Number Systems © Noel Murphy, DCU, 2000

Total Page:16

File Type:pdf, Size:1020Kb

Number Systems © Noel Murphy, DCU, 2000 Number Systems © Noel Murphy, DCU, 2000 A number system is just a way of writing numbers. We use a positional number system with ten symbols, 0 - 9, where the position of a symbol indicates its value. So for example, the 9 in 911 represents nine hundred things, while the 9 in 119 only represents nine things. It was not always like this. Egyptian Numbers Around 5000 BC (2000 years before Newgrange was built and 3000 years before the pyramids were built) the Egyptians had a number system based on powers of ten, but with different symbols for ten, one hundred, one thousand, etc. Instead of a symbol to represent the number three, they would write the appropriate symbol three times. Modern: 1 10 100 1000 10,000 100,000 1000,000 Egyptian: Thus the number 234 (for us) would be written by an ancient Egyptian as two snares, three heel bones and four vertical strokes: Roman Numerals The Romans used a number system based on the value five, represented by the letter V (which probably represented a hand with the fingers together and the thumb at an angle to them). This is called a quintal system from the Latin quintus meaning a fifth. Again there are special symbols for the bigger numbers, like X for ten, L for fifty, C for one hundred, D for five hundred and M for one thousand. It was also positional, but not in the modern sense. The symbols to the left of a larger symbol were to be subtracted to find the value represented, while ones appearing on the right were to be added. Thus IV represents five minus one, or four, while VI represents five plus one, or six. Babylonian Number Systems Around 3000BC, the Babylonians in Mesopotamia (modern Iraq) used a number system based on the value sixty. They used two wedge-shaped (cuneiform) marks, for one and for ten, where the position of the symbol indicated its value. Thus represented two sixties plus ten plus one (131 in our system). The Babylonian use of sixty as their base number is the origin of our use of 60 seconds in a minute, and 60 minutes in an hour. It is also the origin of our convention of 360 degrees in a complete circle and use of “minutes of arc” and “seconds of arc” for fractions of a degree. The Babylonians were very interested in astronomy and the two things you need to study astronomy are measures of time and angles. It was 300BC before the Babylonians started to use a special symbol to denote an empty space between other positional symbols (i.e., to indicate a zero, as in 105, meaning one hundred, no tens and five units in our system). However, they still did use not zeros on the right hand side of a number to give the scale of a number. Instead they used a sophisticated system that we now call floating point where the scale of a number is known or given separately. Thus they would write the numbers 1 30 , 2, 120 and 7200 in exactly the same way, with the scale being inferred from the context. This system allowed then to carry out multiplication very easily, whereas the later Roman numeral system made multiplication almost impossible. Actually the Babylonians also used numbers written in groupings based on tens and hundreds for normal business transactions and used the base sixty numbers just for the more difficult problems. The History Of Our Number System Our number system with its positional notation and base (or radix) ten, was first used in India in AD 595, though the earliest use of this system with a zero is from AD 876. Again, the main motivation for the use of a proper number system was astronomy. The system was adopted by the Moors, and later was introduced to Europe, principally through translations of a book called Algebra by an Arab mathematician called al-Khwarizmi. His name has given us the word “algorithm” meaning a procedure, particularly in the context of computer programs. (The word “algebra” is from the Arabic “al-jabr w’al-muqabala” meaning “restoration and reduction”). The use of positional notation for fractions was introduced around 1579 by Francois Viete. Before this, fractions were usually represented in the “degrees, minutes, seconds” notation that we still use for fractions of an angle. The dot for a decimal point was popularised in the English-speaking world by the Scottish mathematician John Napier, who invented logarithms. (In continental Europe, a comma is usually used instead of a dot for the decimal “point”). The development of decimal fractions during the Middle Ages was often motivated by attempts to find accurate representations of the value of p. A Persian mathematician who died c.1436 calculated the value of 2p correct to 16 decimal places. The Denary System In our system, a denary system, the position of a symbol to the left of the decimal point represents numbers of increasing powers of ten, while digits to the right of the decimal point represent decreasing fractions of ten. So 735.24 = 7 ´102 + 3´101 + 5´ 100 + 2 ´ 10-1 + 4 ´ 10-2 The Binary System In this century, the inventors of the computer, such as the Hungarian mathematician John Von Neumann, decided that as the simplest electronic circuit could be in just two states: ON or OFF, it would be useful to represent numbers in a binary system with two symbols or digits, “1” and “0”. The binary system used is exactly the same as the denary system except that powers of two are used instead of powers of ten. So 1101.11 1 23 1 22 0 21 1 20 1 2-1 1 2-2 2 = ´ + ´ + ´ + ´ + ´ + ´ 1 1 = 1´ 8 + 1´ 4 + 0´ 2 + 1´1 + 1´ 2 + 1´ 4 13.75 = 10 To convert from base ten to base two, we have to deal with the two sides of the binary point separately (its not a decimal point any more).1 For the number to the left of the binary point we repeatedly divide by 2 until there is nothing left. The binary whole number is then the remainders read from the bottom up. 13 2 6 remainder 1 10 ¸ = 610 ¸ 2 = 3 remainder 0 310 ¸ 2 = 1 remainder 1 110 ¸ 2 = 0 remainder 1 13 1101 That is 10 = 2 . 1 The general term for the dot used to separate the fractional part of a number from the integer part applicable to all number bases is the radix point. “Radix” is another word for the base to which a positional number system is defined. For the binary digits to the right of the decimal point we repeatedly multiply by 2, and take the fractional part for the next step, until there is nothing left. The binary fractional number is then the set of whole ones and zeros we got in the multiplication process, reading from the top. 0.6875 2 1.375 1 0.375 10 ´ = = + 0.37510 ´ 2 = 0.75 = 0 + 0.75 0.7510 ´ 2 = 1.5 = 1+ 0.5 0.510 ´ 2 = 1 = 1+ 0.0 0.6875 0.1011 That is, 10 = 2 . In principle we can carry out this process to convert to and from base ten or denary numbers and any other base, but in principle only a few others have had any widespread usage. The most popular ones in computer engineering are base eight (or octal) and base sixteen (or hexadecimal). Binary number systems are actually much older than our “computer age”. The medieval English units for the measure of quantities of liquid went as follows: 2 gills = 1 chopin 2 chopins = 1 pint 2 pints = 1 quart 2 quarts = 1 pottle 2 pottles = 1 gallon 2 gallons = 1 peck 2 pecks = 1 demibushel 2 demibushels = 1 bushel or firkin 2 firkins = 1 kilderkin 2 kilderkins = 1 barrel 2 barrels = 1 hogshead 2 hogsheads = 1 pipe 2 pipes = 1 tun How many do you recognise? The first published work on the binary number system as such, was by a Spanish bishop, Juan Caramuel in 1670. Charles XII of Sweden began to promote, in 1717, the use of base 8 or base 64 for calculation, but died in battle before he could make a decree to this effect. Hexadecimal Engineers usually use the word “bit” as a contraction for the term “binary digit”. Over the last twenty years, engineers and computer scientists have designed and built computers with things internally grouped in multiples of eight bits, sixteen bits, thirty-two bits, and more recently sixty-four bits. These are all multiples of four bits and it is always possible to represent four bits with one hexadecimal digit, so for convenience, engineers and computer scientists usually use hexadecimal, or base sixteen numbers, at least at the level of the “nuts and bolts” of the computer. The problem with base sixteen is that we need sixteen different symbols or digits. (In base ten these are 0-9 and in base two they are 0 and 1). Usually we use the letters A to F to represent the numbers ten to fifteen, so the digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. So 3 2 1 0 A1CF16 = 10´16 + 1´16 + 12 ´16 + 15´16 = 10´ 4096 + 1´ 256 + 12 ´16 + 15´1 = 40960 + 256 + 192 + 15 41423 = 10 The biggest number we can write with four hexadecimal digits (or thirty-two bits) is FFFF 65535 32767 16 = 10 .
Recommended publications
  • Dynamical Directions in Numeration Tome 56, No 7 (2006), P
    R AN IE N R A U L E O S F D T E U L T I ’ I T N S ANNALES DE L’INSTITUT FOURIER Guy BARAT, Valérie BERTHÉ, Pierre LIARDET & Jörg THUSWALDNER Dynamical directions in numeration Tome 56, no 7 (2006), p. 1987-2092. <http://aif.cedram.org/item?id=AIF_2006__56_7_1987_0> © Association des Annales de l’institut Fourier, 2006, tous droits réservés. L’accès aux articles de la revue « Annales de l’institut Fourier » (http://aif.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://aif.cedram.org/legal/). Toute re- production en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement per- sonnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Ann. Inst. Fourier, Grenoble 56, 7 (2006) 1987-2092 DYNAMICAL DIRECTIONS IN NUMERATION by Guy BARAT, Valérie BERTHÉ, Pierre LIARDET & Jörg THUSWALDNER (*) Abstract. — This survey aims at giving a consistent presentation of numer- ation from a dynamical viewpoint: we focus on numeration systems, their asso- ciated compactification, and dynamical systems that can be naturally defined on them. The exposition is unified by the fibred numeration system concept. Many examples are discussed. Various numerations on rational integers, real or complex numbers are presented with special attention paid to β-numeration and its gener- alisations, abstract numeration systems and shift radix systems, as well as G-scales and odometers.
    [Show full text]
  • Basic Computer Arithmetic
    BASIC COMPUTER ARITHMETIC TSOGTGEREL GANTUMUR Abstract. First, we consider how integers and fractional numbers are represented and manipulated internally on a computer. The focus is on the principles behind the algorithms, rather than on implementation details. Then we develop a basic theoretical framework for analyzing algorithms involving inexact arithmetic. Contents 1. Introduction 1 2. Integers 2 3. Simple division algorithms 6 4. Long division 11 5. The SRT division algorithm 16 6. Floating point numbers 18 7. Floating point arithmetic 21 8. Propagation of error 24 9. Summation and product 29 1. Introduction There is no way to encode all real numbers by using finite length words, even if we use an alphabet with countably many characters, because the set of finite sequences of integers is countable. Fortunately, the real numbers support many countable dense subsets, and hence the encoding problem of real numbers may be replaced by the question of choosing a suitable countable dense subset. Let us look at some practical examples of real number encodings. ● Decimal notation. Examples: 36000, 2:35(75), −0:000072. ● Scientific notation. Examples: 3:6⋅104, −72⋅10−6. The general form is m⋅10e. In order to have a unique (or near unique) representation of each number, one can impose a normalization, such as requiring 1 ≤ ∣m∣ < 10. 2 −1 ● System with base/radix β. Example: m2m1m0:m−1 = m2β +m1β +m0 +m−1β . The dot separating the integer and fractional parts is called the radix point. ● Binary (β = 2), octal (β = 8), and hexadecimal (β = 16) numbers. ● Babylonian hexagesimal (β = 60) numbers.
    [Show full text]
  • Introduction to Numerical Computing Number Systems in the Decimal System We Use the 10 Numeric Symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 to Represent Numbers
    Statistics 580 Introduction to Numerical Computing Number Systems In the decimal system we use the 10 numeric symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 to represent numbers. The relative position of each symbol determines the magnitude or the value of the number. Example: 6594 is expressible as 6594 = 6 103 + 5 102 + 9 101 + 4 100 Example: · · · · 436.578 is expressible as 436:578 = 4 102 + 3 101 + 6 100 + 5 10−1 + 7 10−2 + 8 10−3 · · · · · · We call the number 10 the base of the system. In general we can represent numbers in any system in the polynomial form: z = ( akak− a a : b b bm )B · · · 1 · · · 1 0 0 1 · · · · · · where B is the base of the system and the period in the middle is the radix point. In com- puters, numbers are represented in the binary system. In the binary system, the base is 2 and the only numeric symbols we need to represent numbers in binary are 0 and 1. Example: 0100110 is a binary number whose value in the decimal system is calculated as follows: 0 26 + 1 25 + 0 24 + 0 23 + 1 22 + 1 21 + 0 20 = 32 + 4 + 2 · · · · · · · = (38)10 The hexadecimal system is another useful number system in computer work. In this sys- tem, the base is 16 and the 16 numeric and arabic symbols used to represent numbers are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F Example: Let 26 be a hexadecimal number.
    [Show full text]
  • Data Representation in Computer Systems
    © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION There are 10 kinds of people in the world—those who understand binary and those who don’t. © Jones & Bartlett Learning, LLC © Jones—Anonymous & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION CHAPTER Data Representation © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE 2OR DISTRIBUTIONin ComputerNOT FOR Systems SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION 2.1 INTRODUCTION he organization of any computer depends considerably on how it represents T numbers, characters, and control information. The converse is also true: Stan- © Jones & Bartlettdards Learning, and conventions LLC established over the years© Jones have determined& Bartlett certain Learning, aspects LLC of computer organization. This chapter describes the various ways in which com- NOT FOR SALE putersOR DISTRIBUTION can store and manipulate numbers andNOT characters. FOR SALE The ideas OR presented DISTRIBUTION in the following sections form the basis for understanding the organization and func- tion of all types of digital systems. The most basic unit of information in a digital computer is called a bit, which is a contraction of binary digit. In the concrete sense, a bit is nothing more than © Jones & Bartlett Learning, aLLC state of “on” or “off ” (or “high”© Jones and “low”)& Bartlett within Learning, a computer LLCcircuit. In 1964, NOT FOR SALE OR DISTRIBUTIONthe designers of the IBM System/360NOT FOR mainframe SALE OR computer DISTRIBUTION established a conven- tion of using groups of 8 bits as the basic unit of addressable computer storage.
    [Show full text]
  • Number Systems
    1 Number Systems The study of number systems is important from the viewpoint of understanding how data are represented before they can be processed by any digital system including a digital computer. It is one of the most basic topics in digital electronics. In this chapter we will discuss different number systems commonly used to represent data. We will begin the discussion with the decimal number system. Although it is not important from the viewpoint of digital electronics, a brief outline of this will be given to explain some of the underlying concepts used in other number systems. This will then be followed by the more commonly used number systems such as the binary, octal and hexadecimal number systems. 1.1 Analogue Versus Digital There are two basic ways of representing the numerical values of the various physical quantities with which we constantly deal in our day-to-day lives. One of the ways, referred to as analogue,isto express the numerical value of the quantity as a continuous range of values between the two expected extreme values. For example, the temperature of an oven settable anywhere from 0 to 100 °C may be measured to be 65 °C or 64.96 °C or 64.958 °C or even 64.9579 °C and so on, depending upon the accuracy of the measuring instrument. Similarly, voltage across a certain component in an electronic circuit may be measured as 6.5 V or 6.49 V or 6.487 V or 6.4869 V. The underlying concept in this mode of representation is that variation in the numerical value of the quantity is continuous and could have any of the infinite theoretically possible values between the two extremes.
    [Show full text]
  • The Mayan Long Count Calendar Thomas Chanier
    The Mayan Long Count Calendar Thomas Chanier To cite this version: Thomas Chanier. The Mayan Long Count Calendar. 2015. hal-00750006v11 HAL Id: hal-00750006 https://hal.archives-ouvertes.fr/hal-00750006v11 Preprint submitted on 8 Dec 2015 (v11), last revised 16 Dec 2015 (v12) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Mayan Long Count Calendar Thomas Chanier∗1 1 Universit´ede Brest, 6 avenue Victor le Gorgeu, F-29285 Brest Cedex, France The Mayan Codices, bark-paper books from the Late Postclassic period (1300 to 1521 CE) contain many astronomical tables correlated to ritual cycles, evidence of the achievement of Mayan naked- eye astronomy and mathematics in connection to religion. In this study, a calendar supernumber is calculated by computing the least common multiple of 8 canonical astronomical periods. The three major calendar cycles, the Calendar Round, the Kawil and the Long Count Calendar are shown to derive from this supernumber. The 360-day Tun, the 365-day civil year Haab’ and the 3276-day Kawil-direction-color cycle are determined from the prime factorization of the 8 canonical astronomical input parameters.
    [Show full text]
  • Ed 040 737 Institution Available from Edrs Price
    DOCUMENT RESUME ED 040 737 LI 002 060 TITLE Automatic Data Processing Glossary. INSTITUTION Bureau of the Budget, Washington, D.C. NOTE 65p. AVAILABLE FROM Reprinted and distributed by Datamation Magazine, 35 Mason St., Greenwich, Conn. 06830 ($1.00) EDRS PRICE EDRS Price MF-$0.50 HC-$3.35 DESCRIPTORS *Electronic Data Processing, *Glossaries, *Word Lists ABSTRACT The technology of the automatic information processing field has progressed dramatically in the past few years and has created a problem in common term usage. As a solution, "Datamation" Magazine offers this glossary which was compiled by the U.S. Bureau of the Budget as an official reference. The terms appear in a single alphabetic sequence, ignoring commas or hyphens. Definitions are given only under "key word" entries. Modifiers consisting of more than one word are listed in the normally used sequence (record, fixed length). In cases where two or more terms have the same meaning, only the preferred term is defined, all synonylious terms are given at the end of the definition.Other relationships between terms are shown by descriptive referencing expressions. Hyphens are used sparingly to avoid ambiguity. The derivation of an acronym is shown by underscoring the appropriate letters in the words from which the acronym is formed. Although this glossary is several years old, it is still considered the best one available. (NH) Ns U.S DEPARTMENT OF HEALTH, EDUCATION & WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGINATING IT POINTS OF VIEW OR OPINIONS STATED DO NOT NECES- SARILY REPRESENT OFFICIAL OFFICE OF EDU- CATION POSITION OR POLICY automatic data processing GLOSSA 1 I.R DATAMATION Magazine reprints this Glossary of Terms as a service to the data processing field.
    [Show full text]
  • Floating Point
    Contents Articles Floating point 1 Positional notation 22 References Article Sources and Contributors 32 Image Sources, Licenses and Contributors 33 Article Licenses License 34 Floating point 1 Floating point In computing, floating point describes a method of representing an approximation of a real number in a way that can support a wide range of values. The numbers are, in general, represented approximately to a fixed number of significant digits (the significand) and scaled using an exponent. The base for the scaling is normally 2, 10 or 16. The typical number that can be represented exactly is of the form: Significant digits × baseexponent The idea of floating-point representation over intrinsically integer fixed-point numbers, which consist purely of significand, is that An early electromechanical programmable computer, expanding it with the exponent component achieves greater range. the Z3, included floating-point arithmetic (replica on display at Deutsches Museum in Munich). For instance, to represent large values, e.g. distances between galaxies, there is no need to keep all 39 decimal places down to femtometre-resolution (employed in particle physics). Assuming that the best resolution is in light years, only the 9 most significant decimal digits matter, whereas the remaining 30 digits carry pure noise, and thus can be safely dropped. This represents a savings of 100 bits of computer data storage. Instead of these 100 bits, much fewer are used to represent the scale (the exponent), e.g. 8 bits or 2 A diagram showing a representation of a decimal decimal digits. Given that one number can encode both astronomic floating-point number using a mantissa and an and subatomic distances with the same nine digits of accuracy, but exponent.
    [Show full text]
  • Non-Power Positional Number Representation Systems, Bijective Numeration, and the Mesoamerican Discovery of Zero
    Non-Power Positional Number Representation Systems, Bijective Numeration, and the Mesoamerican Discovery of Zero Berenice Rojo-Garibaldia, Costanza Rangonib, Diego L. Gonz´alezb;c, and Julyan H. E. Cartwrightd;e a Posgrado en Ciencias del Mar y Limnolog´ıa, Universidad Nacional Aut´onomade M´exico, Av. Universidad 3000, Col. Copilco, Del. Coyoac´an,Cd.Mx. 04510, M´exico b Istituto per la Microelettronica e i Microsistemi, Area della Ricerca CNR di Bologna, 40129 Bologna, Italy c Dipartimento di Scienze Statistiche \Paolo Fortunati", Universit`adi Bologna, 40126 Bologna, Italy d Instituto Andaluz de Ciencias de la Tierra, CSIC{Universidad de Granada, 18100 Armilla, Granada, Spain e Instituto Carlos I de F´ısicaTe´oricay Computacional, Universidad de Granada, 18071 Granada, Spain Keywords: Zero | Maya | Pre-Columbian Mesoamerica | Number rep- resentation systems | Bijective numeration Abstract Pre-Columbian Mesoamerica was a fertile crescent for the development of number systems. A form of vigesimal system seems to have been present from the first Olmec civilization onwards, to which succeeding peoples made contributions. We discuss the Maya use of the representational redundancy present in their Long Count calendar, a non-power positional number representation system with multipliers 1, 20, 18× 20, :::, 18× arXiv:2005.10207v2 [math.HO] 23 Mar 2021 20n. We demonstrate that the Mesoamericans did not need to invent positional notation and discover zero at the same time because they were not afraid of using a number system in which the same number can be written in different ways. A Long Count number system with digits from 0 to 20 is seen later to pass to one using digits 0 to 19, which leads us to propose that even earlier there may have been an initial zeroless bijective numeration system whose digits ran from 1 to 20.
    [Show full text]
  • A Tutorial on Data Representation - Integers, Floating-Point Numbers, and Characters 2/26/13 8:22 PM
    A Tutorial on Data Representation - Integers, Floating-point numbers, and characters 2/26/13 8:22 PM A Tutorial on Data Representation 1. Number Systems Human beings use decimal (base 10) and duodecimal (base 12) number systems for counting and measurements (probably because we have 10 fingers and two big toes). Computers use binary (base 2) number system, as they are made from binary digital components (known as transistors) operating in two states - on and off. In computing, we also use hexadecimal (base 16) or octal (base 8) number systems, as a compact form for represent binary numbers. 1.1 Decimal (Base 10) Number System Decimal number system has ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, called digits. It uses positional notation. That is, the least-significant digit (right-most digit) is of the or- der of 10^0 (units or ones), the second right-most digit is of the order of 10^1 (tens), the third right-most digit is of the order of 10^2 (hundreds), and so on. For example, 735 = 7×10^2 + 3×10^1 + 5×10^0 We shall denote a decimal number with an optional suffix D if ambiguity arises. 1.2 Binary (Base 2) Number System Binary number system has two symbols: 0 and 1, called bits. It is also a positional nota- tion, for example, 10110B = 1×2^4 + 0×2^3 + 1×2^2 + 1×2^1 + 0×2^0 We shall denote a binary number with a suffix B. Some programming languages de- note binary numbers with prefix 0b (e.g., 0b1001000), or prefix b with the bits quot- ed (e.g., b'10001111').
    [Show full text]
  • Parallel Branch-And-Bound Revisited for Solving Permutation Combinatorial Optimization Problems on Multi-Core Processors and Coprocessors Rudi Leroy
    Parallel Branch-and-Bound revisited for solving permutation combinatorial optimization problems on multi-core processors and coprocessors Rudi Leroy To cite this version: Rudi Leroy. Parallel Branch-and-Bound revisited for solving permutation combinatorial optimization problems on multi-core processors and coprocessors. Distributed, Parallel, and Cluster Computing [cs.DC]. Université Lille 1, 2015. English. tel-01248563 HAL Id: tel-01248563 https://hal.inria.fr/tel-01248563 Submitted on 27 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ecole Doctorale Sciences Pour l’Ingénieur Université Lille 1 Nord-de-France Centre de Recherche en Informatique, Signal et Automatique de Lille (UMR CNRS 9189) Centre de Recherche INRIA Lille Nord Europe Maison de la Simulation Thèse présentée pour obtenir le grade de docteur Discipline : Informatique Parallel Branch-and-Bound revisited for solving permutation combinatorial optimization problems on multi-core processors and coprocessors. Défendue par : Rudi Leroy Novembre 2012 - Novembre 2015 Devant le jury
    [Show full text]
  • DYNAMICAL DIRECTIONS in NUMERATION Contents 1
    DYNAMICAL DIRECTIONS IN NUMERATION GUY BARAT, VALERIE´ BERTHE,´ PIERRE LIARDET, AND JORG¨ THUSWALDNER Abstract. This survey aims at giving a consistent presentation of numer- ation from a dynamical viewpoint: we focus on numeration systems, their associated compactification, and dynamical systems that can be naturally defined on them. The exposition is unified by the fibred numeration system concept. Many examples are discussed. Various numerations on rational integers, real or complex numbers are presented with special attention paid to β-numeration and its generalisations, abstract numeration systems and shift radix systems, as well as G-scales and odometers. A section of appli- cations ends the paper. Le but de ce survol est d’aborder d´efinitions et propri´et´es concernant la num´eration d’un point de vue dynamique : nous nous concentrons sur les syst`emes de num´eration, leur compactification, et les syst`emes dynamiques d´efinis sur ces espaces. La notion de syst`eme de num´eration fibr´eunifie la pr´esentation. De nombreux exemples sont ´etudi´es. Plusieurs num´erations sur les entiers naturels, relatifs, les nombres r´eels ou complexes sont pr´esent´ees. Nous portons une attention sp´eciale `ala β-num´eration ainsi qu’`ases g´en´erali- sations, aux syst`emes de num´eration abstraits, aux syst`emes dits “shift radix”, de mˆeme qu’aux G-´echelles et aux odom`etres. Un paragraphe d’appli- cations conclut ce survol. Contents 1. Introduction 2 1.1. Origins 2 1.2. What this survey is (not) about 4 2. Fibred numeration systems 7 2.1. Numeration systems 7 2.2.
    [Show full text]