A Look Into the Future of Particle Physics in Europe
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CERN Courier–Digital Edition
CERNMarch/April 2021 cerncourier.com COURIERReporting on international high-energy physics WELCOME CERN Courier – digital edition Welcome to the digital edition of the March/April 2021 issue of CERN Courier. Hadron colliders have contributed to a golden era of discovery in high-energy physics, hosting experiments that have enabled physicists to unearth the cornerstones of the Standard Model. This success story began 50 years ago with CERN’s Intersecting Storage Rings (featured on the cover of this issue) and culminated in the Large Hadron Collider (p38) – which has spawned thousands of papers in its first 10 years of operations alone (p47). It also bodes well for a potential future circular collider at CERN operating at a centre-of-mass energy of at least 100 TeV, a feasibility study for which is now in full swing. Even hadron colliders have their limits, however. To explore possible new physics at the highest energy scales, physicists are mounting a series of experiments to search for very weakly interacting “slim” particles that arise from extensions in the Standard Model (p25). Also celebrating a golden anniversary this year is the Institute for Nuclear Research in Moscow (p33), while, elsewhere in this issue: quantum sensors HADRON COLLIDERS target gravitational waves (p10); X-rays go behind the scenes of supernova 50 years of discovery 1987A (p12); a high-performance computing collaboration forms to handle the big-physics data onslaught (p22); Steven Weinberg talks about his latest work (p51); and much more. To sign up to the new-issue alert, please visit: http://comms.iop.org/k/iop/cerncourier To subscribe to the magazine, please visit: https://cerncourier.com/p/about-cern-courier EDITOR: MATTHEW CHALMERS, CERN DIGITAL EDITION CREATED BY IOP PUBLISHING ATLAS spots rare Higgs decay Weinberg on effective field theory Hunting for WISPs CCMarApr21_Cover_v1.indd 1 12/02/2021 09:24 CERNCOURIER www. -
EPPSU2020 European Particle Physics Strategy Update 2020
EPPSU2020 European Particle Physics Strategy Update 2020 Halina Abramowicz Tel Aviv University • European Particle Physics Strategy (EPPS) – why? • Recommendations and outcome of EPPSU 2013 • Preparations for the EPPSU 2020 4-Dec-18 DESY Colloquium 1 EPPSU2020 Why European Strategy for Particle Physics? • Relation between ESFRI and CERN had to be clarified within the European Commission v ESFRI, the European Strategy Forum on Research Infrastructures (initiated in 2002, mandated in 2004), is a strategic instrument to develop the scientific integration of Europe and to strengthen its international outreach. v CERN’s convention mandates coordination of infrastructure of particle physics for Member States • First ESFRI roadmap published in 2006, with 35 projects, the Roadmap was updated in 2008 bringing the number of RIs of pan-European relevance to 44. Later updates 2010, 2016, 2018 (49+6 new) • First European Particle Physics Strategy (EPPS) called by CERN Council in 2005 and endorsed in 2006, latest update in 2013… next in 2020. 4-Dec-18 DESY Colloquium 2 EPPSU2020 Why European Strategy for Particle Physics? Major Research Infrastructures in Particle and Nuclear Physics ESFRI Projects and Landmarks in Particle and Nuclear Physics 4-Dec-18 DESY Colloquium 3 EPPSU2020 Strategy Group Remit for the 2006 EPPS The Strategy Group shall aim: • to enhance the visibility of existing European particle physics programs; • to foster increased collaboration among Europe's particle physics laboratories and institutes; • to promote a coordinated European participation in world-wide projects; • to reiterate the CERN Council's 2004 position on the European strategy for the International Linear Collider; • to encourage knowledge transfer to other disciplines, industries, and society; • to outline priorities, at least implicitly; • to consider time scales; • to follow a thematic or project approach, whichever is more appropriate. -
Letter of Interest Electroweak Symmetry Non-Restoration And
Snowmass2021 - Letter of Interest Electroweak Symmetry non-Restoration and Delayed Electroweak Phase Transitions Thematic Areas: (check all that apply /) (EF02) Higgs Portal (EF09) General BSM (TF07) Collider Phenomenology (TF08) BSM Model Building (TF09) Astro-particle Physics & Cosmology (RF06) Dark Sector Studies at High Intensities Contact Information: Submitter Name/Institution: Claudius Krause, Fermilab Contact Email: [email protected] Authors: Marcela Carena - Fermilab/UChicago, Claudius Krause - Fermilab, Zhen Liu - UMD, Yikun Wang - Fermilab/UChicago Note that this list of signatories is preliminary, and everyone will be welcome to contribute to the studies towards the whitepaper within each Topical Group. Electroweak baryogenesis provides a unique solution to the puzzle of the observed matter-antimatter asymmetry of our universe. The electroweak phase transition of the Standard Model (SM) is a smooth crossover, and takes place at a low scale that is inconsistent with many precision CP-violation measure- ments. All together, this does not fulfill the needs for electroweak baryogenesis. Alternatively, we can imagine a modified Higgs sector where the electroweak symmetry is never restored, or only restored at very high energy. Such possibilities of “delayed” electroweak symmetry breaking or non-restoration allow new considerations for viable baryogenesis mechanisms. In Fig.1 we show diagrammatically an illustration of the thermal history from Ref.1. In the case where the electroweak symmetry breaking is “delayed”, meaning it took place at a high critical temperature due to the modified scalar sector as for instance considered in Refs.1–5, one has more freedom in introducing high scale CP-violation that are still consistent with the precision CP tests such as the electron EDM. -
Electroweak Phase Transition with Spontaneous Z2-Breaking
FERMILAB-PUB-19-602-T Electroweak phase transition with spontaneous Z2-breaking Marcela Carena,a;b;c Zhen Liud and Yikun Wanga;b aTheoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, Illinois, 60510, USA bEnrico Fermi Institute, University of Chicago, Chicago, Illinois, 60637, USA cKavli Institute for Cosmological Physics, University of Chicago, Chicago, Illinois, 60637, USA dMaryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742, USA E-mail: [email protected], [email protected], [email protected] Abstract: This work investigates a simple, representative extension of the Standard Model with a real scalar singlet and spontaneous Z2 breaking, which allows for a strongly first-order phase transition, as required by electroweak baryogenesis. We perform ana- lytical and numerical calculations that systematically include one-loop thermal effects, Coleman-Weinberg corrections, and daisy resummation, as well as evaluation of bubble nucleation. We study the rich thermal history and identify the conditions for a strongly first-order electroweak phase transition with nearly degenerate extrema at zero tem- arXiv:1911.10206v2 [hep-ph] 15 Oct 2020 perature. This requires a light scalar with mass below 50 GeV. Exotic Higgs decays, as well as Higgs coupling precision measurements at the LHC and future collider facili- ties, will test this model. Additional information may be obtained from future collider constraints on the Higgs self-coupling. Gravitational-wave signals are -
Electron-Ion Collider at Jlab: Conceptual Design, and Accelerator R&D
Electron-Ion Collider at JLab: Conceptual Design, and Accelerator R&D Yuhong Zhang for JLab Electron-Ion Collider Accelerator Design Team DIS 2013 -- XXI International Workshop on Deep Inelastic Scatterings and Related Subjects, Marseille, France, April 22-28, 2013 1 Outline • Introduction • Machine Design Baseline • Anticipated Performance • Accelerator R&D Highlights • Summary 2 Introduction • A Medium energy Electron-Ion Collider (MEIC) at JLab will open new frontiers in nuclear science. • The timing of MEIC construction can be tailored to match available DOE- ONP funding while the 12 GeV physics program continues. • MEIC parameters are chosen to optimize science, technology development, and project cost. • We maintain a well defined path for future upgrade to higher energies and luminosities. • A conceptual machine design has been completed recently, providing a base for performance evaluation, cost estimation, and technical risk assessment. • A design report was released on August, 2012. Y. Zhang, IMP Seminar3 3 MEIC Design Goals Base EIC Requirements per INT Report & White Paper • Energy (bridging the gap of 12 GeV CEBAF & HERA/LHeC) – Full coverage of s from a few 100 to a few 1000 GeV2 – Electrons 3-12 GeV, protons 20-100 GeV, ions 12-40 GeV/u • Ion species – Polarized light ions: p, d, 3He, and possibly Li, and polarized heavier ions – Un-polarized light to heavy ions up to A above 200 (Au, Pb) • Up to 2 detectors • Luminosity – Greater than 1034 cm-2s-1 per interaction point – Maximum luminosity should optimally be around √s=45 GeV • Polarization – At IP: longitudinal for both beams, transverse for ions only – All polarizations >70% desirable • Upgradeable to higher energies and luminosity – 20 GeV electron, 250 GeV proton, and 100 GeV/u ion Y. -
Benefits to the U.S. from Physicists Working at Accelerators Overseas
SLAC{PUB{15859 December, 2013 Benefits to the U.S. from Physicists Working at Accelerators Overseas Jacob Anderson, Raymond Brock, Yuri Gershtein, Nicholas Hadley, Michael Harrison, Meenakshi Narain, Jason Nielsen, Fred Olness, Bjoern Penning, Michael Peskin, Eric Prebys, Marc Ross, Salvatore Rappoccio, Abraham Seiden, Ryszard Stroynowski ABSTRACT We illustrate benefits to the U.S. economy and technological infrastructure of U.S. participation in accelerators overseas. We discuss contributions to exper- imental hardware and analysis and to accelerator technology and components, and benefits stemming from the involvement of U.S. students and postdoctoral fellows in global scientific collaborations. CONTRIBUTED TO Snowmass 2013 Electronic Proceedings Community Summer Study, Minneapolis, MN July 29 { August 6, 20123 SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 Work supported by US Department of Energy contract DE-AC02-76SF00515 and HEP. Contents 1 Introduction 2 2 U.S. Leadership in Fundamental Science 3 2.1 Today's Big Science Scale . 3 2.2 Sharing of effort in large science projects . 5 2.3 Sharing international responsibility for large projects . 7 3 Particle Physics Innovation-Transfer 7 3.1 Contributions to Detectors . 8 3.1.1 CMS endcap . 9 3.1.2 ATLAS pixel tracker . 9 3.2 Contributions to Accelerators . 11 3.2.1 Accelerator collaboration in overseas projects . 11 3.2.2 The LHC luminosity upgrade . 13 3.2.3 The ILC R&D program . 14 3.2.4 Accelerator innovation: conclusions . 15 4 Particle Physics Imagination-Transfer 16 4.1 Contributions to Experimental Analysis . 16 4.1.1 An analysis contributor { 1 . -
CERN Council Meeting – March 2020
The 2020 Update of the European Particle Physics Strategy CERN Council meeting – March 2020 Halina Abramowicz Tel Aviv University Secretary of the Strategy Update Presentation of the 2020 Strategy update • General Introduction • Preamble • Strategy Statements (20): introduction and formulation 19/06/2020 CERN Council Open Session 1 EPPSU2020 General Introduction 20 Strategy Statements unanimously adopted by the ESG in Jan.2020 • 2 statements on Major developments from the 2013 Strategy • 3 statements on General considerations for the 2020 update • 2 statements on High-priority future initiatives • 4 statements on Other essential scientific activities for particle physics • 2 statements on Synergies with neighbouring fields • 3 statements on Organisational issues • 4 statements on Environmental and societal impact Derived based on o Granada Symposium o National Inputs Two documents submitted : o Working Group 1: Social and career aspects for the next generation 1. Draft Update of the European Strategy for o Working Group 2:Issues related to Global Projects hosted by CERN or funded Particle Physics (with preamble, statements, conclusion) for feedback through CERN outside Europe CERN/SPC/1137/RA CERN/3486/C2 o Working Group 3: Relations with other groups and organisations 2. Deliberation Document (with in addition o Working Group 4: Knowledge and Technology Transfer rational behind the statements) for information o Working Group 5: Public engagement, Education and Communication CERN/SPC/1136/RA; CERN/3485/C o Working Group 6: Sustainability -
Arxiv:2005.08389V1 [Physics.Acc-Ph] 17 May 2020
Proceedings of the 2018 CERN–Accelerator–School course on Beam Instrumentation, Tuusula, (Finland) Beam Diagnostic Requirements: an Overview G. Kube Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany Abstract Beam diagnostics and instrumentation are an essential part of any kind of ac- celerator. There is a large variety of parameters to be measured for observation of particle beams with the precision required to tune, operate, and improve the machine. In the first part, the basic mechanisms of information transfer from the beam particles to the detector are described in order to derive suitable per- formance characteristics for the beam properties. However, depending on the type of accelerator, for the same parameter, the working principle of a monitor may strongly differ, and related to it also the requirements for accuracy. There- fore, in the second part, selected types of accelerators are described in order to illustrate specific diagnostics needs which must be taken into account before designing a related instrument. Keywords Particle field; beam signal; electron/hadron accelerator; instrumentation. 1 Introduction Nowadays particle accelerators play an important role in a wide number of fields, the number of acceler- ators worldwide is of the order of 30000 and constantly growing. While most of these devices are used for industrial and medical applications (ion implantation, electron beam material processing and irradia- tion, non-destructive inspection, radiotherapy, medical isotopes production, :::), the share of accelerators used for basic science is less than 1 % [1]. In order to cover such a wide range of applications different accelerator types are required. As an example, in the arts, the Louvre museum utilizes a 2 MV tandem Pelletron accelerator for ion beam anal- ysis studies [2]. -
Supersymmetric Higgs
Supersymmetric Higgs Marcela Carena Theoretical Physics Department, Fermilab Enrico Fermi Institute, University of Chicago Searching for New Physics at the LHC The Galileo Galilei Institute for Theoretical Physics October 30, 2009, Florence Outline • The SM-like Higgs Boson: state of the art • The MSSM Higgs Bosons -- Basics -- The impact of radiative corrections on masses & couplings -- Collider searches • MSSM Higgs Extensions: A model-independent approach -- The EFT at NLO -- Masses and Couplings -- Comments on collider phenomenology The Standard Model Higgs Mechanism • One physical state -- the Higgs Boson -- left in the spectrum First evidence of EWSB ==> masses of gauge bosons Measuring the WWH and ZZH couplings is essential to identify the Higgs as the agent of EWSB: without a v.e.v, no such trilinear coupling at tree level ==> we need to detect the Higgs in association with gauge bosons ==> if the theory remains perturbative, the top mass will mainly come from a Higgs with SM-like couplings to W and Z The search for the SM Higgs: state of the art + ! Z * + # e e "" # HSM Z with H SM ! bb," " Gluon-gluon fusionwith H WW ! Constraints on m H from 2 isolated leptons + missing Energy precision tests of the SM SM Higgs production processes at hadron colliders Much progress recently in computing NLO and NNLO QCD and EW corrections with H WW(*). with H bb, WW* The Tevatron Projections based on improvements already achieved for some analysis, extending them to the rest- 95 95 SM R i= S i/Si The SM Higgs LHC potential Talk by A. Nisati Tevatron excl. -
Challenges and Plans for the Ion Injectors*
Chapter 18 Challenges and Plans for the Ion Injectors* D. Manglunki CERN, TE Department, Genève 23, CH-1211, Switzerland We review the performance of the ion injector chain in the light of the improve- ments which will take place in the near future, and we derive the expected luminosity gain for Pb–Pb collisions in the collider during the HL-LHC era. 1. Introduction The Pb82 ion beam brightness, as delivered at 177 GeV/nucleon from the injectors in February 2013 at the end of the first LHC p–Pb run [1], exceeded the design value [2] by a factor of 3, as shown in Table 1. Table 1. Pb82+ ion beam properties at SPS extraction in 2013, compared to design values. Pb82+ 2013 Pb82+ design 7 N B 22 9 10 ions/bunch nB 24 52 bunches H 1.1 1.2 m (norm. RMS) V 0.9 1.2 m (norm. RMS) 7 NB / 22.1 7.5 10 ions/ m by UNIVERSITY OF TOKYO on 12/23/15. For personal use only. With this high brightness beam, a Pb–Pb run at 7Z TeV performed with the current filling scheme, described in Section 2.2 below, would deliver a peak 27 2 1 The High Luminosity Large Hadron Collider Downloaded from www.worldscientific.com luminosity of 2.3 10 cm s . Since the peak luminosity requested by the ALICE experiment for the HL-LHC era [3] is of the order of 710cms, 27 2 1 a missing factor of 3 is still to be found. The retained solution is to increase the number of bunches in the collider, as the bunch brightness is already a limiting factor on the flat bottom of the SPS, due to space-charge and intra-beam scattering [4]. -
Europeans Decide on Particle Strategy
RESEARCHNEWS Europeans Decide on Particle Strategy The CERN Council approved a strategy update that prioritizes a 100-km circular collider, while still developing other options for future particle physics projects. By Michael Schirber uropean particle physicists have updated their strategy Particle Physics Update was unanimously endorsed on June 19 for the coming decades. Beyond current commitments, by the CERN Council, which is the governing body of the CERN Ethe community advocates pursuing a new facility at the facility. The Update outlines a number of current and future CERN site outside Geneva—a circular collider with a priorities. In the near-term, the main initiatives for Europe are circumference of 100 kilometers. Such a machine could serve a the high-luminosity upgrade of CERN’s Large Hadron Collider dual purpose: to act initially as a “Higgs factory” where (LHC) and continuing support of international neutrino electrons and positrons smash together at energies up to 350 experiments, such as the forthcoming Deep Underground GeV, and to later scope out the high-energy frontier by colliding Neutrino Experiment (DUNE) in the US. But beyond that, many protons at up to 100-TeV energies. The feasibility of this questions remain. “CERN needs to have a project for after the so-called Future Circular Collider (FCC) is still an open question, LHC,” says Halina Abramowicz, chair of the European Strategy which is why the strategy also calls for continued research and Group, from Tel Aviv University in Israel. development into accelerator technology, such as plasma acceleration and muon colliders. The main objective of any post-LHC endeavor will be to look for new particles or phenomena that go beyond the standard Following a two-year-long process, the European Strategy for model of particle physics. -
A Year in the Life
Quantum Diaries: a year in the life by Kurt Riesselmann For 33 particle physicists, the year 2005 was a “I went to Caltech as an undergrad [in biology and great experiment in science communication. chemistry]. It was just interesting to read one To support the World Year of Physics, these brave woman’s [Caolionn’s] journey through the field souls had agreed to share their thoughts and as there are so few women in physics.” their lives with the public, blogging on the Quantum Anandi Raman Creath, program manager, Diaries Web site. Some of them posted notes Redmond, WA, USA a couple of times per month, others wrote almost daily. Twelve months and 2400 postings later, “I enjoyed the inherent randomness: the ability the Quantum Diarists have delivered a vivid image to open a blog and go from reading about of their personalities, interests, cultures, and the latest measurements in the mass of the top achievements. quark to reading about car racing to reading The Diarists reflected on research activities about parties… It wasn’t all political, or physics, and combining life with work. They commented or whatnot.” on the position of women and families in phys- Gordon Stangler, student, University of Missouri, ics; science and politics; teaching and outreach St. Louis, USA activities; and how an individual physicist fits into the increasingly international scientific “[The Quantum Diarists] have the same thoughts endeavors. Most importantly, they provided the and hobbies as average people, but they are public and future scientists a glimpse of what all clever and diligent. I am a little surprised that it is like to be a scientist.