras a,b, Rebecca Radde a, Carmen C. Duma a, Yvonne S. Eisele a,b, Matthew J. Mazzella d, Harrison Wong d, William E. Klunk e,f,g, K. Peter R. Nilsson h, Matthias Staufenbiel a,b, * Paul M. Mathews d,e, Mathias Jucker a,b, , Bettina M. Wegenast-Braun a,b,* a Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany b DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany c Graduate School for Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Germany d Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA e Department of Psychiatry, New York University School of Medicine, New York, NY, USA f Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA g Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA h Department of Chemistry, IFM, Linköping University, Linköping, Sweden article info abstract Article history: Endogenous murine amyloid-b peptide (Ab) is expressed in most Ab precursor protein (APP) transgenic Received 18 December 2014 mouse models of Alzheimer’s disease but its contribution to b-amyloidosis remains unclear. We Received in revised form 12 March 2015 demonstrate w35% increased cerebral Ab load in APP23 transgenic mice compared with age-matched Accepted 18 March 2015 APP23 mice on an App-null background.
    [Show full text]
  • Corruptive Templating of Aβ in Alzheimer's Disease
    Corruptive Templating of Aβ In Alzheimer’s Disease Lary Walker Yerkes National Primate Research Center and Department of Neurology, Emory University Many thanks to Rebecca Rosen, Jeromy Dooyema, Amarallys Cintron, Jason Fritz, James Lah, Ranjita Betarbet, Harry LeVine III, Yvonne Eisele and Mathias Jucker Funding: PO1AG026423, P50AG025688, R21AG40589, CART Foundation ADC Directors Meeting April 21, 2012 Overview 1) The spectrum of proteopathies 2) Cerebral Aβ amyloidosis is inducible in APP-transgenic mice by Aβ-rich brain extracts 3) Aggregated Aβ itself is the seed 4) Aβ seeds travel within, and to, the brain 5) Aβ seeds vary in size 6) Implications, caveats and open questions The spectrum of proteopathies • Alzheimer’s disease (Aβ and tau) • Prion diseases (PrP) • Tauopathies (tau) • Huntington’s disease/triplet repeat disorders (polyQ) • Parkinson’s disease/Lewy body disease (α-synuclein) • Cerebral amyloid angiopathies (Aβ, cystatin, etc.) • Amyotrophic lateral sclerosis (SOD, TDP43, FUS) • FTLD ubi+, tau- (TDP43, FUS) • Familial British Dementia (ABri) • Familial Danish Dementia (ADan) • Familial Encephalopathy w/ Neuroserpin Inclusion Bodies (neuroserpin) • Systemic amyloidoses (AA, AL, Transthyretin, etc) • Type II diabetes (amylin) • Cirrhosis with hepatocytic inclusions (α1-antitrypsin) • … Disease or disease class Aggregating protein(s) Alzheimer's disease Amyloid β peptide (Aβ); Tau protein (see tauopathies) Cerebral β-amyloid angiopathy Amyloid β peptide (Aβ) Retinal ganglion cell degeneration in glaucoma Amyloid β peptide
    [Show full text]
  • Monkey, Mouse Or Zebrafish? Ethical and Scientific Considerations in Choosing Model Organisms for Animal Experiments
    Monkey, Mouse or Zebrafish? Ethical and Scientific Considerations in Choosing Model Organisms for Animal Experiments 1 July 2021, 13.15 – 18.00 Online – Join by Zoom Organized by the Ethics Committee for Animal Experimentation (ECAE) of the Swiss Academies of Arts and Sciences Over 80% of animals used in research are mice and rats. How do researchers justify the choice of animals for their research? Does the chosen species always provide the greatest epistemic benefit – or the least harm for that benefit? Researchers may also choose animals that they are familiar with, that are commonly used by their peers, or that cost the least. Furthermore, the Swiss Animal Welfare Act stipulates that “experiments on animals higher on the evolutionary scale may only be carried out if the purpose of the experiment cannot be achieved in animal species that are lower on the evolutionary scale”. From this an implicit moral hierarchy has emerged with primates at the top, followed by dogs and cats, other larger mammals, rodents, and – at the bottom – fish. Although this hierarchy is biased by subjective human preferences (related- ness, familiarity, attractiveness) rather than based on biological evidence, researchers may shy away from using animals 'higher on the evolutionary scale' out of moral concerns, higher bureaucratic burden or fear of harassment by militant activists. The aim of this symposium is to identify scientific and ethical problems in the choice of model organ- isms for animal experiments and raise awareness among scientists and regulators for these problems, using research on Alzheimer’s Disease as a case study. The symposium should help researchers and regulators in asking the right questions when choosing and evaluating model organisms.
    [Show full text]
  • 2005 Program
    PROGRAM EIGHTY FIRST ANNUAL MEETING OF THE AMERICAN ASSOCIATION OF NEUROPATHOLOGISTS JUNE 9-12, 2005 HYATT REGENCY CRYSTAL CITY HOTEL ARLINGTON, VIRGINIA CONTENTS Page AANP Organization Officers and Committees 1-3 General Information Hotel and Registration 4 Author/ Presenter Information 5-7 PowerPoint Presenters 5-6 Poster Presenters 6 Speaker Ready Room 7 Microscope Room 7 Business Meeting 7 Special Meetings 7 Published Abstracts 8 CME Information 8 Disclosures 8 Annual Reception 9 Meeting Sponsors and Donors 9 Hotel Floor Plan 10 Program and Scientific Sessions 11-37 MEETING AT A GLANCE 12-13 Special Course 14 Presidential Symposium 15 Scientific Sessions Platform Presentations Friday Morning (Abstracts 1-28) 16-19 Friday Afternoon (Abstracts 29-44) 20-21 Saturday Morning (Abstracts 139-153) 31-33 Saturday Afternoon (Abstracts 154-173) 34-37 Poster Presentations (Abstracts 45-138) 22-30 Author Index 38-43 1 AMERICAN ASSOCIATION OF NEUROPATHOLOGISTS Office of Secretary-Treasurer George Perry Institute of Pathology Case Western Reserve University 2095 Adelbert Rd Cleveland, OH 44106 Phone: 216-368-2488 Fax: 216-368-8964 Email: [email protected] Home page http://www.neuropath.org OFFICERS Harry V. Vinters, President Leroy R. Sharer, Vice-President Bette K. DeMasters, President Elect Mark L. Cohen, Vice-President Elect Barbara J. Crain, Vice-President for Professional Affairs George Perry, Secretary-Treasurer Kevin A. Roth, Assistant Secretary-Treasurer OTHER EXECUTIVE COUNCIL MEMBERS Dennis W. Dickson (Past President) Jeffrey A. Golden (Member-at-Large) Michael N. Hart (JNEN) Roger E. McLendon (Member-at-Large) Joseph E. Parisi (Past President) Clayton A. Wiley (Past President) ARCHIVIST Richard L.
    [Show full text]