IAWA Journal, Vol. 23 (4), 2002: 391– 418

ECOLOGICAL TRENDS IN THE WOOD ANATOMY OF SOME BRAZILIAN SPECIES. 2. AXIAL PARENCHYMA, RAYS AND FIBRES by Edenise Segala Alves1 & Veronica Angyalossy-Alfonso2

SUMMARY Some ecological trends in wood anatomy were established in florulas from several regions in . Characteristics of the axial and radial parenchyma and fibres were analyzed in trees belonging to 22 families of the Brazilian flora, including 133 genera, 491 species and 686 speci- mens. Some ecological trends were statistically supported by Pearson’s Standardised Residues. At lower latitudes, the axial parenchyma was predominantly paratracheal and more abundant; the rays were thinner, and the fibre walls thicker. At higher latitudes, the parenchyma was predominantly apotracheal and not so abundant, the rays were wider and the fibre walls thinner. Fibre wall thickness was related to humid- ity. Thinner walls were found in more humid environments, thicker walls were associated with drier environments. No trends for ray composi- tion were identified. Overall, the results for Brazilian species are com- patible with trends established by other authors. Key words: Brazil, ecological wood anatomy, ecological trends, paren- chyma, rays, fibres.

INTRODUCTION

Ecological trends concerning parenchyma and fibres are rarely analysed in wood- based eco-anatomical studies. This may be due to the difficulty in assessing the func- tional advantages or disadvantages of different axial parenchyma distribution patterns in several ecosystems (Baas 1982). In Europe, Mediterranean species have more abundant and more often predomi- nantly paratracheal parenchyma when compared with those of more northern lati- tudes (Baas & Schweingruber 1987). Baas (1973) showed that in Ilex the range in parenchyma abundance from very scanty to fairly abundant shows a correlation with latitude; temperate species have very scanty diffuse parenchyma, subtropical and tropi- cal species have more abundant parenchyma which is both diffuse and diffuse-in- aggregates.

1) Instituto de Botânica, Cx Postal 4005, CEP 01061-970, São Paulo, SP, Brazil [E-mail: [email protected]]. 2) Departamento de Botânica, Instituto de Biociências-USP, Cx Postal 11461, CEP 05422- 970, São Paulo, SP, Brazil [E-mail: [email protected]].

Downloaded from Brill.com10/09/2021 09:15:07PM via free access 392 IAWA Journal, Vol. 23 (4), 2002

Wheeler and Baas (1991) established a general trend that parenchyma was more abundant in tropical regions than in temperate and subtropical zones. Baas and Zhang (1986) and Baas et al. (1988) confirmed the same trend in Oleaceae. Chimelo and Mattos-Filho (1988) found more abundant parenchyma in wood from cerrado and caatinga (vegetation subjected to long drought periods) species than in more mesic forest species. They associated these differences with the quality and humidity of the soil, which is acidic and oligotrophic in the cerrado. In the flora from Israel, Fahn et al. (1986) reported more abundant parenchyma in species from drier environments. Likewise, Wilkins and Papassotiriou (1989) ob- served in Acacia melanoxylon that the samples from more arid regions had higher proportions of banded parenchyma. However, they stated that the data gathered were not sufficient to establish general trends. Studies on tropical and temperate floras led Baas (1982) to try and quantify axial parenchyma using three randomised categories (abundant, intermediate and scarce): overall, species from tropical latitudes were more often characterised by abundant parenchyma and temperate species by scarce parenchyma. Ray parenchyma has been investigated even less in studies that aimed at identify- ing/establishing wood ecological trends. Carlquist (1966) observed in Compositae and Euphorbia that multiseriate rays prevail in drier environments. Dickison and Phend (1985) associated multiseriate rays to higher latitudes in Styracaceae, while Carlquist (1966) related multiseriate rays to lower latitudes in Compositae. Chimelo and Mattos- Filho (1988), in a study on Brazilian woods, found wider rays in cerrado and caatinga samples, and narrower ones in the forest. Other authors, including Baas (1973), Fahn et al. (1986) and Zhang et al. (1992), did not find any relationship between ray width and environmental parameters. Some ecological trends related to fibres were identified by Fahn et al. (1986), who found thicker wall fibres in drier environments. In Symplocos, Van den Oever et al. (1981) found thinner-walled fibres at higher latitudes and no relationship with humid- ity at all. In Syringa oblata, Zhang et al. (1988) related thicker wall fibres to lower altitudes. The objective of the present study is to explore whether there are any ecological trends in axial parenchyma, rays and fibres by analysing the wood of Brazilian spe- cies from different environments, and by comparing the trends with the results ob- tained for other floras or taxonomic groups.

MATERIALS AND METHODS

A microscopic analysis was carried out of the wood of tree species belonging to 22 families, covering 133 genera, 491 species, and 686 specimens widely distrib- uted and from different geographical regions in Brazil. Information related to the methods used, as well as environmental parameters and statistical analysis were de- scribed in a previous paper (Alves & Angyalossy-Alfonso 2000). The material stud- ied is listed in Table 1. (text continued on page 412)

Downloaded from Brill.com10/09/2021 09:15:07PM via free access Alves & Angyalossy-Alfonso — Ecological anatomy of Brazilian woods 393

d/

, sa =

Tempera-

Ray width:

ought periods), df = dense

te = temperate. —

ith over 4 rows of upright and/ 4 rows ith over

orest, contact = ct (areas with different orest,

1 = very thin-walled, 2 = thin- to thick- thin-walled, 1 = very

——————————————————————————

ph = super-humid, hu = humid, mh = semi-humid hu = humid, ph = super-humid,

1 = all ray cells procumbent, 2 = all ray cells upright an

Fibre wall thickness: wall Fibre

Humidity:

orest, cf = deciduous seasonal f orest,

mic. —

Ray composition:

othrophic soils), ca = caatinga (vegetation subjected to long dr ca = caatinga (vegetation othrophic soils),

bution dance sition thickn. Climate Temperature Humidity Vegetation

regions distri- abun- width compo- wall

N, SE 3 (1) 0 (3) 2 3 1 eq, trmd wa, ph, huof df, SE, N, S 3 0 (2–4) 3 3 1–2 te tr, wa, md hu, ph df, mf

N, MW, SE MW, N, 4 (5) 2 (3) 4 1 3 tr wa, mm hu, mh, ph df, ce, of, sf

mic, mm = medium mesother

forest), sf = semi-deciduous seasonal f

0 = absent or rare, 1 = abundance intermediate, 2 = abundant, 3 = very abundant (see Figures 1–13). — (see Figures abundant 3 = very intermediate, 2 = abundant, or rare, 0 = absent 1 = abundance

w) Brazilian Par. Par. Ray Ray Fibre Environmental features

1 = absent or rare, 4 = banded, 5 = apo 2 = paratracheal, 3 = apotracheal, + para or apo + band or para + band or

Table 1. Wood characters in relation to environmental features. toin environmental relation characters Wood 1. Table

Araucaria

h other, including ‘restinga’ and mangrove (vegetation with sea influence). (vegetation and mangrove including ‘restinga’ h other,

type* – tr = tropical, eq = equatorial (it is always wa (it is always type* – tr = tropical, eq = equatorial / ph), me = mediterranean (sensu Nimer 1989),

ce = cerrado (vegetation from acidic and olig from (vegetation ce = cerrado

Wood collection (BCT Wood 1252910145 N 1 N 0 3 4 3 2 1 3 tr 1 1 wa tr hu wa df hu df 1253610155 N 3 N 0 3 4 3 3 2 3 tr 1 1 wa tr hu wa df hu df 14030, 172322725 N, MW 35392, 12240 1 1 SE 3 S, SE 3 1 1 4 eq tr, 2–3 2 wa 3–4 3 1 hu 3 2 tr of, df te, tr sw md hu ph, hu df, sf df 86595318, 8681 SE SE, S 3 0 1 0 3 2–3 3 3 1 1 tr te tr, wa md hu hu, pu df, mf df 210, 2776, 111232776, 210, 1062, 6479, 10032, 12019, 15316 SE 3 (1)16549 1 (0) 3 (2) 3 1 (2) tr N wa 4 hu, mh 2cf df, 4 1 3 tr wa hu df 2625, 8717, 13545, 16493 10075 N 4 2 4 1 2 eq wa ph df 6032 SE 5 3 4 1 1 tr mm ph sf 6558 N 4 3 4 1 1 eq wa ph df 9995 N 4 2 4 3 2 tr wa hu df 5165, 6031, 7453, 10475, 14283

Climate:

Parenchyma abundance: Parenchyma

Parenchyma distribution: Parenchyma

N = North, MW = Middle West, NE = Northeast, SE = Southeast, S = South. NE = Northeast, SE = Southeast, West, MW = Middle N = North,

Vegetation:

wa = warm, sw = sub-warm, md = mild-mesother = sub-warm, = warm, sw wa

Species

/

.

* tr can be: wa, sw, md, mm md, sw, * tr can be: wa, / wa as; eq is always ph, hu, mh, / ph; me can be wa / md ph, as; te can be sw, hu, mh, / ph.

apo + para + band. — 1 = uniseriate, 2 = two cells wide, 3 = three cells wide, 4 = four or more cells wide. — or square, 3 = body ray cells procumbent with 1–4 and/or of upright rows cells, 4 = body ray cells procumbent w marginal square or square marginal cells, 5 = rays with procumbent, square, upright cells mixed throughout the ray. — throughout the ray. square, cells, 5 = rays with procumbent, cells mixed or square upright marginal walled, 3 = very thick-walled.

ture: semi-arid. — forest, of = open forest, mf = mixed forest ( forest of = open forest,forest, mf = mixed vegetation types in contact with eac vegetation

sp. 14251, 7363 N, MW 4 2 4 1 1–2 tr wa hu, mh of, ce

sp

Brazilian regions: Wood characters: Wood

Environmental features: Environmental

Family lecointei Annona paludosa Anacardiaceae ulei sericea Anacardium giganteum Anacardium urundeuva Myracrodruon Duguetia lanceolata Astronium concinnum Astronium terebinthifolius Schinus fraxinifolium guianensis Tapirira surinamensis graveolens Guatteria candoleana elongata paraensis

Downloaded from Brill.com10/09/2021 09:15:07PM via free access 394 IAWA Journal, Vol. 23 (4), 2002

——————————————————————————

bution dance sition thickn. Climate Temperature Humidity Vegetation

regions distri- abun- width compo- wall

SE, S 3–5 1–2 2–3 3 1 te tr, md wa, hu, ph df, sf

w) Brazilian Par. Par. Ray Ray Fibre Environmental features

6313, 8792. SE, S 4 2 3–4 1 1 te tr, md sw, ph df, mf 5486 SE 4 2 4 1 1 tr wa mh ct 14093 N 4 2 3 1 1 tr wa hu df 5860, 14234 SE, N 4 2 4 1 2–3 tr wa hu sf, of Wood collection (BCT Wood 1401616451 NE 4 N 3 3 3 1 1 1 3 me 1 wa 3 tr ph wa df hu df 9414 N 3 1 3 1 3 tr wa hu df 16490 N 2 2 3 1 3 tr wa hu df 16514 N 3 1 2 1 3 tr wa hu df 15963 MW 2 1 1 1 3 tr sw mh ce 16461 N 5 1 2 3 3 tr wa hu df 2179 SE 2 1 1 1 2 tr md hu df 2162, 16206 SE, S 2 1 2 1 2 te tr, md sw, hu, ph sf 10252 S 2 1 1 1 2 te sw ph df 2188 SE 4 1 2 1 2 tr sw hu df 16430 N 3 1 3 1 3 tr wa hu df 18481 SE 2 2 3 3 2 tr wa hu df 13142 N 2 2 2 1 3 tr wa hu df 2535, 5861 SE 2 2 2–3 3 2–3 tr wa hu df, sf 10302 MW 2 1 2 1 1 tr sw mh ce 7873 N 2 1 1 1 2 tr wa hu ce 9950 SE 2 2 2 1 1 tr wa hu df 10211 N 2 1 1 3 1 eq wa ph df 10134 N 2 1 2 3 2 eq wa ph df 16452 N 2 2 3–4 3 2 tr wa hu df 3200 SE 2 1 4 3 1 tr sw hu df 3487, 6377 SE, N 2 1 2–4 3 1–2 eq tr, wa mh, ph cf, df 2237 S 3 1 3 3 1 te md ph cf 6043162, 164, 8557 SE SE 3 5 (3) 1 1 3 3 (2) 1 3 3 (1) 1 tr trmd wa, mm mh, hu df, sf ph sf 64768574 N 3 NE 1 5 3 2 1 1 1 1 eq 1 wa me ph wa df sa ca 520511727 SE 5 N 3 2 5 1 3 1 2 tr 1 2 wa tr mh wa ct hu df 291 SE 2 2 1 1 tr md hu df 158, 616, 16168, 18479

.

sp

Species

.

. .

sp

sp sp

brasiliensis emarginata (Table 1 continued) (Table nitida Family / Apocynaceae Xylopia aromatica Aspidosperma centrale desmathum discolor eleatum macrocarpum megalocarpum parvifolium polyneuron populifolium ramiflorum sandwithianum Geissospermum laeve sericeum villosii Hancornia speciosa Himatanthus lancifolia sucuuba Rauvolfia paraensis pentaphylla sellowii

Bignoniaceae Jacaranda caroba Jacaranda peroba Paratecoma copaia aurea Tabebuia cuspidifolia barbata mimosifolia puberula

Downloaded from Brill.com10/09/2021 09:15:07PM via free access Alves & Angyalossy-Alfonso — Ecological anatomy of Brazilian woods 395

S, MW 1 (3) 0 (1) 2 (1) 3 (2) 1 te, eq, tr wa sw, ph, hu, mh df, ce N, NE 5 3 (2) 4 1–3–5 1 (2)meeq, tr, wa hu, phdf of, SE, NE, N (3, 4) 5 1 (2–3) 1–2 1 1–3 eq me, tr, wa, sw mh, ph, hu ct, df, of

N 5 (3) 1 (2) 2 1 3 eq tr, wa hu, ph df

N, SE, NE 4 (5) 1 (2) 1 3 1 me eq, tr, wa, sw ph, mh df, cf

[14308

1008 SE 4 3 3 5 1 tr sw hu ce 91726493 N 2 N 3 4 5 3 2 3 1 tr 1 2 wa eq hu wa df ph df 9779 NE 4 3 1 1 2 me wa hu df 7399, 8841 N MW, 8827 2 2–3 3 3 1–3 N tr 4 wa 3 mh, hu 1 ce, df 3 3 tr wa hu df 6468669 N 1 SE 0 3 4 3 3 1 1 eq 3 3 wa tr ph md df hu df 1014110230, 14062, 14068, 14340 N 5 3 4 3 1 tr wa hu df 5913, 594 S, SE12891, 15200, 17224 4 1 1 18854 1 te, tr sw ph N df 4 2 1 1 3 tr wa hu df, 6340 S 5 2 25185, 5353 1 2 te SE, S md 4 ph 2 1 ct 1 3 te tr, wa, sw mh, ph ct, df 365, 11248, 11260, 13663, 16422 SE, N, NE 5 (3) 2 (1)281, 283, 2747, 4543, 6522, 6846, 2 (3–4) 1 3 me tr, wa, sw mh, hu, ph ct, ce, df, of 10103 N 4 3 1 1 3 tr wa hu df 16539 N 5 2 110097 1 1 tr wa N hu 4 df 2 1 3 3 tr wa hu df 6312 SE 3 3 210480 1 1 tr sw N ph 4 df 2 1 1 3 tr wa hu df 8637, 9171 SE, N 5 1–2 2 1 1–216470 tr wa hu N df 4 2 1 3 3 tr wa hu df 5882 S 5 2 26396 1 1 te md N ph 5 ct 3 1 1 2 eq wa ph df 13250, 6624, 13782 662216462 N 4 N 2 1 1 1 0 3 1 eq 3 1 wa tr ph wa df hu df 1408613849 N 4 N 2 1 3 1 2 3 1 tr 3 3 wa tr hu wa df hu df 1109910011 SE 4 N 2 1 3 3 0 1 4 tr 3 1 wa eq hu wa df ph df 6071, 6771, 73726040, 10550 SE, MW 4 2 1 N, SE 1 3 1–2–3 0 tr 3–4 mm, wa 3 hu, mh, ph 1–2 df, ce, sf tr wa, mm hu, ph df, sf 6511 N 5 2 3 3 3 eq wa ph df 3890, 6297, 9076, 10039

.

sp

. . . .

. .

sp sp sp sp

sp sp

Pseudobombax endecaphyllum Chrysobalanaceae Rhodognophalopsis duckei Couepia paraensis rufa Bombacaceae Burseraceae Bombax Protium heptaphyllum Protium Hirtella hebeclada Ceiba burchelli cassinioides pentandra macrophylla heptaphylla impetiginosa Licania canescens insignis heteromorpha obtusifolia incana roseo-alba latifolia rigida licaniiflora serratifolia macrophylla Caraipa densifolia octandra punctulata rigida Clusia grandiflora

Clusiaceae macrophylla Garcinia Calophyllum brasiliense

Downloaded from Brill.com10/09/2021 09:15:07PM via free access 396 IAWA Journal, Vol. 23 (4), 2002

——————————————————————————

bution dance sition thickn. Climate Temperature Humidity Vegetation

regions distri- abun- width compo- wall N (3) 5 2 (3) 1 (2) 1 3 (2) tr wa hudf of, N, NE 4 (3) 2 (3–4) 2 (1) 3 3 (2)me tr, eq, wa ph, hucf df,

w) Brazilian Par. Par. Ray Ray Fibre Environmental features

16384 S 5 2 1 1 2 te sw ph df 11630, 14054 N 3–5 2–3 1 1–3 3 tr wa hu df 14747 N 5 3 1 2 2 tr wa hu df Wood collection (BCT Wood 10149, 1368214731 N, NE 414748 3 3–4 N 1 3 3 N 2 eq, tr 1 wa 5 1 3 ph, hu 1 1 df, cf tr 2 2 wa tr hu wa df hu df 8457, 1387311660 N14751, 16437 4 3 N 3 N 5 1–3 3 2 5 tr 1 1–2 1 1 wa 2–3 3 2 hu tr tr df wa wa hu hu df df 109156342, 14052, 16515 SE14485 5 1 3 SE 3 3 5 tr 2 1 sw 2 ph 1 tr df md ph df 4713, 9789, 9994, 13696 14056 N 5 2 1 3 3 tr wa hu df 14753 MW 5 3 2 1 3 eq wa hu ct 11503 N 5 1 1 1 3 tr wa hu df 11251, 16381, 16423,16381, 11251, SE, N 3 2 (1) 1 (2) 1 3 (2) tr wa sw, hu, mh ct, ce, df 3820 SE 3 2 1 1 2 tr wa mh ct 10466, 14723 N 3–5 2 1 1–3 1 tr wa hu df, of 11538 SE 3 1 1 3 2 tr wa hu df 381, 16379 SE, NE 5 2 1 1 1–2 tr wa sw, hu, sa df, ca

2553 SE 2 1 1 2 1 tr wa hu df 14280 N 2 2 1 2 1 tr wa hu of 1129, 4432, 4705, 47081129, 4432, SE, NE 2 (1) 1 (0) 1 2 1 me tr, md, wa sw, hu, ph df 12556 N 5 1 1 3 1 eq wa ph df 6426 N 5 0 1 3 1 eq wa ph df 1145 SE 5 0 2 3 1 tr md ph df 1142, 1146, 60411146, 1142, SE 2 1 (0) 2 (1) 3 (2) 1 trmm sw, hu, ph ct, df, sf 7973, 11654, 11656 N 5 (2) 1 (0) 2 3 1 eq tr, wa hu, ph df 5149, 5995 SE, S 2–4 1–2 2 3 1–2 te tr, md sw, ph df, mf 6042 SE 5 1 1 3 1 tr mm ph sf 1113 SE 2 1 4 3 2 tr sw hu df 11102 SE 2 2 1 3 1 tr wa hu df 2312 SE 2 2 1 2 1 tr sw hu ct 6459 N 2 1 1 3 1 eq wa ph df

.

Species

sp

. .

.

.

.

sp sp

sp

sp

sp

(Table 1 continued) (Table kleinii macrophylla Family / Combretaceae ochroprumna Platonia insignis Buchenavia capitata oxycarpa congesta parvifolia Rheedia grandis rabelloana Symphonia globulifera tomentosa Terminalia amazonia Terminalia argentea brasiliensis guyanensis januarensis

Euphorbiaceae Alchornea glandulosa

triplinervia Croton diasii Croton draconoides echinocarpus floribundus matourensis

urucurana Hyeronima alchorneoides Hyeronima Joannesia princeps Mabea fistulifera paniculata

Downloaded from Brill.com10/09/2021 09:15:07PM via free access Alves & Angyalossy-Alfonso — Ecological anatomy of Brazilian woods 397

S, N, SE 5 1 3 3 1 te, tr md, wa ph, hu mf, df

SE, S 5 1 (2) 4 (3) 3 (3) 1 te tr, md, sw ph, hu df, ct, sf

N 0–2–4 1 2 3 2 tr wa hu df

N 3 0 (1) 2 (3) 1–3 1 eq tr, wa hu, ph df

1205, 10041 N, SE 2 2 1 3–4 1 tr wa, sw hu df 289, 4253 N, SE 2 1 1 3 1 tr wa, sw hu of, sf 6091 SE 4 2 1 3 1 tr md hu sf 16505 N 4 2 1 3 2 tr wa hu df 1192, 15260, 17844–46, ...48, ...49 SE, N 2 (5) 1 (2) 1 3 (4) 1 (2) eq tr, wa sw, hu ce, sf, of, df 9929 N 4 2 1 3 1 tr wa hu df 2549, 12359 N, SE 4 1–2 2 4 3 tr wa hu df 6546 N 2 0 1 3 1 eq wa ph df 16194 S 2 1 1 3 1 te md ph sf 1169 N 2 0 1 2 1 tr wa hu of 16205 S 2 1 1 3 1 te md ph sf 6661 SE 2 0 1 3 1 tr sw hu df 2766 SE 5 1 2 3 1 tr wa mh cf 11491 NE 5 1 2 1 2 tr wa mh df 16503 N 1 0 2 3 3 tr wa hu df 14120 N 3 1 2 3 3 tr wa hu df 11495 N 3 1 3 1 3 tr wa hu df 3570, 6248, 10438 16531 N 3 1 4 1 2 tr wa hu df 11261 NE10759 2 1 1 N 3 1 3 tr 1 wa 2 3 ph 1 df tr wa hu df 5004, 13173 N, SE 4–5 1–2 2 3 2–3 tr wa hu df, ct 16463 N 3 0 2 3 1 tr wa hu df 3371 S3649, 10912 3 1 SE 3 3 3 1 1 te 2–3 3 md 1–2 tr ph md, sw df hu, ph df 3178, 3208, 5123, 7707, 16212 3665 SE13823 3 1 2 N 3 2 5 tr 1 2 md 3 hu 1 tr df wa hu df 10911 SE8906 3 0 2 N 3 1 3 tr 1 sw 2 3 ph 1 df tr wa hu df 6108 SE 3 1 3 3 1 tr md hu df 3473, 10229, 11553, 11559, 13825 N, S, SE 3 1 (0) 2 3 1 te tr, md wa, sw, hu, ph, mh df, cf 6110, 138263664 N, SE 3 0 2 SE 3 3 1 1 tr 2 wa, md 3 hu 1 tr df md hu df 1847713819, 13828, 16523 SE 3 0 2 3 1 tr wa hu df 13817 N 3 1 2 3 1 tr wa hu df 16213 S 3 1 3 3 1 te md ph sf 13827 N 3 1 3 3 1 eq wa ph of 8938, 10007, 12498, 13821, 16548

.

sp

.

.

.

.

.

.

.

.

sp

sp

sp

sp

sp

sp

sp

Maprounea guianensis Maprounea

Pachystroma longifolium Pachystroma Pera bicolor glabrata

Pogonophora schomburgkiana Pogonophora Sapium duckei glandulatum

Sebastiania klotzschiana

Senefeldera Dicypellium caryophyllatum sp Licaria canella rigida Mezilaurus itauba lindaviana mahuba

Lauraceae Nectandra cissiflora Cinnamomum stenophyllum grandiflora Cryptocarya moschata oppositifolia magnilimba puberula neesiana reticulata

Ocotea aciphylla lanata argentea longifolia caniculata catharinensis cymbarum guianensis

Downloaded from Brill.com10/09/2021 09:15:07PM via free access 398 IAWA Journal, Vol. 23 (4), 2002

——————————————————————————

bution dance sition thickn. Climate Temperature Humidity Vegetation

N, SE 3 (4) 2 3 3 (1–2) 2 (1) eq, tr wa hu, phof of,

N, SE, NE 4 (2) 2(3–4) 2 1 3 (2) me tr, wa, sw hu, mh df, ct

N 4 2 2 1 3 eq tr, wa hu, ph df

SE, NE, S 5 1 (2) 3 3 (1) 2 te me, tr, wa, md mh, ph cf, of, mf

SE, NE 4 2 2 3 (1) 1 (2) me tr, wa, sw hu, ph df N, SN, 3 1 (0) 2 (3) 3SE, N, MW 1 4 te tr, (3) 2 2 (1)md wa, 1 hu, ph (2) 3 trmf df, wa, sw hu, mh df, ce, cf

regions distri- abun- width compo- wall N, MW 3 (5) 0 (1) 2 3 (1) 2 eq tr, wa hu, ph df

N 3 1 3 (2) 3 (1) 1 (2) eq tr, wa hu, ph df

w) Brazilian Par. Par. Ray Ray Fibre Environmental features

8774 S 3 2 3 3 1 te md ph mf 5418 SE 5 2 2 1 2 tr sw hu df

6477, 10136, 13541, 15327, 17169

10472 N 4 3 3 1 3 tr wa hu df 834, 10847, 12658, 13552, 14087 2555 SE 5 2 2 1 3 tr wa hu df 64369044 N 5 N 2 2 5 1 1 2 4 eq 3 1 wa tr ph wa df hu df 11718 N 3 3 1 1 3 tr wa hu df 822, 823, 9368 SE 4 (1) 2 26400 1 1 tr wa N hu 3 2 df 2 1 2 eq wa ph df 1367 N 5 1 2 1 3 tr wa hu df 1382417741 N841, 10451, 14469 3 N 1 2 4 2 3 1 4 tr 1 1 wa tr hu wa df hu df 14169 N 417163, 17230 2 3 1 N 1 tr 5 1 wa 3 hu 1 1 df tr wa hu of 3484, 8697, 13664 16477 N6402 3 1 2 N 3 2 4 tr 2 3 wa 1 hu 1 df eq wa ph df 3177838, 10893, 11613 SE6463 S, SE 4 3 2 1(3) 2–3–4 3 2 N 1 3 1 te, tr 4 wa sw, tr 4 ph, hu 2 md df, ct 1 hu 2 df eq wa ph df 109194451, 12865, 12880 SE13667 3 1 2 NE 3 1 4 tr 2 1 sw 1 ph 3 me df wa mh of 3310, 6251, 16450 3897, 9307, 10461, 13551, 16460 Wood collection (BCT Wood 65166376, 14020, 16433, 16441 N 5 1 2 3 1 eq wa ph df 18518 SE 3 0 2 3 1 tr wa hu df 8694 S 5 1 2 3 1 te md ph mf 3176 SE 3 0 2 3 1 tr md hu df 13829 N 3 1 2 3 1 tr wa hu df 5026, 10445, 13822

oides

Species

Caesalpinioideae

.

.

. .

.

sp

sp

sp sp

sp

Bauhinia forficata rufa Caesalpinia peltophor

Legum. Apuleia leiocarpa

lurida

Cassia faustuosa martii adiantifolia ensiformis scleroxylon Phoebe paniculata Couratari guianensis Lecythis idatimon oblongifolia Copaifera duckei langsdorfii splendens Lecythidaceae compressa Eschweilera tristis Cariniana estrellensis coriacea (Table 1 continued) (Table Persea pyrifolia legalis luschnatthii

Family / nitida odorifera puberula pulchella rigens rubra

Downloaded from Brill.com10/09/2021 09:15:07PM via free access Alves & Angyalossy-Alfonso — Ecological anatomy of Brazilian woods 399

N, SE, NE 5 1–2 4 (3) 1 (3) 2 me tr, md sw, wa, hu, ph, mh df, sf, ce

N, SE, NE 3 (1) 2 3 (2) 1–3 1–2–3 eq, tr wa ph, hu, sa df, ce N, SE 5 1 (2) 2 (3) 1 (3) 2 (1) tr wa hudf of, S, SE, N 3 2 (1) 4 1 1 eq tr, te, wa sw, md, ph, hu mf, ct, of

N, NE, SE 5 2 3 (2) 1 (2) 3 (2) tr wa hu, sa df, ca

13669 NE 5 2 4 1 3 me wa hu df 4115 SE12237, 6055 5 1 SE 3 3 5 1 1–2 2 tr 1 md 1 hu tr mm sw, df hu, ph sf 10367 S 5 1 2 3 1 tr sw ph sf 11100, 12582, 14117, 14464 SE, N 4 2 2–3 1 2–313549 tr wa hu SE df 5 1 1 1 1 tr wa hu df 8584, 12879, 14461, 16264, 16434, 9955, 16454 N 5 2 3–4 1 1–3 tr wa hu df 102231361 NE 3 SE 2 4 5 1 3 3 1 me 1 3 wa tr hu sw df hu ct 1645917605 N 5 1 2 11362 2 tr wa SE hu 5 df 3 1 1 2 tr sw hu ct 6508, 8528, 9908, 15936 13538 SE 3 2 3 1 3 tr wa hu df 1774715915 N 5 N 2 3 5 1 21290311793, 1505, 2 2 tr 1 SE, MW 3 (5) 1 wa 2 (1) 3 (2) tr 1 hu wa 1 df tr hu wa, sw df mh, husf ce, 13564, 17234, 17239 14804 N 5 15497 4 1 2 tr SE wa 3 2 hu 1 df 1 1 tr wa mh ct 14116, 14803, 1591714116, 14803, N 5 2 (1) 4 (3) 1 1–2–3 eq tr, wa hu, ph df, ct 1294, 8769, 15202 1511, 14446 N, SE 3 1–2 3 1 1 tr wa, sw hu df, sf 15914 N 5 114105 3 1 2 N tr wa 3 2 hu 2 df 1 3 tr wa hu df 1532, 14801 SE, N 5 1 47496 1 1 tr wa sw, SE hu 5 sf, df 2 1 1 1 tr mm ph sf 16458, 16851, 18238 14111, 14113, 1675710236, 10457, N 3 2 (3) 2 (1) 1 1 eq tr, wa hu, ph df 16550 N 3 2 2 1 3 tr wa hu df 10112 N 3 3 2 3 1 tr wa hu df 10063 N 3 2 1 1 3 tr wa hu df 10151 N 3 2 1 1 2 tr wa hu df 10038 N 3 3 2 1 1 tr wa hu df 16439 N 5 1 2 1 3 tr wa hu df 16489 N 3 2 2 1 3 tr wa hu df 2270 SE 3 2 1 1 2 tr md hu df 10027 N 3 2 2 1 2 tr wa hu df 5886 S 3 1 2 1 2 te md ph ct 6488 N 3 1 1 1 1 eq wa ph df

.

sp

Mimosoideae

. .

. .

sp sp

sp sp

Peltogyne confertiflora trapezifolia dubium nitens Dialium guianense Albizia pedicellaris Hymenaea courbaril paradoxa recifensis Calliandra officinalis tweedie sp. reticulata intermedia contortisiliquum Enterolobium palustris Legum. gunniferum parvifolia Acacia polyphylla maximum reticulata schomburgkii

Martiodendron mediterraneum Martiodendron Inga alba capitata edulis gracilifolia heterophylla nobilis paraensis rubiginosa sellowiana thibaudiana Piptadenia excelsa flava

Downloaded from Brill.com10/09/2021 09:15:07PM via free access 400 IAWA Journal, Vol. 23 (4), 2002

——————————————————————————

bution dance sition thickn. Climate Temperature Humidity Vegetation

regions distri- abun- width compo- wall

NE, SE 3 (5) 0 (1) 1 (2) 1 1 (2) tr wa sa, mh ce, sf, cf

N, NE 3 (5) 1–2 1 1 3 tr wa hu df, cf

w) Brazilian Par. Par. Ray Ray Fibre Environmental features

Wood collection (BCT Wood 1785, 16181 SE, S 3–5 1 2–3 1 1 te tr, md sw, hu, ph ce, sf 10249, 16179 S 3 1–2 2 1 1 te md sw, ph df, sf 2760, 6182, 15930

1920, 4647, 6183, 10738, 117941920, 4647, 6183, 10738, SE, MW 3 2 3 3 (1) 1 tr wa, sw mh df, ce 1309 SE 3 3 3 1 1 tr md hu df 9949 N 5 3 3 1 3 eq wa ph df 9804 SE 5 3 3 1 2 tr wa hu ct 9165 N 3 2 3 3 3 tr wa hu df 2753 SE 3 2 3 3 1 tr wa mh cf 1629, 13091 N 3–5 2 2 3 3 tr wa hu df 10143 N 3 1 3 3 3 tr wa hu df 4214 N 3 0 1 1 1 tr wa hu of 4449, 13530 SE8706, 16167 3 1 1 S 1 1–2 4 tr 3 wa sw, 4 hu 1 1 df te md ph mf, sf 7831 NE2846 5 1 1 N 1 3 5 tr 3 wa 2 1 sa 1 ca tr wa hu df 605813120 SE6235, 16191 4 N 2 S 2 3 3 2 5 1 2 2–3 tr 3 3 3 1 mm tr 1–2 ph te wa sf md hu ph df mf, sf 127639442, 10719 NE3242, 8725 SE, MW 5 3 2 2 2 S, SE 1 3 4 1 3 2–3 3 me 3 tr 1 wa 1–2 wa sw, ph te, tr hu, mh md, sw ct, ce df ph, hu mf, df 158813671 SE3686 5 NE 2 3 2 SE 2 3 2 2 5 1 tr 2 3 3 sw tr 1 hu 3 wa ct tr hu sw cf hu df 110108476, 9986, 10815, 13677 SE8794 5 2 3 3 S 2 3 tr 3 wa 3 1 hu 3 df te md ph mf 10821 N1577 5 2 2 SE 1 3 4 tr 2 2 wa 3 hu 1 df tr md hu df 10105, 13668 N, NE 312692 1–2 2–3 3 2–3 me tr, MW wa 5 hu, mh 2 df, of 3 1 3 tr sw mh ce 16211 S 5 2 3 1 1 te md ph sf 11550 SE 5 1 1 1 2 tr wa hu df 16193 S 5 1 2 1 1 te md ph sf

sp. 13245, 16494 N 3 2 1–2 1 1–2 tr wa hu df

Species

Papilionoideae

.

.

.

sp

sp

sp

(Table 1 continued) (Table Stryphnodendron Stryphnodendron Family / Legum. gonoacantha

Plathymenia reticulata Plathymenia

Amburana cearensis Amburana Andira anthelmia inermis legalis parvifolia

Bowdichia nitida virgilioides Centrolobium paraense Centrolobium tomentosum Erythrina falcata Dalbergia cearensis Dalbergia Lonchocarpus denudatus frutecens racemosa guilleminianus incexis Dipteryx alata sericeus miscolobium ferrea auriculata Luetzelburgia nigra odorata spruceana Machaerium aculeatum Diplotropis purpurea Diplotropis acutifolium brasiliense incorruptibile lanatum

Downloaded from Brill.com10/09/2021 09:15:07PM via free access Alves & Angyalossy-Alfonso — Ecological anatomy of Brazilian woods 401

S, SE 5 1 1 1 2 (1) tr swhu ph,mh, ct, ce, df SE, N 3 1 (2) 3 3 (2) 3 eq tr, wa sw, hu, ph df, ct

SE 4 2 1 1 1 tr md ph df

S, SE, N 4 (2, 5) 2 (1) 3 (2) 1 3 eq tr, wa sw, ph, hu sf, df

N 3 2 3 (2) 1 (3) 1–2–3 tr wa hu df

11548 SE 5 2 1 1 1 tr wa hu df 11006, 1154911006, SE 5 1 1 1 2–3 tr wa hu df 1621018476 S 5 SE 2 3 3 1 2 1 2 te 3 1 md tr ph wa sf hu df 12693 MW 5 2 2 1 2 tr sw mh ce 445213461 SE 5 N 1 2 5 1 3 2 1 tr 3 2 sw tr hu wa df hu df 18474 SE 5 2 1 1 2 tr wa hu df 1355410046 SE 3 N 1 2 5 1 2 3 3 tr 1 1 wa tr hu wa df hu df 6352, 110051665 SE 5 1 SE 1 1 3 3 2 tr 2 1 wa 2 hu tr df sw hu ct 3 252, 8592, 10226 13465 N 3 3 2 1 3 tr wa hu df 3325, 5945, 12579 7040, 13533 S, SE 5 1–2 1 1 1 te,tr md, wa ph, hu df 3339, 4645, 10734, 11138 SE MW, 5 (3) 1–2 2 (1) 1 3 tr wa sw, mh, hu ce, ct 11543 NE 5 1 2 3 2 tr wa ph df 1911, 10764 N 4–5 1–2 1 3 1–3 tr wa hu df 1346011867 [12236 N 3 3 3 1 2 tr wa hu df 13462 N4433 3 2 2 SE 3 1 4 tr 1 1 wa 1 hu 1 tr df md ph df 13459, 14174 N6461 3 2–3 2 3 2–3 N tr 5 wa 3 2 hu 3 df 3 eq wa ph df 13288 SE 5 3 2 3 1 tr sw ph df 7066, 10251 S3961 5 1 1 1 SE 1–2 te 5 3 md, sw 2 ph 3 df 3 tr md hu sf 1335, 1336, 6432, 7639, 10372, 1604011172, N 4–5 1–2 1–2 1–3 3 tr wa hu df 8421, 16526 N 5 2 1 1 3 tr wa hu df 11714 N 5 1 2 3 2 tr wa hu df

9198 N 4 2 1 1 2 tr wa hu df 13267 N 5 3 2 3 3 tr wa hu df 10037, 13265, 13469

sp. 1581 SE 5 2 3 1 2 tr sw hu ct

sp.macrocalyx 10723 MW 3 2 2 3 1 tr wa mh ce sp. 8002 N 5 2 1 1 1 eq wa ph df

sp. 15932 NE 3 3 2 1 3 tr wa sa ce

sp. 2527, 16196 SE, S 5 1–2 2 1–3 1–3 te tr, wa, md hu, ph df, sf

legale leucopterum stipitatum Ormosia arborea opacum villosum coccinea ovalifolium Myrocarpus fastigiatus Myrocarpus coutinhoi pedicellatum frondosus scleroxylon flava

Myroxylon peruiferum Myroxylon

violaceus Pterodon emarginatus Pterodon Swartzia euxylophora laevicarpa Pterocarpus draco Pterocarpus nobilis langsdorfii paraensis laxiflora multijuga Platymiscium floribundum myrtifolia Poecilanthe parviflora panaccoco polyphylla recurva

ulei Vatairea erythrocarpa Vatairea guianensis

Downloaded from Brill.com10/09/2021 09:15:07PM via free access 402 IAWA Journal, Vol. 23 (4), 2002

——————————————————————————

bution dance sition thickn. Climate Temperature Humidity Vegetation

regions distri- abun- width compo- wall

S, SE 5 (2) 1 3 (4) 1–3 1 te, tr md, sw ph, huct sf,

NE, N, SE, 4 2 4 3 (1–2) 1 (2) eq tr, me, wa ph, hu df

NE, N 3 1 (4) 3 3 (2) 1 me, tr wa mh, hudf of,

w) Brazilian Par. Par. Ray Ray Fibre Environmental features

Wood collection (BCT Wood 13543 SE 3 2 2 3 3 tr wa hu df 9418 N 3 2 2 3 3 tr wa hu df 14103 N 5 2 2 1 3 tr wa hu df

6184 SE 3 2 4 3 2 tr wa mh sf 13466 N 3 3 4 3 2 eq wa ph df 2872 N 3 2 3 3 3 tr wa hu df 13539 SE 4 2 2 1 3 tr wa hu df 12493, 15931 NE 4 2 2 3 3 tr wa hu, sa cf, ce 11494, 13104 N 5 1 3–4 3 1 tr wa hu df 16525 N 3 2 2 1 2 tr wa hu df 606616466 SE 4 N 2 2 5 3 2 1 2 tr 1 2 mm tr ph wa sf hu df

138842547 SE 5 SE 1 3 5 1 1 1 1 tr 1 1 sw tr hu wa ct hu df 13885, 16208, 16244 14143 N 5 1 1 1 3 tr wa hu df

6481 N 4 2 4 3 1 eq wa ph df 1774211629 N 3 N 2 4 3 3 1 1 3 tr 3 1 wa tr hu wa df hu df 13838, 167433337, 13836 N 3–5 1–2 N, SE 2 3–5 3 1–2 4 2–3 tr 1 1 wa tr hu wa, sw df hu df, ct 13842, 1725210831, 12886, 13544, 13832, 13918, N 3 1 3–4 3 1 tr wa hu df 10833, 1383914441 N 3 1 MW 4 3 1 tr wa hu df 10857, 13702, 16420, 17140 11532 N 4 2 4 3 1 tr wa hu df 3258, 16180 S, SE 4 2–3 4 1–3 1 te, tr md ph sf, ct 2684 SE 4 3 3 3 1 tr md hu df

Species

.

sp. 13548 SE 5 2 3 1 3 tr wa hu df

sp.sp. 12661 3324 SE 4 SE 2 2 5 1 2 1 2 tr 1 2 sw tr hu sw df hu ct

sp. 4285, 14063 SE, MW 4–5 1–2 1 1 1–2 eq tr, wa sw, mh, hu sf, df

sp. 9911 SE 3 1 2 3 2 tr wa hu df

sp

(Table 1 continued) (Table Family / heptocarpa paraensis sericea

araroba inglesiasii speciosa Zollernia falcata paraensis odorata Meliaceae grandifolia Guarea Cabralea canjerana purusana

Cedrela angustifolia Cedrela pallida Trichilia fissilis rubra

Moraceae Acanthinophyllum ilicifolia Brosimum acutifolium Brosimum utile subsp ovatifolium guianense tinctoria Chorophora parinarioides Clarisia racemosa potabile rubescens Ficus pulchella

Sorocea bonplandii Sorocea

Downloaded from Brill.com10/09/2021 09:15:07PM via free access Alves & Angyalossy-Alfonso — Ecological anatomy of Brazilian woods 403

NE 3 (1) 0 (1) 3 3 1 me, tr wa ph, mhof df, S 2 2 (2) 3 3 1–2–3 te md phsf ct,

N 1 0 2 (1) 3 1 tr wa hu df N, SN, (4) 1 0 (1) 4 (2–3) 3 (1) 1 te tr, md wa, hu, ph df, sf SE, NE 3–4–5 1–2 2N, SE, S 2 (4) 3 3 (2) 0–1 me tr, 3 wa, sw(3–4) 2 2 (1–3) hu, ph eq te, tr, wa, sw df hu, mh, ph df, cf, of

S, MW 4 (5) 1 (0) 3 3 2 te, trwa md, ph, hu cf, mf, sf

SE, MW, NSE, MW, 5 2 2–3–4 3 (1) 3 tr md hu df

13758 N 1 0 2 3 1 tr wa hu df 6536, 1375513750 N 5 1 N 2 3 3–4 1 0 eq, tr 2 wa 3 1 ph, hu tr df wa hu df 1376113756 N 1 N18183 0 2 1 3 0 1 3 SE tr 3 1 4 wa tr 3 hu 3 wa 4 df hu 3 tr df wa ph ct 1374712358, 16529 N N 39329, 18514 0 5 2 0–1 2–3 3 3 1 SE, S 1 tr 2–4 tr 0 wa 2 wa 3 hu hu 1–3 df te tr, df wa, md hu, ph df 11467, 13757, 1375911467, 13757, N5203 1 0 (1) 2 3 SE2038 1 3 tr 1 wa 2 SE 3 hu 1 2 df tr 2 4 wa 3 mh 2 ct tr mm hu sf 13760542 N 1 SE 0 2 3 3 0 1 3 tr 3 1 wa tr hu md df hu sf 12766, 12874, 13666 13749 N 55492 0 2 3 1 SE tr 1 wa 0 hu 3 df 4 1 tr wa mh ct 100244858, 6650, 16199 N 2 0 2 3 1 tr wa hu df 11868 SE6113 15151, 7430, 8747 1 2 SE 3 S, SE 1 4 1 tr 3 0 2 sw 4 2 4 hu 3 1 sf tr te, tr md, sw md ph, hu hu mf, df df 10033, 13748, 16557 4098 SE 1 0 4 2 1 tr sw hu df 16168 S10154, 16178, 16421, 16464 2 2 4 4 3 te md ph sf 3710, 5360, 10949, 15216

861, 862, 8750, 10963, 16190

sp. 7602 SE 2 2 3 3 2 tr md hu df

sp. 2340, 14072,14249

sp. 4709, 10917, 13536

sp. 9899 SE 5 0 2 1 3 tr wa hu df

sp. 292, 5361, 10909 S, SE 1 0 3 3 1 (3) te, tr sw ph df

.

.

sp

sp. 7460 MW 1 0 3 4 1 tr wa mh ce sp sp. 7375 MW 4 3 2 3 3 tr wa mh ce

Myristicaceae calophylla Virola carinata michelli coelhoi minutiflora Eugenia copacabanensis duckei multinervia elongata officinalis Pimenta pseudocaryophyllus flexuosa oleifera Myrtaceae Psidium gardneri pavanis Campomanesia viburnoides Guettarda sebifera xanthocarpa Rubiaceae Alibertia myrcifolia Psychotria longipes Hortia surinamensis suterella Metrodorea Amaioua guianensis Simira Zanthoxylum rhoifolium Genipa americana Rutaceae Balfourodendron riedelianum Balfourodendron

Downloaded from Brill.com10/09/2021 09:15:07PM via free access 404 IAWA Journal, Vol. 23 (4), 2002

——————————————————————————

me

bution dance sition thickn. Climate Temperature Humidity Vegetation

regions distri- abun- width compo- wall

SE, S 1 0 1 1 1 te tr, mm sw, ph df, cf, sf

N 5SE, N 1–2–3 2 4 3 1 (0) 2 (1) 3 3 tr 3 tr wa wa sw, hu ph, hu df df

N, NE, S 5 (3) 3 (1–2) 4 (3) 3 1 (2) eq, te, tr, mm sw, wa, hu, ph df

w) Brazilian Par. Par. Ray Ray Fibre Environmental features

4863, 16170 S 0–2 0 1 1 1 te md ph ct, sf

Wood collection (BCT Wood 5413, 16215 SE, S 2 1–2 2 3–4 1–2 te tr, md hu, ph df, sf 1647410077, 10785 N14133 N 1 0 4 1 2 N 1 1–2 3 1 5 3 tr 2 tr 2 wa 3 wa hu 3 hu tr df df wa hu df 740, 2244, 6075, 6076, 7532 1006813662 N6570 4 NE 2 5 2 N 2 3 2 1 4 3 tr 1 3 2 wa me 3 hu wa 3 df eq ph wa df ph df 128512872 SE 4 NE 2 2 1 2 2 3 1 3 tr 1 sw me ph wa df ph df 1648610073 N 4 N 2 2 4 3 2 3 2 tr 3 2 wa tr hu wa df hu df 4740, 111504740, SE, NE 2 1 2–3 3 1–2 tr, me wa hu, mh df, ct 10788, 13170, 14134 10005, 10918, 14076 24 SE 3 2 4 3 1 tr md ph df 3675 SE 3 1 4 3 1 tr md hu df 8745 S 5 2 4 3 1 te md ph mf 9982 N 5 1 4 3 1 tr wa hu df 10828, 14151 N 3–5 2 2–4 3 1 tr wa hu df 14148 N 5 2 3 3 1 tr wa hu df 4960, 5351, 5363, 6612, 14148, 17668 6081 SE 5 3 4 3 3 tr md ph sf 3655, 14955 SE MW, 3 2 4 3 1 tr md sw, mh, hu ce, df

Species

.

.

sp. 11974, 13547 SE 4 1 2 3 3 tr md, wa ph, hu df sp sp. 4791, 11626 SE, S 2–5 2–3 2 3 1–3 te tr, wa, sw hu, ph df

sp. 10238 S 4 2 2 3 1 te sw ph df

sp

(Table 1 continued) (Table vernalis Family / Sapotaceae Sapindaceae Chrysophyllum marginatum Cupania cinera prieurii cavalcantei Ecclinusa guianensis longifolia paraense Sideroxylon obovata gardneriana Micropholis ramiflora guianensis sp. Vochysiaceae Manilkara bidentata Pouteria caiamito acuminata Vochysia bifalcata emarginata guianensis maxima obidens

thyrsoides tucanorum

Downloaded from Brill.com10/09/2021 09:15:07PM via free access Alves & Angyalossy-Alfonso — Ecological anatomy of Brazilian woods 405

Fig. 1–4. Axial parenchyma: distribution and abundance (TS). – 1: Axial parenchyma absent or extremely rare, Virola multinervia.– 2 & 3: Axial paratracheal parenchyma; 2: Parenchyma abundance intermediate, Brosimum rubescens; 3: Parenchyma abundant, Ormosia paraensis. – 4: Paratracheal-banded; parenchyma very abundant, Inga edulis. — Scale bars = 300 µm.

Downloaded from Brill.com10/09/2021 09:15:07PM via free access 406 IAWA Journal, Vol. 23 (4), 2002

Downloaded from Brill.com10/09/2021 09:15:07PM via free access Alves & Angyalossy-Alfonso — Ecological anatomy of Brazilian woods 407

Fig. 11–13. Axial parenchyma: distribution and abundance (TS). – 11: Parenchyma abun- dance intermediate (paratracheal + apotra- cheal), Hymenaea reticulata. – 12: Paren- chyma abundant (paratracheal + apotracheal + banded), Cedrela fissilis. – 13: Parenchyma very abundant (paratrachaeal + apotracheal), Vatairea cythocarpa. — Scale bars = 300 µm.

← Fig. 5–10. Axial parenchyma: distribution and abundance (TS). – 5–7: Apotracheal paren- chyma: 5: Parenchyma abundance intermediate, Manilkara cavalcantei; 6: Parenchyma abun- dant, Manilkara longifolia; 7: Parenchyma very abundant, Eugenia sp. – 8–10: Banded paren- chyma: 8: Parenchyma abundance intermediate, Trichilia guianensis; 9: Parenchyma abundant, Zollernia falcata; 10: Parenchyma very abundant, Andira inermis. — Scale bars = 300 µm.

Downloaded from Brill.com10/09/2021 09:15:07PM via free access 408 IAWA Journal, Vol. 23 (4), 2002

Fig. 14–17. Ray width (TLS). – 14: Uniseriate, Buchenavia grandis. – 15: Two cells wide, Ocotea splendens. – 16: Three cells wide, Chlorophora tinctoria. – 17: Four or more cells wide, Brosimum sp. — Scale bars = 100 µm in Fig. 14, 16, 17; 200 µm in Fig. 15.

Fig. 18–23. Cellular composition of rays (18, 20, 22 TLS; 19, 21, 23 RLS). – 18 & 19: Pro- cumbent ray cells, Aspidosperma olivaceum. – 20 & 21: All ray cells square and/or upright, Buchenavia grandis. – 22 & 23: Body ray cells procumbent with 1–4 rows of upright and/or square cells, Virola sp. — Scale bars = 100 µm. →

Downloaded from Brill.com10/09/2021 09:15:07PM via free access Alves & Angyalossy-Alfonso — Ecological anatomy of Brazilian woods 409

Downloaded from Brill.com10/09/2021 09:15:07PM via free access 410 IAWA Journal, Vol. 23 (4), 2002

Fig. 24–27. Cellular composition of rays (24 & 26 TLS; 25 & 27 RLS). – 24 & 25: Body ray cells procumbent with more than 4 rows of square and/or upright cells, Pogonophora schom- burgkiana. – 26 & 27: Rays with procumbent, square and upright cells mixed throughout the ray, Buchenavia ochropruma. — Scale bars = 100 µm. → Fig. 28–33. Fibre wall thickness (TS). – 28 & 29: Fibres very thin-walled, Virola surinamensis. – 30 & 31: Fibres thin- to thick-walled; 30: Mezilaurus lindaviana; 31: Aspidosperma poly-

Downloaded from Brill.com10/09/2021 09:15:07PM via free access Alves & Angyalossy-Alfonso — Ecological anatomy of Brazilian woods 411

neuron.. – 32 & 33: Fibres very thick-walled; 32. Brosimum guianense; 33: Terminalia argentea. — Scale bars = 100 µm in Fig. 28 & 30; 50 µm in Fig. 29, 31, 33; 200 µm in Fig. 32.

Downloaded from Brill.com10/09/2021 09:15:07PM via free access 412 IAWA Journal, Vol. 23 (4), 2002

Anatomical parameters Axial parenchyma distribution were defined as absent or rare (Fig. 1), paratracheal (Fig. 2 & 3), apotracheal (Fig. 5–7), banded (Fig. 4, 8–10), and combinations of the three distributions (Fig. 11–13). Four arbitrary categories were created to quantify the axial parenchyma: 0 – paren- chyma absent or rare (Fig. 1); 1 – parenchyma abundance intermediate (Fig. 2, 5, 8, 11); 2 – parenchyma abundant (Fig. 3, 6, 9, 12); 3 – parenchyma very abundant (Fig. 4, 7, 10, 13). The four categories were based on the 686 samples studied. After being photographed and separated comparatively by abundance, the 686 samples were as- sessed again and classified according to the standards. Therefore, our quantification was reproducible and a reliable estimate of a parenchyma abundance. Rays were classified into: uniseriate (Fig. 14), 2 cells wide (Fig. 15), 3 cells wide (Fig. 16) and multiseriate (4 or more than 4 cells wide) (Fig. 17). For ray cell compo- sition, the woods were classified into all ray cells procumbent (Fig. 18 & 19), all ray cells upright and/or square (Fig. 20 & 21), body ray cells procumbent with 1–4 rows of upright and/or square cells (Fig. 22 & 23), body ray cells procumbent with more than 4 rows of upright and/or square cells, rays with procumbent (Fig. 24 & 25), square and upright cells mixed throughout the ray (Fig. 26 & 27). In order to assess fibre wall thickness, three categories suggested by the IAWA Committee (IAWA 1989) were adopted: fibres very thin-walled (Fig. 28 & 29), fibres thin- to thick-walled (Fig. 30 & 31) and fibres very thick-walled (Fig. 32 & 33).

RESULTS

Table 1 shows the species studied, their regions of origin, their anatomical attributes and ecological preference. When the anatomical features, indicated by numbers, var- ied for the same species, the numbers represented are hyphenated, while the least frequent conditions are put between parentheses. Table 2 shows the frequency of the wood characters in relation to regional and environmental parameters. Table 3 shows the values of Pearson’s Standardised Residues according to envi- ronmental parameters, only for situations in which residual values were significant, that is, close to or over ± 2.0.

Axial parenchyma distribution Statistical analysis of the paratracheal parenchyma showed a positive correlation with the North region, while the apotracheal parenchyma showed a positive correla- tion with the temperate climate (Table 3), present in Brazil at latitudes above 23° S, and with a temperature range classified as sub-warm, characterised by high tempera- tures in the summer with mild winters with an average temperature of the coldest month from 18 to 15° C. There was also a negative relationship with the North region (Table 3), at latitudes below 12° S. These relationships result in a trend that paratracheal parenchyma is associated with lower latitudes, hence warmer climate, and the apotracheal parenchyma, to higher latitudes and, consequently, colder climate.

Downloaded from Brill.com10/09/2021 09:15:07PM via free access Alves & Angyalossy-Alfonso — Ecological anatomy of Brazilian woods 413

.

—————————

————————————————

22.7 40.8 21.4 15.1 44.5 3.3 51.5 0.7 0.0 45.5 20.0 34.5

17.1 27.6 36.8 18.4 43.4 2.6 51.4 2.6 0.0 72.4 18.4 9.2

16.7 30.4 34.3 18.6 34.3 4.9 57.9 2.9 0.0 75.5 14.7 9.8

————————————

11.3

11.8

11.7

Parenchyma Ray width Ray composition Fibre wall

————————————

47.6 4.7 35.7 42.9 16.7 23.8 35.1 19.0 19.0 69.3 2.4 23.5 4.8 0.0 40.4 31.0 28.6

11.9

18.0 29.5 9.8 36.0 49.2 6.6 23.0 34.4 29.5 13.1 57.4 0.0 37.7 4.9 0.0 47.6 21.3 31.1

17.1 34.3 14.3 31.4 48.6 5.7 28.6 8.6 31.4 31.4 48.6 8.6 42.8 0.0 0.0 54.3 28.6 17.1

11.5

11.4

6.0 35.5 6.7 21.1 30.7 15.4 28.1 45.2 2.2 22.2 13.3 24.4 37.9 4.4 35.6 42.2 17.8 24.4 31.1 24.4 20.0 51.2 4.4 42.2 0.0 2.2 28.9 26.7 44.4 9.7 25.8 9.7 25.8 29.0 9.7 22.6 58.0 9.7 22.6 38.7 25.8 12.9 48.4 0 48.4 3.2 0.0 48.4 16.1 35.5 6.4 26.0 14.5 20.9 32.2 13.2 38.7 40.4 7.7 27.2 34.4 25.1 13.2 45.1 4.3 46.8 3.4 0.4 57.0 23.0 20.0 9.2 23.7 17.1 18.4 31.6 17.1 42.2 28.9

6.3 31.2 10.0 21.1 31.4 13.4 33.7 41.2 9.0 24.5 38.7 23.8 13.0 46.4 3.4 48.1 1.9 0.2 48.9 20.7 30.4 4.8 28.6 9.5 23.8 33.3 17.5 23.8 43.9 17.5 25.4 34.9 19.0 20.6 39.7 3.2 55.6 1.5 0.0 54.3 25.0 20.7 3.6 14.3 17.9 25.0 39.2 3.6 32.1 46.4 17.9 25.0 21.4 25.0 28.6 42.9 7.1 46.4 0.0 3.6 38.9 25.2 35.9

9.6 24.7 17.8 17.8 30.1 17.8 41.1 28.8 12.3 16.4 27.4 37.0 19.2 42.5 2.7 52.1 2.7 0.0 72.6 19.2 8.2

5.4 32.8 8.3 21.7 31.8 13.7 30.2 45.4 10.7 23.5 39.3 23.5 13.7 45.5 2.9 49.7 1.7 0.2 44.2 22.1 33.7 8.3 16.7 19.4 20.4 35.2 10.2 42.6 38.9 8.3 29.6 32.4 24.1 13.9 54.7 5.6 37.0 1.8 0.9 54.6 24.1 21.3 7.8 30.4 14.7 17.6 29.5 16.7 40.2 31.4

7.4 22.8 13.2 24.9 31.7 16.3 34.4 33.9 13.8 23.8 30.1 25.9 20.1 41.3 4.2 51.9 2.1 0.5 67.2 17.5 15.3 6.3 31.5 10.3 20.1 31.8 13.6 32.2 37.5 9.3 23.6 39.5 23.6 13.3 44.4 3.7 50.3 1.4 0.2 45.8 22.4 31.8 4.9 36.1 0.0 37.5 0.0 12.5 50.0 0.0 37.5 44.9 25.0 37.5 37.5 25.0 0.0 87.5 0.0 12.5 0.0 0.0 12.5 37.5 50.0

2.7 35.1 18.9 18.9 24.4 2.7 35.1 51.4 10.8 24.3 35.1 29.7 10.8 62.2 0.0 32.4 2.7 2.7 43.3 18.9 37.8 0.0 0.0 0.0 0.0 0.0 0.0 25.0 50.0 25.0 75.0 0.0 25.0 0.0 100.0 0.0 0.0 0.0 0.0 25.0 50.0 25.0 7.1 31.2 9.0 22.2 30.5 15.3 31.6 43.0 10.1 24.1 40.8 22.8 12.3 41.1 4.1 53.3 1.3 0.2 49.3 20.6 30.1 2.9 34.3

6.1 16.7 21.2 22.7 33.3 12.1 42.4 37.9 7.6 22.7 24.2 27.3 25.8 51.6 0.0 45.4 3.0 0.0 69.7 18.2 12.1 5.3 31.6 10.5 26.3 26.3 15.8 52.6 15.8 15.8 21.1 47.4 31.6 0.0 31.6 0.0 63.1 5.3 0.0 47.4 21.0 31.6 2.4 23.8 14.3

12345 0123 1234 12345 123

———————————————

12.5 18.8 12.5 31.3 24.9 25.0 25.0 37.5 12.5 37.5 18.8 6.3 37.5 43.8 0.0 56.2 0.0 0.0 87.5 12.5 0.0

16.7 33.3 5.6 22.2 22.2 27.8 27.8 27.8 16.6 0.0 16.7 50.0 33.3 33.3 5.6 55.6 5.5 0.0 88.8 5.6 5.6

Table 2. Relative frequency of anatomical parameters in relation to Brazilian region and environment (for legends, see Table 1) Table see (for legends, and environment region in relation to Brazilian of anatomical parameters frequency 2. Relative Table

Environmental Axial parenchyma

parameters distribution (%) abundance (%) (%) (%) thickness (%) Region

North Northeast Middle West Middle Southeast South Climate type Tropical (sensu Nimer, 1989) (sensu Nimer, Equatorial Mediterranean

Temperate Temperature Warm Sub-warm Mild-mesothermic Medium- mesothermic

Humidity Super-humid Humid Semi-humid Semi-arid Vegetation Cerrado Caatinga Dense forest Open forest Mixed forest Semideciduous forest Deciduous forest Contact

Downloaded from Brill.com10/09/2021 09:15:07PM via free access 414 IAWA Journal, Vol. 23 (4), 2002

No significant statistical relationship was found for parenchyma absence, for banded parenchyma or for the association between different parenchyma distributions.

Axial parenchyma abundance Positive residues were identified in the abundant category, both in the Northeast and in the Equatorial climate (Table 3), found in Brazil at latitudes below 14° S. Besides, the abundant parenchyma showed a negative relationship with the South (Table 3), located at comparatively higher latitudes (above 23° S). These results re- veal that the parenchyma tends to be more abundant at lower latitudes. This trend is further supported by a negative relationship between the intermediately abundant parenchyma and the Northeast (Table 3), that is, intermediately abundant parenchyma is not associated with lower latitudes.

Ray width Uniseriate rays are correlated with lower latitudes, since positive residues were found in the caatinga (Table 3), a vegetation typical of the Northeast of Brazil. Be- sides, uniseriate rays showed negative residues at higher latitudes, such as the South, and the mixed forest, typical of this region (Table 3). Rays two cells wide were more often found in warmer environments (Table 2). However, the residues did not indicate any clear trends.

Table 3. Pearson’s Standardised Residues.* N = Northeast, S = Southeast, eq = equatorial, te = temperate, wa = warm, sw = sub-warm, md = mild- mesothermic, mm = medium-mesothermic, ph = super-humid, ca = caatinga, mf = mixed forest.

Paratracheal parenchyma

Apotracheal parenchyma

Parenchyma abundance intermediate

Parenchyma abundant

Uniseriate rays

Rays three cells wide

Fibres very thin-walled

Fibres very thick-walled

N (+1.9) N (–2.3) NE (–1.8) NE (+1.8) S (–2.0) S (+2.2) N (–1.8) N (+2.6) te (+1.8) S (–1.8) ca (+2.1) md (+2.2) NE (–2.1) NE (+2.3) sw (+2.6) eq (+1.8) mf (–2.1) mf (+2.0) S (+2.6) S (–3.2) te (+2.6) te (–3.4) wa (–2.2) wa (+2.7) md (+3.3) md (–3.3) mm (+1.9) mm (–2.0) ph (+2.1) ph (–3.3) mf (+2.5) mf (–1.7)

* (Bussab & Morettin 1987). Residual values ≥ 1.7 indicate a strong positive association between the environmental and anatomical variables. Residual values ≤ –1.7 show a negative relationship.

Downloaded from Brill.com10/09/2021 09:15:07PM via free access Alves & Angyalossy-Alfonso — Ecological anatomy of Brazilian woods 415

Rays three cells wide tended to be found in higher latitudes, since positive residues (Table 3) were found in the South of Brazil, in mild-mesothermic climate and mixed forest, usually found in this region. Rays four or more than four cells wide showed a weak relationship with more humid environments, since they are more often found in super-humid climates and were absent in semi-arid (Table 2) conditions. However, residue analysis did not confirm or invalidate the relationship with humidity.

Ray composition As to ray composition in the categories studied, rays with all cells procumbent (1) and rays formed by procumbent cells and 1–4 rows of upright and/or square cells (3) were most common (in 45% and 38% of the samples, respectively); the other catego- ries were much less frequent (Table 2). According to the relative rates, category 1 was related to drier environments (Northeast, semi-arid climate and caatinga, found in this region only), while category 3 was predominant in the South, in temperate and super-humid climates, typical of this region (Table 2). The residue analysis, however, did not indicate ecological trends related to ray composition.

Fibre wall thickness The residue analysis revealed clear trends for very thin-walled and very thick- walled fibres. Very thin-walled fibres were positively related to the South and to other associated environmental parameters, such as temperate, super-humid, mild-mesothermic and medium mesothermic climates, and mixed forest (Table 3). These results provide statistical evidence that very thin-walled fibres are more prevalent in higher latitudes, more humid environments and milder temperatures. Very thick-walled fibres have a positive relationship with lower latitudes, such as the North and the Northeast, and with hot climates (Table 3).

DISCUSSION

In the woods studied, the paratracheal parenchyma showed a significant statistical relationship with lower latitudes, and the apotracheal parenchyma with higher lati- tudes, reflecting the tropical-temperate gradient within the Brazilian territory. These results match those found by Wheeler and Baas (1991), who stated that in the recent flora there is a slight tendency for diffuse parenchyma to be more common in temper- ate than in tropical floras and aliform/confluent and/or banded parechyma is much more common in the tropics than in temperate floras. According to Wheeler and Baas (1991), abundant axial parenchyma is a feature of tropical regions. The present study confirmed more abundant parenchyma at lower latitudes, in the North and Northeast of Brazil, especially in tropical climates, sup- porting the results of these authors. The main function of parenchyma tissues is the storage and mobilisation of metabolites. Septate fibres also have storage function. In those lower latitudes (N and

Downloaded from Brill.com10/09/2021 09:15:07PM via free access 416 IAWA Journal, Vol. 23 (4), 2002

NE regions), the woods studied showed high frequency of axial parenchyma associ- ated with high frequency of septate fibres. This study revelead that 56% of Brazilian woods with septate fibres were from North and Northeast regions, while 16% were from higher latitudes (S region). In lower latitudes, 28% of the species with septate fibres have a higher abundance of axial parenchyma (abundant and very abundant, categories 2 and 3 respectively). On the other hand, in higher latitudes (S region) abundance of axial parenchyma was not related with septate fibres (3% in categories 2 and 0% in 3). Abundant axial parenchyma and septate fibres together give a huge potential for storage and mobilisation of metabolites, being a possible adaptation to environments where photosynthetic rates are high. A comparison between axial and radial parenchyma shows that when the axial parenchyma is predominantly paratracheal and more abundant, that is, at lower lati- tudes, the rays also tend to be uniseriate, and this is also statistically associated with lower latitudes. On the other hand, when at higher latitudes the trend was predomi- nantly for apotracheal parenchyma and there was less parenchyma, the rays were more often triseriate. The presence of wider rays at higher latitudes and with a seasonal climate (that is, with a period less favourable to growth) could also enhance radial transport efficiency from phloem to xylem, considered of great importance in the supply of metabolites to the cambium tissue early in the growing season. No trends were found for ray composition. In Compositae, Carlquist (1966) found more procumbent rays at higher latitudes and more humid environments. However, in the flora from Israel, Fahn et al. (1986) found that homogeneous rays were often found both in dry and humid environments and, therefore, no trends were identified for ray composition as a whole. Baas (1982) concluded that, apparently, there are no functional advantages in rays of different compositions under a wide range of climate conditions. According to Wheeler and Baas (1991), any ecological or functional in- terpretation that tries to explain ray composition is mere speculation. The functional advantages related to fibre wall thickness are not so evident, since the primary function of these cells is in plant support and not in water conduction. Safety and efficiency are the basic functions to be taken into account whenever xylem characteristics are analysed (Zimmermann & Brown 1971; Zimmermann 1983; Carlquist 1988). Larger-diameter vessels are more efficient and not so safe, while the opposite is true for vessels with a smaller diameter. However, vessel diameter should not be linked with sap transport only, since it is also related to the wood’s higher or lower mechanical resistance. Therefore, large- diameter vessels can lead to weaker woods when compared to woods with small- diameter vessels. However, it is possible to keep high conductivity and mechanical resistance by combining larger-diameter vessels with fibres whose walls will provide the resistance required of the tissue as a whole (Tyree et al. 1994). Therefore, thicker- walled fibres are probably associated with larger-diameter vessels which, in turn, would be found in less stressful environments, that is, lower latitudes and altitudes, without water supply restrictions.

Downloaded from Brill.com10/09/2021 09:15:07PM via free access Alves & Angyalossy-Alfonso — Ecological anatomy of Brazilian woods 417

Although thicker-walled fibres were found in lower latitudes in the woods ana- lysed, the fibre wall thickness/vessel diameter ratio was not tested because the vessel dimensions had not been previously assessed. However, the study does suggest a relationship (cf. Alves & Angyalossy-Alfonso 2000). Our results confirm several trends reported in the literature, especially the more abundant parenchyma and the predominance of the paratracheal distribution at lower latitudes.

ACKNOWLEDGEMENTS

We are very thankful to the Wood Anatomy Section of the Instituto de Pesquisas Tecnológicas do Estado de São Paulo for providing us with wood samples and slides used for this study. We express our thanks for the financial support of the Research Support Foundation of São Paulo State - FAPESP, Brazil (Proc. 1997/6195-3).

REFERENCES

Alves, E.S. & V. Angyalossy-Alfonso. 2000. Ecological trends in the wood anatomy of some Brazilian species. 1. Growth rings and vessels. IAWA J. 21: 3–30. Baas, P. 1973. The wood anatomical range in Ilex (Aquifoliaceae) and its ecological and phylo- genetic significance. Blumea 21: 193–258. Baas, P. 1982. Systematic, phylogenetic and ecological wood anatomy – History and perspec- tives. In: P. Baas (ed.), New perspectives in wood anatomy: 23–58. Nijhoff/Junk, The Hague. Baas, P., P.M. Esser, M.E.T. van der Westen & M. Zandee. 1988. Wood anatomy of the Olea- ceae. IAWA Bull. n.s. 9: 103–182. Baas, P. & F.H. Schweingruber. 1987. Ecological trends in the wood anatomy of trees, shrubs and climbers from Europe. IAWA Bull. n.s. 8: 245–274. Baas, P. & X. Zhang. 1986. Wood anatomy of trees and shrubs from China. I. Oleaceae. IAWA Bull n.s. 7: 195–220. Bussab, W.O. & P.A. Morettin. 1987. Estatística Básica. 4th Ed. Atual Editora, São Paulo. Carlquist, S. 1966. Wood anatomy of Compositae: a summary, with comments on factors con- trolling wood evolution. Aliso 6: 25–44. Carlquist, S. 1988. Comparative wood anatomy. Springer Verlag, Berlin, etc. Chimelo, J.P. & A. Mattos-Filho. 1988. Preliminary wood structure observations of five hard- wood species from different sites in Brazil. In: Annals of 5th Conference of International Union of Forestry Research Organization (IUFRO), São Paulo–Brazil II: 100. Dickison, W.C. & K.D. Phend. 1985. Wood anatomy of Styracaceae: evolutionary and eco- logical considerations. IAWA Bull n.s. 6: 3–22. Fahn, A., E. Werker & P. Baas. 1986. Wood anatomy and identification of trees and shrubs from Israel and adjacent regions. The Israel Academy of Sciences and Humanities, Jerusa- lem. IAWA Committee. 1989. IAWA list of microscopic features for hardwood identification. IAWA Bull. n.s. 10: 219–332. Nimer, E. 1989. Climatologia do Brasil. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro. Tyree, M.T., S.D. Davis & H. Cochard. 1994. Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA J. 15: 335–360.

Downloaded from Brill.com10/09/2021 09:15:07PM via free access 418 IAWA Journal, Vol. 23 (4), 2002

Van den Oever, L., P. Baas & M. Zandee. 1981. Comparative wood anatomy of Symplocos and latitude and altitude of provenance. IAWA Bull. n.s. 2: 3–24. Wheeler, E.A. & P. Baas. 1991. A survey of the fossil record for dicotyledonous wood and its significance for evolutionary and ecological wood anatomy. IAWA Bull. n.s. 12: 275–332. Wilkins, A.P. & S. Papassotiriou. 1989. Wood anatomical variation of Acacia melanoxylon in relation to latitude. IAWA Bull. n.s. 10: 201–207. Zhang, S.-Y., P. Baas & M. Zandee. 1992. Wood structure of the Rosaceae in relation to ecol- ogy, habit and phenology. IAWA Bull. n.s. 13: 307–349. Zhang, X., L. Deng & P. Baas. 1988. The ecological wood anatomy of the lilacs (Syringa oblata var. giraldii) on Mount Taibei in Northwestern China. IAWA Bull. n.s. 9: 24–30. Zimmermann, M.H. 1983. Xylem structure and ascent sap. Springer Verlag, Berlin, etc. Zimmermann, M.H. & C.L. Brown. 1971. Trees. Structure and function. Springer Verlag, Berlin, etc.

Downloaded from Brill.com10/09/2021 09:15:07PM via free access