New Methods for Synthesis of Organic Peroxides and Application Of

Total Page:16

File Type:pdf, Size:1020Kb

New Methods for Synthesis of Organic Peroxides and Application Of University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Student Research Projects, Dissertations, and Chemistry, Department of Theses - Chemistry Department Spring 4-2015 New Methods for Synthesis of Organic Peroxides and Application of Peroxide Electrophiles to Synthesis of Functionalized Ethers Shiva Kumar Kyasa University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/chemistrydiss Part of the Organic Chemistry Commons Kyasa, Shiva Kumar, "New Methods for Synthesis of Organic Peroxides and Application of Peroxide Electrophiles to Synthesis of Functionalized Ethers" (2015). Student Research Projects, Dissertations, and Theses - Chemistry Department. 51. http://digitalcommons.unl.edu/chemistrydiss/51 This Article is brought to you for free and open access by the Chemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Student Research Projects, Dissertations, and Theses - Chemistry Department by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. NEW METHODS FOR SYNTHESIS OF ORGANIC PEROXIDES AND APPLICATION OF PEROXIDE ELECTROPHILES TO SYNTHESIS OF FUNCTIONALIZED ETHERS by Shiva Kumar Kyasa A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Chemistry Under the Supervision of Professor Patrick H. Dussault Lincoln, Nebraska March, 2015 NEW METHODS FOR SYNTHESIS OF ORGANIC PEROXIDES AND APPLICATION OF PEROXIDE ELECTROPHILES TO SYNTHESIS OF FUNCTIONALIZED ETHERS Shiva Kumar Kyasa, Ph.D. University of Nebraska, 2015 Adviser: Patrick H. Dussault New Method for Synthesis of Alkyl Hydroperoxides: There are a number of methods reported for synthesis of alkyl hydroperoxides, but most of them suffer either from poor yields or the formation of unwanted side products. I will be discussing new methodology for efficient synthesis of pure samples of 1° and 2° alkyl hydroperoxides via alkylation of readily available cyclododecanone 1,1-dihydroperoxide followed by hydrolysis of the resulting bis peroxyacetals. Peroxide Electrophiles for Synthesis of Functionalized Ethers: Peroxides are underexplored functional groups as precursors for C-O bond formation and ether synthesis. The reactivity of dialkyl peroxides towards organometallics such as alkyl lithium and magnesium reagents is known. However, there has been little application of this reaction to C-O bond formation due to limitations in the reactivity of available reagents for alkoxide transfer. We have studied the reactivity of a variety of dialkyl peroxides, alkyl/silyl peroxides, and monoperoxyacetals towards simple organolithium and organomagnesium reagents and found that thermally stable 2-tetrahydropyranyl peroxides enable efficient and highly selective transfer of 1°, 2° and 3° alkoxide (RO) groups to carbanions to form the corresponding ethers. The method was applied to synthesis of a variety of functionalized ethers, including S,S,O-orthoesters, difluoroethers, mixed O,O-acetals, and cyclopropyl ethers. The observed results are discussed in terms of possible mechanisms for C-O bond formation. i To, My Parents Balaiah & Laxmi and wife Jyothi ii Acknowledgements I am extremely grateful to Prof. Patrick H. Dussault for his guidance for my doctoral research and teaching of organic chemistry in the classroom. I couldn’t go into the depths of organic synthesis and peroxide chemistry without his help. I would like to thank Prof. David B. Berkowitz for reading and suggesting the edits to my dissertation. I would like to thank my committee members Prof. Liangcheng Du, Prof. Li Tan, and Prof. Rebecca Lai. I am very thankful to Dr. Chris Schwartz for useful discussions of my projects at beginning of my Ph.D. I would like to thank Dr. Martha Morton, whenever I have questions about NMR always helpful, Sarah Basiaga teaching IR, GC-MS, TGA-DSC data recording. I also thankful to current and previous colleagues. iii Chapter-1. Reductive amination of hydroperoxy acetals; application of reductive amination in tandem with ozonolysis. Section-1: Introduction. …………………………………………………………..………2 Section-2: Background on peroxyacetal functionalization. …………………….………..3 Section-3: Brief introduction about reductive amination. …………………….………….8 Section-4: Previous reductive amination of peroxyacetals in tandem with alkene cleavage.….……12 Section-5: Synthesis of hydroperoxyacetals/ketals and reduction with Na(OAc)3BH…..13 Section-6: One pot synthesis of amines from hydroperoxy acetals. ………………….....15 Section-7: One pot synthesis of amines from alkenes. ………………………………….17 Section-8: Reductive formation of hydrazides. ………………………………………... 19 Section-9: Conclusions. ………………………………………………………………... 21 Section-10: Experimental section. ......…………………………………………………..21 Section-11: References. …………………………………………………………………22 Chapter-2: A New Synthesis of Alkyl hydroperoxides. Section-1: Background on alkyl hydroperoxide synthetic methods..….………….....…..24 Section-2: 1,1-Dihydroperoxide (DHP) synthesis and use as nucleophiles..………........30 Section-3: Bisperoxyacetals..………………………………………………………....….32 3.1: Synthesis of bisperoxyacetals from 1,1-dihydroperoxides…………..…….….…...,.33 3.2: DHP alkylation using alkyl triflates. …………………………….……..…………...37 Section-4: Alkyl hydroperoxides via hydrolysis of bisperoxy acetals …………. …..…..38 4.1: Studies towards chiral alkyl hydroperoxides ………………....…...………..………43 4.2: Stability studies of bisperoxyacetals …………………….…..…………………..….45 iv Section-5: Experimental procedures. ………………….………………………….…….46 Section-6: References ………………………………….………………………….…….47 Chapter-3: Investigations of factors controlling reactivity of dialkyl peroxides with organometallic species. Section-1: Background on peroxides as electrophiles. ……………….…………...….…50 1.1: Reactions with C-C sigma and pi bonds. ………………….…...…..……….....……51 1.2: Reactions with heteroatom nucleophiles. .………………………….……...….........54 1.3: Lewis acid activated reactions of peroxides and hydroperoxides. ………………….59 Section-2: Background on reaction of peroxides with organometallic reagents …..........61 2.1: Reaction with Grignard reagents. …………………..………….……….......………61 2.2: Reaction with organolithium reagents. …………………………….……..…..…….65 2.3: Studies of the role of radical pathways ………………………………..………........68 2.4: Brief summary on mechanism- two electron vs. radical. …..…..................…….….73 Section-3: Results and discussion. ……………………………………….……..……….74 3.1: Synthesis of peroxide electrophiles. ………………….……………………...……..74 3.2: Comparison of C-O bond formation using different peroxide electrophiles. ………78 3.3: Reaction of THP monoperoxyacetals with sp3 RLi and RMgX. …….……..….…...82 3.4: Application to couplings with sp2 RLi and RMgX …………………………..……..84 3.5: Application to couplings with sp RLi and RMgX …….……………………..……..85 Section-4: Preliminary computational studies of the reactions of peroxides with RLi….86 Section-5: Leaving group effects ………………………………………………...……...88 Section-6: Conclusions ……………………...……………………………….………….90 Section-7: Experimental Section. …………………...……………………….…………..91 v Section-8: References. ………………………………………………………….……...121 Chapter-4: Application of peroxides to synthesis of functionalized ethers. Section-1: Reaction of peroxides with dithianes and synthesis of S,S,O-orthoesters .....126 1.1. Previous approaches to S,S,O-Orthoesters. ……………………………..….….…..128 1.2. Reaction of peroxides with dithianes. ………………..…………….…….….…….129 Section-2: Synthesis of difluoroethers. ………………………..………..…….…….….134 2.1. Background on fluorodesulfurization. …………………..…………..……..……...134 2.2. Synthesis of difluoroethers from pure S,S,O-orthoesters. …..………..…..……….136 Section-3: Studies towards synthesis of trifluoromethyl ethers. ….…………...………137 3.1. Previous approaches for synthesis of trifluoromethyl ethers. ……………..………137 3.2. Peroxide electrophiles for trifluoromethylation. ………………………….….……141 3.3. Attempted nucleophilic trifluoromethylation of peroxides. ………….….…….…..142 3.4: Synthesis of a S,S,S,O-orthocarbonate and derived trifluoroether. ……….……….144 Section 4: Investigation of silylated cyanohydrins as nucleophiles. …………..….……148 Section-5: Synthesis of cyclopropyl ethers. ………………………………….….……..150 Section-6: Application of peroxides to synthesis of mixed acetals. ………….….…….152 6.1. Background on α-alkoxy stannanes. ……………………………………….……...152 6.2. Reaction of α-alkoxylithium reagents with peroxides. …………………….…...…154 6.3: Investigations into synthesis of 1,3-dioxetanes. …...……………………….……..156 Section-7: Experimental section. ……………………………………………….……...159 Section-9: References. …………………………...……………………………….……172 1 Chapter-1. Reductive amination of hydroperoxy acetals; application of reductive amination in tandem with ozonolysis. Portions of this chapter were reproduced from Synthesis, 2011, 3475 with the permission of the publisher.1 In this chapter, I will discuss the development of new methodology for one-pot conversion of alkenes to amines. The discussion will begin with the formation of hydroperoxy acetals from alkene ozonolysis and then discuss our development of a mild reduction of hydroperoxy acetals to carbonyl compounds using Na(OAc)3BH. The chapter will conclude with the application of this methodology to reductive amination, including a one-pot synthesis of amines from alkenes (Scheme-1). Scheme-1: O Na(OAc)3BH OOH R O3, DCM, MeOH Na(OAc)3BH R-NH R 2 R N R OMe R H H (i) O3,
Recommended publications
  • Modern-Reduction-Methods.Pdf
    Modern Reduction Methods Edited by Pher G. Andersson and Ian J. Munslow Related Titles Yamamoto, H., Ishihara, K. (eds.) Torii, S. Acid Catalysis in Modern Electroorganic Reduction Organic Synthesis Synthesis 2008 2006 ISBN: 978-3-527-31724-0 ISBN: 978-3-527-31539-0 Roberts, S. M. de Meijere, A., Diederich, F. (eds.) Catalysts for Fine Chemical Metal-Catalyzed Cross- Synthesis V 5 – Regio and Coupling Reactions Stereo-Controlled Oxidations 2004 and Reductions ISBN: 978-3-527-30518-6 2007 Online Book Wiley Interscience Bäckvall, J.-E. (ed.) ISBN: 978-0-470-09024-4 Modern Oxidation Methods 2004 de Vries, J. G., Elsevier, C. J. (eds.) ISBN: 978-3-527-30642-8 The Handbook of Homogeneous Hydrogenation 2007 ISBN: 978-3-527-31161-3 Modern Reduction Methods Edited by Pher G. Andersson and Ian J. Munslow The Editors All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and Prof. Dr. Pher G. Andersson publisher do not warrant the information Uppsala University contained in these books, including this book, to Department of Organic Chemistry be free of errors. Readers are advised to keep in Husargatan 3 mind that statements, data, illustrations, 751 23 Uppsala procedural details or other items may Sweden inadvertently be inaccurate. Dr. Ian J. Munslow Library of Congress Card No.: Uppsala University applied for Department of Biochemistry and Organic Chemistry Husargatan 3 British Library Cataloguing-in-Publication Data 751 23 Uppsala A catalogue record for this book is available from Sweden the British Library. Bibliographic information published by the Deutsche Nationalbibliothek Die Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografi e; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.
    [Show full text]
  • Lanthanide Replacement in Organic Synthesis: Calcium-Mediated Luche-Type Reduction of Α,Β-Functionalised Ketones
    Lanthanide Replacement in Organic Synthesis: Calcium-mediated Luche-type Reduction of α,β-functionalised Ketones A thesis submitted by Nina Viktoria Forkel In partial fulfilment of the requirement for a degree of Doctor of Philosophy Imperial College London Department of Chemistry South Kensington Campus SW7 2AZ London United Kingdom September 2013 Lanthanide Replacement in Organic Synthesis: Calcium-mediated Luche-type Reduction of α,β-functionalised Ketones “Man kann sich die Weite und Möglichkeiten des Lebens gar nicht unerschöpflich genug denken.” (Rainer Maria Rilke) This thesis is dedicated to all my loved ones. Declaration of originality and statement of copyright Declaration of originality I, Nina V. Forkel, certify that the research described within this thesis was carried out in the Department of Chemistry at Imperial College London between October 2009 and September 2012. It was accomplished under the primary supervision of Dr Matthew J. Fuchter, Imperial College London, along with supervision from Dr David A. Henderson, Pfizer Ltd. The entire body of work is that of the author, unless otherwise stated to the contrary, and has not been submitted previously for a degree at this or any other university. Statement of copyright The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes, and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work.
    [Show full text]
  • Cholesteryl Ester Hydroperoxide Formation in Myoglobin-Catalyzed
    Biochemical Pharmacology, Vol. 55, pp. 333–340, 1998. ISSN 0006-2952/98/$19.00 1 0.00 © 1998 Elsevier Science Inc. All rights reserved. PII S0006-2952(97)00470-X Cholesteryl Ester Hydroperoxide Formation in Myoglobin-Catalyzed Low Density Lipoprotein Oxidation CONCERTED ANTIOXIDANT ACTIVITY OF CAFFEIC AND P-COUMARIC ACIDS WITH ASCORBATE Otı´lia Vieira,*† Joa˜o Laranjinha,*† Vı´tor Madeira† and Leonor Almeida*† *LABORATORY OF BIOCHEMISTRY,FACULTY OF PHARMACY; AND †CENTER FOR NEUROSCIENCES, UNIVERSITY OF COIMBRA, 3000 COIMBRA,PORTUGAL ABSTRACT. Two diet-derived phenolic acids, caffeic and p-coumaric acids, interplayed with ascorbate in the protection of low density lipoproteins (LDL) from oxidation promoted by ferrylmyoglobin. Ferrylmyoglobin, a two-electron oxidation product from the reaction of metmyoglobin and H2O2, was able to oxidize LDL, degrading free cholesterol and cholesteryl esters. Upon exposure to ferrylmyoglobin, LDL became rapidly depleted of cholesteryl arachidonate and linoleate, which turn into the corresponding hydroperoxides. Cholesteryl oleate and cholesterol were, comparatively, more resistant to oxidation. Caffeic (2 mM) and p-coumaric (12 mM) acids efficiently delayed oxidations, as reflected by an increase in the lag times required for linoleate hydroperoxide and 7-ketocholesterol formation as well as for cholesteryl linoleate consumption. At the same concentration, ascorbate, a standard water-soluble antioxidant, was less efficient than the phenolic acids. Additionally, phenolic acids afforded a protection to LDL that, conversely to ascorbate, extends along the time, as inferred from the high levels of cholesteryl linoleate and cholesteryl arachidonate left after 22 hr of oxidation challenging. Significantly, the coincubation of LDL with ascorbate and each of the phenolic acids resulted in a synergistic protection from oxidation.
    [Show full text]
  • Recent Advances in Titanium Radical Redox Catalysis
    JOCSynopsis Cite This: J. Org. Chem. 2019, 84, 14369−14380 pubs.acs.org/joc Recent Advances in Titanium Radical Redox Catalysis Terry McCallum, Xiangyu Wu, and Song Lin* Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States ABSTRACT: New catalytic strategies that leverage single-electron redox events have provided chemists with useful tools for solving synthetic problems. In this context, Ti offers opportunities that are complementary to late transition metals for reaction discovery. Following foundational work on epoxide reductive functionalization, recent methodological advances have significantly expanded the repertoire of Ti radical chemistry. This Synopsis summarizes recent developments in the burgeoning area of Ti radical catalysis with a focus on innovative catalytic strategies such as radical redox-relay and dual catalysis. 1. INTRODUCTION a green chemistry perspective, the abundance and low toxicity of Ti make its complexes highly attractive as reagents and Radical-based chemistry has long been a cornerstone of 5 1 catalysts in organic synthesis. synthetic organic chemistry. The high reactivity of organic IV/III radicals has made possible myriad new reactions that cannot be A classic example of Ti -mediated reactivity is the reductive ring opening of epoxides. This process preferentially readily achieved using two-electron chemistry. However, the − high reactivity of organic radicals is a double-edged sword, as cleaves and functionalizes the more substituted C O bond, the selectivity of these fleeting intermediates can be difficult to providing complementary regioselectivity to Lewis acid control in the presence of multiple chemotypes. In addition, promoted epoxide reactions. The synthetic value of Ti redox catalysis has been highlighted by their many uses in total catalyst-controlled regio- and stereoselective reactions involv- 6−10 ing free-radical intermediates remain limited,2 and the synthesis (Scheme 1).
    [Show full text]
  • SYNTHESIS and PROPERTIES of SOME ARALKYL Hymoperoxides
    SYNTHESIS AND PROPERTIES OF SOME ARALKYL HYmOPEROXIDES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By ARLO d / bCGGS, B.S., M.S. The Ohio State University 1954 Approved by: Department of Chemistry ACKNOWLEDGEMENT The author wishes to express sincere appreciation to Professor Cecil E. Boord for his advice and counsel during this investigation* Thanks also are due Dr. Kenneth W*. Greenlee for his continual interest and guidance and his cooperation in ex­ tending the facilities of the American Petroleum Institute Research Project 4-5* The financial support of this work by the Firestone Tire and Rubber Company is gratefully acknowledged* ii TABLE OF CONTENTS Page I. INTRODUCTION................................ 1 II. LITERATURE S URVEY ............... 2 III. STATEMENT OF THE PROBLEM.................... 10 IV. DISCUS5IŒ ........................... 11 A. Methods of Preparing Hydroperoxides .... 12 1. Preparation of hydroperoxides from alcohols ............. 12 a. a-methylbenzyl hydroperoxide ...... 12 b. benzyl hydroperoxide .......... l6 c. cinnamyl and a-phenylallyl hydroperoxides 17 d. 1,2,3,4-tetrahydro-l-naphthyl hydro­ peroxide ............ 22 e. a-indanyl hydroperoxide ........ 23 f. 0-, m- and p-methylbenzyl hydroperoxides 24 g. m- and p-methoxybenzyl hydroperoxides. 28 h. 1,1-diphenylmethyl hydroperoxide .... 31 i. 1,2-diphenylethyl hydroperoxide .... 32 j. 1-a-naphthyl- and l-J3-naphthylethyl hydroperoxides ........ 33 k. 1-styrylethyl hydroperoxide 35 1. 4-a-dimethylbenzyl and 4-methoxy-a- methylbenzyl hydroperoxides ...... 36 m. a-ethylbenzyl and a-ethyl-p-methylbenzyl hydroperoxides ....... ........ 36 n. a-n-propylbenzyl and a-isopropylbenzyl hydroperoxides .................... 37 0. a-2,5“trimethylbenzyl hydroperoxide .
    [Show full text]
  • Unusual Regioselectivity in the Opening of Epoxides by Carboxylic Acid Enediolates
    Molecules 2008, 13, 1303-1311 manuscripts; DOI: 10.3390/molecules13061303 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.org/molecules Communication Unusual Regioselectivity in the Opening of Epoxides by Carboxylic Acid Enediolates Luis R. Domingo, Salvador Gil, Margarita Parra* and José Segura Department of Organic Chemistry, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Spain. Fax +34(9)63543831; E-mails: [email protected]; [email protected]; [email protected] * Author to whom correspondence should be addressed; E-mail: [email protected] Received: 29 May 2008; in revised form: 5 June 2008 / Accepted: 6 June 2008 / Published: 9 June 2008 Abstract: Addition of carboxylic acid dianions appears to be a potential alternative to the use of aluminium enolates for nucleophilic ring opening of epoxides. These conditions require the use of a sub-stoichiometric amount of amine (10% mol) for dianion generation and the previous activation of the epoxide with LiCl. Yields are good, with high regioselectivity, but the use of styrene oxide led, unexpectedly, to a mixture resulting from the attack on both the primary and secondary carbon atoms. Generally, a low diastereoselectivity is seen on attack at the primary center, however only one diastereoisomer was obtained from attack to the secondary carbon of the styrene oxide. Keywords: Lactones, lithium chloride, nucleophilic addition, regioselectivity, diastereoselectivity. Introduction Epoxides have been recognized among the most versatile compounds in organic synthesis, not only as final products [1] but as key intermediates for further manipulations. Accordingly, new synthetic developments are continuously being published [2]. Due to its high ring strain (around 27 Kcal/mol) its ring-opening, particularly with carbon-based nucleophiles, is a highly valuable synthetic strategy Molecules 2008, 13 1304 [3].
    [Show full text]
  • Highly Efficient Epoxidation of Olefins with Hydrogen Peroxide Oxidant Using Modified Silver Polyoxometalate Catalysts
    African Journal of Pure and Applied Chemistry Vol. 7(2), pp. 50-55, February 2013 Available online at http://www.academicjournals.org/AJPAC DOI: 10.5897/AJPAC12.060 ISSN 1996 - 0840 ©2013 Academic Journals Full Length Research Paper Highly efficient epoxidation of olefins with hydrogen peroxide oxidant using modified silver polyoxometalate catalysts Emmanuel Tebandeke 1*, Henry Ssekaalo 1 and Ola F. Wendt 2 1Department of Chemistry, Makerere University, P. O. Box 7062 Kampala, Uganda. 2Organic Chemistry, Department of Chemistry, Lund University, P. O. Box 124, 221 00 Lund, Sweden. Accepted 31 January, 2013 The catalytic epoxidation of olefins is an important reaction in chemical industry since epoxides are versatile and important intermediates in the synthesis of fine chemicals and pharmaceuticals. The current epoxidation procedures often use stoichiometric organic and sometimes toxic inorganic oxidants that are less favourable from an environmental and economical point of view. In contrast to such processes, catalytic epoxidation processes employing H2O2 oxidant are preferred for green processing. Herein is reported a highly efficient green process for the epoxidation of olefins using H2O2 oxidant and modified silver polyoxometalate catalysts at 65°C. The preparation and activity of the catalysts are described. The method enjoys >90% conversion and ≥99% selectivity to the epoxide for a variety of cyclic and linear olefins including terminal ones. The catalysts are easily recovered by filtration and are reusable several times. Key words: Epoxidation, olefins, hydrogen peroxide, polyoxometalate, silver catalysts. INTRODUCTION The catalytic epoxidation of olefins is very important in compared to organic peroxides and peracids (Jones, the chemical industry since epoxides are versatile and 1999; Lane and Burgess, 2003).
    [Show full text]
  • Part I. the Total Synthesis Of
    AN ABSTRACT OF THE THESIS OF Lester Percy Joseph Burton forthe degree of Doctor of Philosophy in Chemistry presentedon March 20, 1981. Title: Part 1 - The Total Synthesis of (±)-Cinnamodialand Related Drimane Sesquiterpenes Part 2 - Photochemical Activation ofthe Carboxyl Group Via NAcy1-2-thionothiazolidines Abstract approved: Redacted for privacy DT. James D. White Part I A total synthesis of the insect antifeedant(±)-cinnamodial ( ) and of the related drimanesesquiterpenes (±)-isodrimenin (67) and (±)-fragrolide (72)are described from the diene diester 49. Hydro- boration of 49 provided the C-6oxygenation and the trans ring junction in the form of alcohol 61. To confirm the stereoselectivity of the hydroboration, 61 was convertedto both (t)-isodrimenin (67) and (±)-fragrolide (72) in 3 steps. A diisobutylaluminum hydride reduction of 61 followed by a pyridiniumchlorochromate oxidation and treatment with lead tetraacetate yielded the dihydrodiacetoxyfuran102. The base induced elimination of acetic acid preceded theepoxidation and provided 106 which contains the desired hydroxy dialdehydefunctionality of cinnamodial in a protected form. The epoxide 106 was opened with methanol to yield the acetal 112. Reduction, hydrolysis and acetylation of 112 yielded (t)- cinnamodial in 19% overall yield. Part II - Various N- acyl- 2- thionothiazolidineswere prepared and photo- lysed in the presence of ethanol to provide the corresponding ethyl esters. The photochemical activation of the carboxyl function via these derivatives appears, for practical purposes, to be restricted tocases where a-keto hydrogen abstraction and subsequent ketene formation is favored by acyl substitution. Part 1 The Total Synthesis of (±)-Cinnamodial and Related Drimane Sesquiterpenes. Part 2 Photochemical Activation of the Carboxyl Group via N-Acy1-2-thionothiazolidines.
    [Show full text]
  • Epoxidations and Hydroperoxidations of A,ß-Unsaturated Ketones
    Springer Theses Epoxidations and Hydroperoxidations of a,ß-Unsaturated Ketones An Approach through Asymmetric Organocatalysis Bearbeitet von Corinna Reisinger 1. Auflage 2012. Buch. xvi, 260 S. Hardcover ISBN 978 3 642 28117 4 Format (B x L): 15,5 x 23,5 cm Gewicht: 578 g Weitere Fachgebiete > Chemie, Biowissenschaften, Agrarwissenschaften > Analytische Chemie > Organische Chemie Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Chapter 2 Background 2.1 Asymmetric Organocatalysis For a long time, the realm of asymmetric catalysis was dominated by metal and biocatalysis. Yet, at the beginning of this century, List’s discovery of the (S)-proline- catalyzed direct asymmetric intermolecular aldol reaction [1] together with the development of an asymmetric Diels–Alder reaction catalyzed by a chiral imidazo- lidinone salt by MacMillan et al. [2] have raised awareness of the potential of purely organic molecules as efficient catalysts for a variety of asymmetric transformations and brought to life the term ‘‘organocatalysis’’ to address this research field (Scheme 2.1). 2.1.1 Historical Development Organocatalysis has a rich background as it is suggested that extraterrestrial, enantiomerically enriched amino acids such as (S)-alanine and (S)-isovaline played a decisive role in the prebiotic formation of key building blocks such as sugars by promoting the self-aldol reaction of glycolaldehydes in water [3].
    [Show full text]
  • Newly Observed Peroxides and the Water Effect on the Formation And
    EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmos. Chem. Phys., 13, 5671–5683, 2013 Atmospheric Atmospheric www.atmos-chem-phys.net/13/5671/2013/ doi:10.5194/acp-13-5671-2013 Chemistry Chemistry © Author(s) 2013. CC Attribution 3.0 License. and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Newly observed peroxides and the water effect on the formation and Open Access removal of hydroxyalkyl hydroperoxides in the ozonolysis of Biogeosciences Biogeosciences isoprene Discussions D. Huang, Z. M. Chen, Y. Zhao, and H. Liang Open Access Open Access State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Climate Engineering, Peking University, Beijing 100871, China Climate of the Past of the Past Correspondence to: Z. M. Chen ([email protected]) Discussions Received: 5 January 2013 – Published in Atmos. Chem. Phys. Discuss.: 25 February 2013 Open Access Open Access Revised: 4 May 2013 – Accepted: 15 May 2013 – Published: 12 June 2013 Earth System Earth System Dynamics Dynamics Abstract. The ozonolysis of alkenes is considered to be an lows them to become involved in atmospheric chemical pro- Discussions important source of atmospheric peroxides, which serve as cesses, e.g., SOA formation and radical recycling. oxidants, reservoirs of HOx radicals, and components of sec- Open Access ondary organic aerosols (SOAs). Recent laboratory investi- Geoscientific Geoscientific Open Access gations of this reaction identified hydrogen peroxide (H2O2) Instrumentation Instrumentation and hydroxymethyl hydroperoxide (HMHP) in ozonolysis 1 Introduction Methods and Methods and of isoprene.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 6,057,352 Brown Et Al
    US006057352A United States Patent (19) 11 Patent Number: 6,057,352 Brown et al. (45) Date of Patent: May 2, 2000 54 FUNGICIDAL CYCLIC AMIDES WO 96/17851 6/1996 WIPO ............................... CO7F 7/08 WO 96/26.191 8/1996 WIPO ... ... CO7D 249/12 75 Inventors: Richard James Brown, Newark, Del.: WO 96/36633 11/1996 WIPO ... ... CO7D 405/04 Deborah Ann Frasier, Martinez, Calif.; WO96/36229 11/1996 WIPO ... ... A01N 43/653 Michael Henry Howard, Jr., WO 97/02255 1/1997 WIPO m CO7D 261/12 Rockland; Gerard Michael Koether, OTHER PUBLICATIONS Bear, both of Del. Zvilichovsky, G., J. Heterocyclic Chem., 24,465–470, 1987. 73 Assignee: E. I. du Pont de Nemours and Zvilichovsky, G. et al., J. Heterocyclic Chem., 25, Company, Wilmington, Del. 1307-1310, 1988. Davis, M. et al., Australian J. Chem., 30(8), 1815-1818, 21 Appl. No.: 08/952,380 1977. 22 PCT Filed: May 8, 1996 Primary Examiner Mukund J. Shah 86 PCT No.: PCT/US96/06534 Assistant Examiner Deepak R. Rao S371 Date: Nov. 13, 1997 57 ABSTRACT S 102(e) Date: Nov. 13, 1997 Compounds of Formula (I), 87 PCT Pub. No.: WO96/36616 (I) PCT Pub. Date: Nov. 21, 1996 1.Y. Nz Related U.S. Application Data x - W 63 Continuation-in-part of application No. 08/442,433, May NY 17, 1995, abandoned. A-N 60 Provisional application No. 60/004,183, Sep. 22, 1995. Ye 51) Int. Cl." ...................... C07D 249/12; CO7D 233/30; AO1N 43/74; AO1N 43/56 and their N-oxides and agriculturally Suitable Salts are 52 U.S.
    [Show full text]
  • Metabolic Carbonyl Reduction of Anthracyclines — Role in Cardiotoxicity and Cancer Resistance
    Invest New Drugs DOI 10.1007/s10637-017-0443-2 REVIEW Metabolic carbonyl reduction of anthracyclines — role in cardiotoxicity and cancer resistance. Reducing enzymes as putative targets for novel cardioprotective and chemosensitizing agents Kamil Piska1 & Paulina Koczurkiewicz1 & Adam Bucki 2 & Katarzyna Wójcik-Pszczoła1 & Marcin Kołaczkowski2 & Elżbieta Pękala1 Received: 23 November 2016 /Accepted: 17 February 2017 # The Author(s) 2017. This article is published with open access at Springerlink.com Summary Anthracycline antibiotics (ANT), such as doxoru- monoHER, curcumin, (−)-epigallocatechin gallate, resvera- bicin or daunorubicin, are a class of anticancer drugs that are trol, berberine or pixantrone, and their modulating effect on widely used in oncology. Although highly effective in cancer the activity of ANT is characterized and discussed as potential therapy, their usefulness is greatly limited by their mechanism of action for novel therapeutics in cancer cardiotoxicity. Possible mechanisms of ANT cardiotoxicity treatment. include their conversion to secondary alcohol metabolites (i.e. doxorubicinol, daunorubicinol) catalyzed by carbonyl re- Keywords Anthracyclines . Cardiotoxicity . Resistance . ductases (CBR) and aldo-keto reductases (AKR). These me- Pharmacokinetics . Drug metabolism . Anticancer agents tabolites are suspected to be more cardiotoxic than their parent compounds. Moreover, overexpression of ANT-reducing en- zymes (CBR and AKR) are found in many ANT-resistant Introduction cancers. The secondary metabolites show decreased cytotoxic properties and are more susceptible to ABC-mediated efflux Anthracyclines (ANT) are a class of cell-cycle non-specific than their parent compounds; thus, metabolite formation is anticancer antibiotics that were first isolated from the considered one of the mechanisms of cancer resistance. Streptomyces genus in the early 1960s.
    [Show full text]