WO 2016/125025 Al 11 August 2016 (11.08.2016) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2016/125025 Al 11 August 2016 (11.08.2016) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/125025 Al 11 August 2016 (11.08.2016) P O P C T (51) International Patent Classification: CAO, Leila Denise; 2 bis impasse Henri Mouret, 84000 A61K 36/41 (2006.01) A61P 21/00 (2006.01) Avignon (FR). A61K 36/28 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/IB20 16/000322 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (22) Date: International Filing DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 3 February 2016 (03.02.2016) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (25) Filing Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (26) Publication Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (30) Priority Data: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 14/612,973 3 February 2015 (03.02.2015) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicant: NATUREX SA [FR/FR]; 250 rue Pierre Bayle, (84) Designated States (unless otherwise indicated, for every BP 81218-8491 1, Avignon Cedex 9 (FR). kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (72) Inventors: BILY, Antoine, Charles; 162 rue Pomme Car TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, dinal^ 84270 Vedene (FR). MEYER, Marjolaine; la, rue TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, des Faisans, 67370 Pfettisheim (FR). CHEVALIER, Karl; DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, 132 chemin de Mireille, Residence Les Hauts de I'Emperi, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Bat A - Appt A01, 13300 Salon de Provence (FR). SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, LAURENCON, Lise; Residence Bel Air 36, Impass de GW, KM, ML, MR, NE, SN, TD, TG). Fruitiers, 84140 Montfavet (FR). FEUILLERE, Nicolas; Published: 15 rue Pierre Long, 84350 Courthezon (FR). ROLLER, Marc; 70 chemin de I'Oliveraie, 843 10 Morieres les — with international search report (Art. 21(3)) Avignon (FR). BIRTIC, Simona; 38 Grand' Rue, 84300 — before the expiration of the time limit for amending the Cavaillon (FR). FANCA-BERTHON, Pascale Elizabeth claims and to be republished in the event of receipt of Renee; 38 domaine du Verger, 84250 Le Thor (FR). FAL- amendments (Rule 48.2(h)) o (54) Title: COMPOSITIONS AND METHODS FOR IMPROVED MUSCLE METABOLISM o (57) Abstract: A composition for improving muscle metabolism in a subject and methods for manufacturing and using same. Em bodiments include compositions having an extract of Rhaponticum and an extract of Rhodiola. An extract of Rhaponticum may in clude amounts of eedysterones including 20-hydroxyecdysone. An extract of Rhodiola my include salidrosides and rosavins, includ ing rosavin. Suitable ingestion dosages of the composition may be operable to increase protein synthesis and reduce protein proteo - lysis in a subject. COMPOSITIONS AND METHODS FOR IMPROVED MUSCLE METABOLISM CROSS-REFERENCE TO RELATED APPLICATION [0001] This application claims the benefit of U.S. Patent Application Serial No.: 14/612,973, filed February 3, 2015 hereinafter incorporated by reference. FIELD OF THE INVENTION [0002] The present disclosure provides compositions and methods for increasing muscle protein synthesis, reducing muscle proteolysis, increasing muscle mass and/or strength, and improving aerobic/anaerobic sport performance. Useful compositions include, but are not limited to, Rhaponticum and Rhodiola extracts, and combinations thereof. SUMMARY OF THE INVENTION [0003] In one aspect, the invention includes a composition including a Rhaponticum extract. In some embodiments, the Rhaponticum extract comprises at least 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.75%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10% ecdysteroids including, for example, about 0.1 to 10%> ecdysteroids or about 0.4% to 5% ecdysteroids. In some embodiments the Rhaponticum extract composition comprises at least 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.75%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% , or 10% of 20-hydroxyecdysone including, for example, 0.1%> to 5.0%> of 20- hydroxyecdysone. [0004] In another aspect, the invention includes a composition including a Rhodiola extract. In some embodiments, the Rhodiola extract comprises at least 0.5%, 0.75%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10% salidrosides including, for example, about 1% to 4%. In some embodiments, the Rhodiola extract composition comprises at least 0 .1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.75%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10%, rosavins including, for example, about 0.5% to 10% or 3% to 6% rosavins. In some embodiments, the composition comprises at least 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.75%, 1%, 2%, 3%, 4%, 5%, 6% , 7% , 8% , 9% , or 10%, rosavin including, for example, about 0.5 to 10% rosavin or 1% to 5% rosavin. In some embodiments, the Rhodiola extract composition comprises at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 99% Rhodiola extract including, for example about 50% to 99%, 60%-95%, 70%-95% Rhodiola extract. [0005] In one aspect, the invention includes a composition including a Rhaponticum extract and a Rhodiola extract. In some embodiments, the Rhaponticum extract comprises at least 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.75%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8% , 9% , or 10% ecdysteroids including, for example, about 0.1 to 10%> ecdysteroids or about 0 .4% to 5% ecdysteroids. In some embodiments the composition comprises at least 0.01%>, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.75%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10% of 20-hydroxyecdysone including, for example, 0.1%> to 5.0% of 20-hydroxyecdysone. [0006] In some embodiments, the Rhodiola extract comprises at least 0.5%, 0.75%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10% salidrosides including, for example, about 1% to 4 % . In some embodiments, the composition comprises at least 0.1%>, 0.2%, 0.3%>, 0.4%, 0.5%, 0.75%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10%, rosavins including, for example, about 3% to 6%> rosavins. In some embodiments, the composition comprises at least 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.75%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10% , rosavin including, for example, about 2% to 5% rosavin. [0007] In some embodiments, the composition comprises at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 99% Rhodiola extract including, for example about 50% to 99%, 60%-95%, 70%-95% Rhodiola extract. [0008] In another aspect, the invention includes compositions having (i) at least 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.75%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10% ecdysteroids including, for example, about 0.1 to 10% ecdysteroids or about 0.4% to 5% ecdysteroids and (ii) at least 0.5%, 0.75%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10% salidrosides including, for example, about 1% to 4%. In some embodiments the composition comprises at least 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.75%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10% of 20-hydroxyecdysone including, for example, 0.1% to 5.0% of 20- hydroxyecdysone. In some embodiments, the composition comprises at least 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.75%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10%, rosavins including, for example, about 3% to 6% rosavins. In some embodiments, the composition comprises at least 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.75%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8% , 9% , or 10% , rosavin including, for example, about 2% to 5% rosavin. [0009] In other embodiments, any of the foregoing compositions may be included in a pharmaceutical formulation. The composition may be formulated in any convenient and suitable formulation depending upon the route of intended administration. Suitable formulations for oral administration include, for example, a tablet, pill, capsule, powder, solution, suspension, syrup, or elixir. Optionally, the composition further contains a pharmaceutically-acceptable excipient or carrier, or other pharmaceutically-active or non- active ingredient. [0010] Other aspects of the invention include methods for increasing protein synthesis, increasing muscle strength, and/or reducing protein proteolysis in a subject by administering to the subject any of the compositions or pharmaceutical formulations described above. Further aspects include methods for treating conditions associated with or characterized by muscle atrophy in a subject by administering to the subject any of the compositions or pharmaceutical formulations described above. The composition or formulation may be administered to the subject by any appropriate route of administration. In one embodiment, the composition is orally administered. In some embodiments, the subject is administered a daily dose of at least 1 mg/kg/day, 5 mg/kg/day, 10 mg/kg/day, 20 mg/kg/day, 30 mg/kg/day, 40 mg/kg/day, 50 mg/kg/day, 75 mg/kg/day, 100 mg/kg/day, 200 mg/kg/day, 400 mg/kg/day, 600 mg/kg/day, 800 mg/kg/day, 1000 mg/kg/day, 2000 mg/kg/day, 3000 mg/kg/day, 5000 mg/kg/day or more per day.
Recommended publications
  • LC-MS Profile, Gastrointestinal and Gut Microbiota
    antioxidants Article LC-MS Profile, Gastrointestinal and Gut Microbiota Stability and Antioxidant Activity of Rhodiola rosea Herb Metabolites: A Comparative Study with Subterranean Organs Daniil N. Olennikov 1,* , Nadezhda K. Chirikova 2, Aina G. Vasilieva 2 and Innokentii A. Fedorov 3 1 Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 6 Sakh’yanovoy Street, Ulan-Ude 670047, Russia 2 Department of Biology, Institute of Natural Sciences, North-Eastern Federal University, 58 Belinsky Street, Yakutsk 677027, Russia; [email protected] (N.K.C.); [email protected] (A.G.V.) 3 Institute for Biological Problems of Cryolithozone, Siberian Division, Russian Academy of Science, 41 Lenina Street, Yakutsk 677000, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-9021-600-627 Received: 26 May 2020; Accepted: 14 June 2020; Published: 16 June 2020 Abstract: Golden root (Rhodiola rosea L., Crassulaceae) is a famous medical plant with a one-sided history of scientific interest in the roots and rhizomes as sources of bioactive compounds, unlike the herb, which has not been studied extensively. To address this deficiency, we used high-performance liquid chromatography with diode array and electrospray triple quadrupole mass detection for comparative qualitative and quantitative analysis of the metabolic profiles of Rhodiola rosea organs before and after gastrointestinal digestion in simulated conditions together with various biochemical assays to determine antioxidant properties of the extracts and selected compounds. R. rosea organs showed 146 compounds, including galloyl O-glucosides, catechins, procyanidins, simple phenolics, phenethyl alcohol derivatives, (hydroxy)cinnamates, hydroxynitrile glucosides, monoterpene O-glucosides, and flavonol O-glycosides, most of them for the first time in the species.
    [Show full text]
  • Suitability of Root and Rhizome Anatomy for Taxonomic
    Scientia Pharmaceutica Article Suitability of Root and Rhizome Anatomy for Taxonomic Classification and Reconstruction of Phylogenetic Relationships in the Tribes Cardueae and Cichorieae (Asteraceae) Elisabeth Ginko 1,*, Christoph Dobeš 1,2,* and Johannes Saukel 1,* 1 Department of Pharmacognosy, Pharmacobotany, University of Vienna, Althanstrasse 14, Vienna A-1090, Austria 2 Department of Forest Genetics, Research Centre for Forests, Seckendorff-Gudent-Weg 8, Vienna A-1131, Austria * Correspondence: [email protected] (E.G.); [email protected] (C.D.); [email protected] (J.S.); Tel.: +43-1-878-38-1265 (C.D.); +43-1-4277-55273 (J.S.) Academic Editor: Reinhard Länger Received: 18 August 2015; Accepted: 27 May 2016; Published: 27 May 2016 Abstract: The value of root and rhizome anatomy for the taxonomic characterisation of 59 species classified into 34 genera and 12 subtribes from the Asteraceae tribes Cardueae and Cichorieae was assessed. In addition, the evolutionary history of anatomical characters was reconstructed using a nuclear ribosomal DNA sequence-based phylogeny of the Cichorieae. Taxa were selected with a focus on pharmaceutically relevant species. A binary decision tree was constructed and discriminant function analyses were performed to extract taxonomically relevant anatomical characters and to infer the separability of infratribal taxa, respectively. The binary decision tree distinguished 33 species and two subspecies, but only five of the genera (sampled for at least two species) by a unique combination of hierarchically arranged characters. Accessions were discriminated—except for one sample worthy of discussion—according to their subtribal affiliation in the discriminant function analyses (DFA). However, constantly expressed subtribe-specific characters were almost missing and even in combination, did not discriminate the subtribes.
    [Show full text]
  • Medicinal Plants of the Russian Pharmacopoeia; Their History and Applications
    Journal of Ethnopharmacology 154 (2014) 481–536 Contents lists available at ScienceDirect Journal of Ethnopharmacology journal homepage: www.elsevier.com/locate/jep Review Medicinal Plants of the Russian Pharmacopoeia; their history and applications Alexander N. Shikov a,n, Olga N. Pozharitskaya a, Valery G. Makarov a, Hildebert Wagner b, Rob Verpoorte c, Michael Heinrich d a St-Petersburg Institute of Pharmacy, Kuz'molovskiy town, build 245, Vsevolozhskiy distr., Leningrad reg., 188663 Russia b Institute of Pharmacy, Pharmaceutical Biology, Ludwig Maximilian University, D - 81377 Munich, Germany c Natural Products Laboratory, IBL, Leiden University, Sylvius Laboratory, PO Box 9505, 2300 RA Leiden, Sylviusweg 72 d Research Cluster Biodiversity and Medicines. Centre for Pharmacognosy and Phytotherapy, UCL School of Pharmacy, University of London article info abstract Article history: Ethnopharmacological relevance: Due to the location of Russia between West and East, Russian Received 22 January 2014 phytotherapy has accumulated and adopted approaches that originated in European and Asian Received in revised form traditional medicine. Phytotherapy is an official and separate branch of medicine in Russia; thus, herbal 31 March 2014 medicinal preparations are considered official medicaments. The aim of the present review is to Accepted 4 April 2014 summarize and critically appraise data concerning plants used in Russian medicine. This review Available online 15 April 2014 describes the history of herbal medicine in Russia, the current situation
    [Show full text]
  • Comparative Germination Ecology of Two Endemic Rhaponticum Species (Asteraceae) in Different Climatic Zones of the Ligurian and Maritime Alps (Piedmont, Italy)
    plants Article Comparative Germination Ecology of Two Endemic Rhaponticum Species (Asteraceae) in Different Climatic Zones of the Ligurian and Maritime Alps (Piedmont, Italy) Valentina Carasso 1,* , Marco Mucciarelli 2, Francesco Dovana 2 and Jonas V Müller 3 1 Centro Regionale Biodiversità Vegetale, Ente di gestione delle Aree Protette delle Alpi Marittime, Via S. Anna, 34, 12013 Chiusa di Pesio, Italy 2 Department of Life Sciences and Systems Biology, Viale P.A. Mattioli, 25, Università di Torino, 10125 Torino, Italy; [email protected] (M.M.); [email protected] (F.D.) 3 Royal Botanic Gardens Kew, Millennium Seed Bank, Conservation Science, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK; [email protected] * Correspondence: [email protected]; Tel.: +39-171-734021 Received: 17 April 2020; Accepted: 30 May 2020; Published: 2 June 2020 Abstract: Comparative studies of seed germination of closely related taxa can help increase our understanding of the ecological limitations of cold-adapted plants and forecast how they might respond to global warming. No studies exist on the relationship between thermoclimatic belts that classify mountain life zones according to bioclimatic criteria and the germination strategy of alpine plants. The aim of this study was to assess this relationship using two closely related species growing in different thermotypes and to test whether their germination responses were related to the climate at natural sites. Fresh Rhaponticum bicknellii and R. scariosum seeds were cold stratified for 0, 30, 60 and 90 days and tested for germination at 10, 15 and 20 ◦C. At the same time, seed burial experiments were run in the field and in the plant nursery.
    [Show full text]
  • INDEX SEMINUM 2020 Jardin Botanique Alpin - Ville De Meyrin
    INDEX SEMINUM 2020 Jardin botanique alpin de Meyrin Delectus seminum quae 1 INDEX SEMINUM 2020 Jardin botanique alpin - ville de Meyrin Chef du service de l’environnement Olivier Chatelain Responsable de la section parcs et promenades Philippe Trione Responsable du Jardin botanique alpin Maurice Callendret Contributeurs à la récolte des graines Maurice Callendret, jardinier, responsable du Jardin botanique alpin Timothé Fuchser, jardinier Caroline Jeanneret, jardinière-botaniste, réalisation scientifique et informatique Photo de couverture : combe de Tardevant (La Clusaz, France) © Maurice Callendret 2 Delectus seminum quae HORTUS BOTANICUS URBIS MEYRINENSIS Pro mutua commutatione offert anno 2020 Sommaire / Summary Données de l’index / Index Data ……....………………... .........…p. 4 - 5 Catalogue de graines / Seeds catalog…………….....................p. 6 - 10 Commande / Order ……………………….…….....................…p. 11 - 12 Photo : Col du Grand-Saint-Bernard (frontière Suisse-Italie) © Maurice Callendret Jardin botanique alpin Chemin du Jardin alpin, 9 1217 Meyrin Switzerland https://www.meyrin.ch/fr/node/227 3 Données de l’Index / Index Data L’ensemble des graines proposées dans l’Index Seminum 2020 a été récolté dans la nature (W) en 2019 dans le respect des lois environnementales relatives aux divisions administratives concernées ainsi que les différentes Listes rouges IUCN en vigueur. All the seeds proposed in the seminum 2020 index was collected in the wild (W) in 2019 in compliance with the environmental laws relating to the administrative
    [Show full text]
  • Composition Variability of Phytoecdysteroids in Agrocenoses and Their Role in the Vulnerability of Plants to Phytophagans (Report 2
    Timofeev N.P. Composition variability of phytoecdysteroids in agrocenoses and their role in the vulnerability of plants to phytophagans (Report 2. Ecological relations of the agropopulаtions of ecdysteroid-containing plants Rhaponticum carthamoides (Willd.) Iljin and Serratula coronata L. with the insects-phytophagans) // Contemporary Problems of Ecology, 2009, Vol. 2, N 6, pp. 531-541. ISSN 1995-4255, Contemporary Problems of Ecology, 2009, Vol. 2, No. 6, pp. 531–541. © Pleiades Publishing, Ltd., 2009. Original Russian Text © N.P. Timofeev, 2009, published in Sibirskii Ekologicheskii Zhurnal, 2009, Vol. 16, No. 6, pp. 829–842. Ecological Relations of Agricultural Populations of Ecdysteroid-Containing Plants Rhaponticum carthamoides (Willd.) Iljin and Serratula coronata L. with Herbivorous Insects Report 2. Composition Variability of Phytoecdysteroids in Agrocenoses and Their Role in the Vulnerability of Plants to Phytophagans N. P. Timofeev Scientific-Production Enterprise Farm “BIO”, Koryazhma, Arkhangel’sk oblast, 165650 Russia E-mail: [email protected] Abstract—The accumulation and variability of ecdysteroids, which are analogs of the insect molting hormones, were studied during ontogeny of agricultural populations of Rhaponticum carthamoides (Leuzea carthamoides DC.) and Serratula coronata with relation to the plant age and cultivation conditions. The physiological role of ecdysteroids in the ecological interactions with pests was evaluated. It was found that the enhancement of herbivore activity coincided with biochemical changes in the composition of ecdysteroids having different physiological activities and was accompanied by damage to reproductive organs. During ontogenetic (age-related) changes and seasonal development in the vegetation season, the content of the physiologically active ecdysteroid 20-hydroxyecdysone decreased and relatively moderately active inokosterone and weakly active ecdysone were accumulated in reproductive shoots.
    [Show full text]
  • Biotechnological Approaches to Enhance Salidroside, Rosin and Its Derivatives Production in Selected Rhodiola Spp. in Vitro Cultures
    Phytochem Rev DOI 10.1007/s11101-014-9368-y Biotechnological approaches to enhance salidroside, rosin and its derivatives production in selected Rhodiola spp. in vitro cultures Marta Grech-Baran • Katarzyna Sykłowska-Baranek • Agnieszka Pietrosiuk Received: 10 April 2013 / Accepted: 7 June 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Rhodiola (Crassulaceae) an arctic-alpine CCR Cinnamoyl-CoA reductase plant, is extensively used in traditional folk medicine CNS Central Nervous System in Asian and European countries. A number of DW Dry weight investigations have demonstrated that Rhodiola prep- IAA Indole-3-acetic acid arations exhibit adaptogenic, neuroprotective, anti- IBA Indole-3-butyric acid tumour, cardioprotective, and anti-depressant effects. KT Kinetin The main compounds responsible for these activities MS Murashige and Skoog (1962) medium are believed to be salidroside, rosin and its derivatives NAA Naphthaleneacetic acid which became the target of biotechnological investi- PAL Phenylalanine ammonia-lyase gations. This review summarizes the results of the Phe L-Phenylalanine diverse biotechnological approaches undertaken to SA Salicylic acid enhance the production of salidroside, rosin and its TDZ Thidiazuron derivatives in callus, cell suspension and organ in vitro Trp L-Tryptophan cultures of selected Rhodiola species. TGase Tyrosol-glucosyltransferase 2,4-D 2,4-Dichlorophenoxyacetic acid Keywords Biotransformation Á In vitro cultures Á 4CL Hydroxycinnamic acid CoA-ligase Rhodiola spp. Á Rosin derivatives Á Salidroside 4-HPAA 4-Hydroxyphenylacetaldehyde Tyr L-Tyrosine TyrDC Tyrosine decarboxylase Abbreviations UDP UDP-glucose:tyrosol glucosyltransferase BA 6-Benzylaminopurine UGT Uridine diphosphate dependent CA Cinnamyl alcohol glucosyltransferase CAD Cinnamyl alcohol dehydrogenase CCA Compact callus aggregates M.
    [Show full text]
  • Rhodiola Rosea L.-An Evaluation of Safety and Efficacy in the Context of a Neurological Disorder, Alzheimer Disease
    Rhodiola rosea L.-An evaluation of safety and efficacy in the context of a neurological disorder, Alzheimer Disease Fida Al Noor Ahmed Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the Doctorate in Philosophy degree in Biology Department of Biology Faculty of Science University of Ottawa © Fida Al Noor Ahmed, Ottawa, Canada, 2015 ABSTRACT This thesis examined the safety and efficacy of Rhodiola rosea L. (Crassulaceae), a medicinal plant used traditionally by the Inuit of Nunavik, Québec, for the maintenance of mental and physical health. To assess the effects of Nunavik R. rosea on the central nervous system, a phytochemically characterized extract was tested in behavioural assays of anxiety with rats. Significant changes in behaviour were observed, particularly in the conditioned emotional response test. R. rosea was not a potent modulator of the benzodiazepine site of the GABAA receptor, indicating possible involvement of other neurotransmitters implicated in the neurobiology of anxiety. Safety of Nunavik R. rosea, its marker phytochemicals, and additional R. rosea products was assessed by evaluating the risk of drug interaction potential. Inhibitory capacity was tested on major human drug metabolizing enzymes, the cytochrome P450s. Further, effects on the metabolism of repaglinide, an anti-diabetic drug, were examined in human liver microsomes. While the overall risk of interactions was low, variable impacts of R. rosea products on the formation of glucuronide metabolites of repaglinide necessitate caution. In the TgCRND8 model of Alzheimer disease, R. rosea chronic administration led to modest improvements in the survival of male transgenic mice, which exhibit accelerated rates of mortality.
    [Show full text]
  • Rhodiola Rosea L., Rhizoma Et Radix
    12 July 2011 EMA/HMPC/232100/2011 Committee on Herbal Medicinal Products (HMPC) Assessment report on Rhodiola rosea L., rhizoma et radix Based on Article 16d(1), Article 16f and Article 16h of Directive 2001/83/EC as amended (traditional use) Draft Herbal substance(s) (binomial scientific name of Rhodiola rosea L., rhizoma et radix the plant, including plant part) Herbal preparation(s) Dry extract (DER 1.5-5:1), extraction solvent ethanol 67-70% v/v Pharmaceutical forms Herbal preparations in solid dosage forms for oral use. Note: This Assessment Report is published to support the release for public consultation of the draft Community herbal monograph on Rhodiola rosea L., rhizoma et radix. It should be noted that this document is a working document, not yet fully edited, and which shall be further developed after the release for consultation of the monograph. Interested parties are welcome to submit comments to the HMPC secretariat, which the Rapporteur and the MLWP will take into consideration but no ‘overview of comments received during the public consultation’ will be prepared in relation to the comments that will be received on this assessment report. The publication of this draft assessment report has been agreed to facilitate the understanding by Interested Parties of the assessment that has been carried out so far and led to the preparation of the draft monograph. 7 Westferry Circus ● Canary Wharf ● London E14 4HB ● United Kingdom Telephone +44 (0)20 7418 8400 Facsimile +44 (0)20 7523 7051 E-mail [email protected] Website www.ema.europa.eu An agency of the European Union © European Medicines Agency, 2011.
    [Show full text]
  • Anatomy of Subterranean Organs of Medicinally Used Cardueae and Related Species and Its Value for Discrimination
    Sci Pharm www.scipharm.at Research article Open Access Anatomy of Subterranean Organs of Medicinally Used Cardueae and Related Species and its Value for Discrimination Elisabeth FRITZ *, Johannes SAUKEL Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria * Corresponding author. E-mail: [email protected] (E. Fritz) Sci Pharm. 2011; 79: 157–174 doi:10.3797/scipharm.1010-05 Published: December 2nd 2010 Received: October 20th 2010 Accepted: December 2nd 2010 This article is available from: http://dx.doi.org/10.3797/scipharm.1010-05 © Fritz and Saukel et al.; licensee Österreichische Apotheker-Verlagsgesellschaft m. b. H., Vienna, Austria. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Numerous species of the Asteraceae, the composites, are famous for their use in both traditional and conventional medicine. Reliable anatomical descriptions of these plants and of possible adulterations provide a basis for fast identification and cheap purity controls of respective medicinal drugs by means of light microscopy. Nevertheless, detailed comparative studies on root and rhizome anatomy of valuable as well as related inconsiderable composite plants are largely missing yet. The presented study aims to narrow this gap by performing anatomical analyses of roots and rhizomes
    [Show full text]
  • Development of Lc/Ms Techniques for Plant and Drug Metabolism Studies
    A 574 OULU 2011 A 574 UNIVERSITY OF OULU P.O.B. 7500 FI-90014 UNIVERSITY OF OULU FINLAND ACTA UNIVERSITATISUNIVERSITATIS OULUENSISOULUENSIS ACTA UNIVERSITATIS OULUENSIS ACTAACTA SERIES EDITORS SCIENTIAESCIENTIAEA A RERUMRERUM Aleksanteri Petsalo NATURALIUMNATURALIUM ASCIENTIAE RERUM NATURALIUM Aleksanteri Petsalo Senior Assistant Jorma Arhippainen DEVELOPMENT OF BHUMANIORA LC/MS TECHNIQUES Lecturer Santeri Palviainen CTECHNICA FOR PLANT AND DRUG Professor Hannu Heusala METABOLISM STUDIES DMEDICA Professor Olli Vuolteenaho ESCIENTIAE RERUM SOCIALIUM Senior Researcher Eila Estola FSCRIPTA ACADEMICA Director Sinikka Eskelinen GOECONOMICA Professor Jari Juga EDITOR IN CHIEF Professor Olli Vuolteenaho PUBLICATIONS EDITOR Publications Editor Kirsti Nurkkala UNIVERSITY OF OULU, FACULTY OF SCIENCE, DEPARTMENT OF CHEMISTRY, ISBN 978-951-42-9440-2 (Paperback) FACULTY OF MEDICINE, ISBN 978-951-42-9441-9 (PDF) INSTITUTE OF BIOMEDICINE, ISSN 0355-3191 (Print) DEPARTMENT OF PHARMACOLOGY AND TOXICOLOGY ISSN 1796-220X (Online) ACTA UNIVERSITATIS OULUENSIS A Scientiae Rerum Naturalium 574 ALEKSANTERI PETSALO DEVELOPMENT OF LC/MS TECHNIQUES FOR PLANT AND DRUG METABOLISM STUDIES Academic dissertation to be presented with the assent of the Faculty of Science of the University of Oulu for public defence in Auditorium F100, Futura, Joensuu Campus, on 4 June 2011, at 2 p.m. UNIVERSITY OF OULU, OULU 2011 Copyright © 2011 Acta Univ. Oul. A 574, 2011 Supervised by Docent Ari Tolonen Docent Miia Turpeinen Reviewed by Professor Janne Jänis Docent Tiia Kuuranne ISBN 978-951-42-9440-2 (Paperback) ISBN 978-951-42-9441-9 (PDF) http://herkules.oulu.fi/isbn9789514294419/ ISSN 0355-3191 (Printed) ISSN 1796-220X (Online) http://herkules.oulu.fi/issn03553191/ Cover Design Raimo Ahonen JUVENES PRINT TAMPERE 2011 Petsalo, Aleksanteri, Development of LC/MS techniques for plant and drug metabolism studies.
    [Show full text]
  • European Red List of Medicinal Plants
    European Red List of Medicinal Plants Compiled by David Allen, Melanie Bilz, Danna J. Leaman, Rebecca M. Miller, Anastasiya Timoshyna and Jemma Window European Red List of Medicinal Plants Compiled by David Allen, Melanie Bilz, Danna J. Leaman, Rebecca M. Miller, Anastasiya Timoshyna and Jemma Window IUCN Global Species Programme IUCN European Union Representative Office IUCN Species Survival Commission Published by the European Commission. The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN or the European Union concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or the European Union. Citation: Allen, D., Bilz, M., Leaman, D.J., Miller, R.M., Timoshyna, A. and Window, J. 2014. European Red List of Medicinal Plants. Luxembourg: Publications Office of the European Union. Design and layout: Imre Sebestyén jr. / UNITgraphics.com Printed by: Rosseels Printing Picture credits on cover page: Artemisia granatensis is endemic to the mountains of Sierra Nevada, southern Spain. The plant is considered Endangered as a result of population decline and range contraction. ©José Quiles Hoyo / www.florasilvestre.es All photographs used in this publication remain the property of the original copyright holder (see individual captions for details). Photographs should
    [Show full text]