Memoria Iac 2005 2005 1 Instituto De Astrofísica De Canarias Memoria 2005 Iac

Total Page:16

File Type:pdf, Size:1020Kb

Memoria Iac 2005 2005 1 Instituto De Astrofísica De Canarias Memoria 2005 Iac MEMORIA MEMORIA IAC 2005 2005 1 INSTITUTO DE ASTROFÍSICA DE CANARIAS MEMORIA 2005 IAC 2 INSTITUTO DE ASTROFÍSICA DE CANARIAS GABINETE DE DIRECCIÓN INSTITUTO DE ASTROFÍSICA DE CANARIAS MAQUETACIÓN: Ana M. Quevedo PORTADA: Gotzon Cañada PREIMPRESIÓN E IMPRESIÓN: Producciones Gráficas S.L. DEPÓSITO LEGAL: TF-1905/94 Foto portada: Galaxia NGC 7023 tomada por Misha Shrimer en blanco y negro, virada a azules. MEMORIA IAC 2005 3 5 - PRESENTACIÓN Indice 6 - CONSORCIO PÚBLICO IAC 11 - LOS OBSERVATORIOS DE CANARIAS general 12 - Observatorio del Teide (OT) 13 - Observatorio del Roque de los Muchachos (ORM) 14 - COMISIÓN PARA LA ASIGNACIÓN DE TIEMPO (CAT) 16 - ACUERDOS 21 - Gran Telescopio CANARIAS (GTC) 26 - ÁREA DE INVESTIGACIÓN 28 - Estructura del Universo y Cosmología 38 - Estructura de las galaxias y su evolución 58 - Estructura de las estrellas y su evolución 73 - Materia Interestelar 79 - El Sol 93 - El Sistema Solar 99 - Historia de la Astronomía 102 - Óptica atmosférica y Alta resolución espacial 118 - Instrumentación óptica 125 - Instrumentación infrarroja 133 - Astrofísica desde el espacio 147 - ÁREA DE INSTRUMENTACIÓN 148 - Ingeniería 156 - Producción 159 - Acciones de apoyo tecnológico 165 - Oficina de Transferencia de Resultados de Investigación (OTRI) 176 - ÁREA DE ENSEÑANZA 176 - Cursos de doctorado 177 - Seminarios cientificos 179 - Seminarios del Director 179 - Coloquios 180 - Becas 182 - XVII Escuela de Invierno: "Espectroscopía 3D" 184 - ADMINISTRACIÓN DE SERVICIOS GENERALES 184 - Instituto de Astrofísica 185 - Observatorio del Teide 186 - Observatorio del Roque de los Muchachos 187 - Centro Común de Astrofísica de La Palma 187 - Oficina Técnica para la Protección de la Calidad del Cielo 189 - Ejecución del Presupuesto 2005 190 - GABINETE DE DIRECCIÓN 190 - Ediciones 193 - Web 194 - Comunicación y divulgación 211 - SERVICIOS INFORMÁTICOS COMUNES (SIC) 214 - BIBLIOTECA 216 - PUBLICACIONES CIENTÍFICAS 216 - Artículos en revistas internacionales con árbitros MEMORIA 222 - Artículos de revisión invitados (Invited Reviews) 2005 IAC 224 - Comunicaciones a congresos internacionales 231 - Comunicaciones a congresos nacionales 4 231 - Artículos en revistas internacionales sin árbitros y comunicaciones cortas 232 - Artículos en revistas nacionales 232 - Publicaciones del IAC 232 - Libros y capítulos de libros 233 - Tesis doctorales 234 - REUNIONES CIENTÍFICAS 240 - TIEMPO DE OBSERVACIÓN FUERA DE CANARIAS 241 - DISTINCIONES 244 - VISITANTES 248 - ORGANIZACIÓN Y PERSONAS 251 - PERSONAL 263 - DIRECCIONES Y TELÉFONOS PRESENTACIÓN Como ya el IAC va teniendo historia, empezamos a disponer de efemérides que recordar. Así el 2005 ha sido un año de aniversarios destacables, empezando por el de la “I Asamblea Nacional de Astronomía y Astrofísica”, que hace justo treinta años se celebró en Tenerife, cuando el IAC acababa de instalarse en los barracones, en el solar que hoy ocupan las facultades de Física y Matemáticas. Una década más tarde, en 1985, el Instituto de Astrofísica de Canarias y sus Observatorios eran inaugurados solemnemente por la Familia Real española y seis jefes de Estado europeos, con la presencia de ministros y autoridades de Europa y astrofísicos de todo el mundo, entre ellos cinco Premios Nobel. Con su asistencia reforzaban la confianza de futuro puesta en este centro astrofísico que, 20 años después, se ha convertido en un instituto con sólido prestigio y que mantiene una buena actividad en todas sus áreas, como pone de manifiesto la presente Memoria. Precisamente, la Ministra de Educación y Ciencia, en la reunión de julio pasado de nuestro Consejo Rector, subrayó este desarrollo vigoroso y sostenido del Instituto de Astrofísica de Canarias. En esta ocasión se aprobó el Plan Estratégico del IAC para el período 2005-2008, en el que se proyecta el futuro de nuestra actividad. También se inauguró el CALP (Centro de Astrofísica de La Palma). Esta sede del IAC en la Isla de la Palma constituye un elemento básico para favorecer y enriquecer la cooperación internacional y para aumentar nuestra presencia en la Isla. Resulta inevitable la referencia al Gran Telescopio CANARIAS (GTC). Aunque no será posible alcanzar el objetivo de tener "primera luz" en la primavera del 2006, cada vez está más cercano el momento de su entrada en servicio: ya hay terminadas un sinnúmero de tareas clave, como la instalación de su enorme estructura mecánica en el Observatorio del Roque de los Muchachos, y ya se han recibido bastantes de los elementos fundamentales, como el espejo terciario, la cámara de adquisición y guiado y casi todos los segmentos del espejo primario. Hay razones de peso para explicar esta realidad (proveedores que no cumplen los plazos de entrega contratados, inclemencias meteorológicas excesivas, etc.), pero no se computarían como retrasos si los vehementes deseos de terminar pronto no hubiesen hecho las planificaciones tan súper ajustadas. En definitiva, los tiempos de ejecución gastados en algunas tareas del telescopio y en la MEMORIA fabricación de sus componentes han sido muy superiores a las estimaciones IAC 2005 iniciales realizadas. Esto pasa con demasiada frecuencia en los proyectos de “gran ciencia”. Es el momento de felicitar a todas las personas de GRANTECAN 5 S.A. por su buen hacer y animarles en esta dificil recta final. CONSORCIO PÚBLICO "INSTITUTO DE ASTROFÍSICA DE CANARIAS" El Consorcio Público "Instituto de Astrofísica de parte, no sólo contribuye con el mayor porcentaje Canarias" está integrado por la Administración al presupuesto del Instituto, sino que, además, del Estado (a través del Ministerio de Ciencia y lo engloba dentro de sus organismos públicos Tecnología), la Comunidad Autónoma de Canarias, de investigación y lo proyecta en la comunidad la Universidad de La Laguna y el Consejo Superior científica nacional e internacional. de Investigaciones Científicas. Especialmente importante es la participación Esta fórmula jurídica de consorcio fue una avanzada internacional. Téngase en cuenta que la solución administrativa, consecuencia de un pacto mayoría de las instalaciones telescópicas de por el que las entidades implicadas, concentrando los Observatorios del IAC pertenecen a otros sus esfuerzos y evitando duplicidades innecesarias, organismos e instituciones de investigación se comprometieron a unificar objetivos y medios europeos. en un único ente, al que dotaron de personalidad jurídica propia. Se trataba de que el IAC fuese un La participación de las instituciones de los diversos centro de referencia, no sólo capaz de cumplir países en los Observatorios se realiza a través del las responsabilidades derivadas de los Acuerdos Comité Científico Internacional (CCI). Se produce Internacionales de Cooperación en materia de un "Informe Anual" en el cual se recoge la actividad Astrofísica, en los cuales representa a España, científica desarrollada en los Observatorios y las sino además de ser palanca para el desarrollo de mejoras en sus instalaciones. Este informe tiene la Astrofísica en el país. una amplia difusión internacional. Cada uno de estos entes consorciados aporta La contrapartida principal que se recibe por el "cielo algo esencial. La Comunidad Autónoma de de Canarias" es del 20% del tiempo de observación Canarias: el suelo y, sobre todo, el cielo de (más un 5% para programas cooperativos) en Canarias; la Universidad de La Laguna: el Instituto cada uno de los telescopios instalados en los Universitario de Astrofísica, germen del propio Observatorios del lAC. Un porcentaje realmente IAC; y el Consejo Superior de Investigaciones significativo que una Comisión para Asignación Científicas: su experiencia en relaciones científicas de Tiempo (CAT) reparte cuidadosamente entre internacionales. La Administración del Estado a las numerosas peticiones formuladas por los través del Ministerio de Ciencia y Tecnología, por su astrofísicos españoles. El IAC lo integran: EL INSTITUTO DE ASTROFÍSICA (La Laguna - Tenerife) EL OBSERVATORIO DEL TEIDE (Izaña - Tenerife) EL OBSERVATORIO DEL ROQUE DE LOS MUCHACHOS (Garafía - La Palma) EL CENTRO DE ASTROFISICA DE LA PALMA (Breña Baja - La Palma) MEMORIA 2005 IAC Se estructura en áreas: 6 Investigación Instrumentación Enseñanza El Real Decreto 557/2000, de 27 de abril, creó el Ministerio de Ciencia y Tecnología como Departamento responsable de la política científica y tecnológica, de las telecomunicaciones y del impulso de la sociedad de la información. En virtud del Real Decreto 696/2000, de 12 de mayo, por el que se establece la estructura orgánica básica del Ministerio, el Instituto de Astrofísica de Canarias se relacionará administrativamente con el Departamento a través de la Secretaría de Estado de Universidades e Investigación, que asume las competencias en materia de investigación científica y desarrollo tecnológico. Organos Directivos Nº Reuniones CONSEJO RECTOR 1 PRESIDENTE Ministro de Ciencia y Tecnología VOCALES Presidente del Gobierno de Canarias Representante de la Administración del Estado Rector de la Universidad de La Laguna Presidente del CSIC Director del IAC DIRECTOR Nº Reuniones Organos Colegiados COMISIÓN ASESORA DE INVESTIGACIÓN (CAI) COMITÉ DE DIRECCIÓN (CD) 33 Consejo de Investigadores 1 Comisión de Investigación 15 Comisión de Enseñanza 18 Comité de la Biblioteca COMITÉ CIENTÍFICO INTERNACIONAL (CCI) 2 SUBCOMITÉS Finanzas 2 Operación del Obs. del Roque de los Muchachos 2 MEMORIA Operación del Obs. del Teide 1 IAC 2005 Calidad Astronómica del Cielo 2 7 REUNIONES CELEBRADAS Reunión del Consejo Rector M. Jesús Sansegundo, Ministra de Educación
Recommended publications
  • Multi-Generation Massive Star-Formation in NGC 3576
    A&A 504, 139–159 (2009) Astronomy DOI: 10.1051/0004-6361/200811358 & c ESO 2009 Astrophysics Multi-generation massive star-formation in NGC 3576 C. R. Purcell1,2, V. Minier3,4, S. N. Longmore2,5,6, Ph. André3,4,A.J.Walsh2,7,P.Jones2,8,F.Herpin9,10, T. Hill2,11,12, M. R. Cunningham2, and M. G. Burton2 1 Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, UK e-mail: [email protected] 2 School of Physics, University of New South Wales, Sydney, NSW 2052, Australia 3 CEA, DSM, IRFU, Service d’Astrophysique, 91191 Gif-sur-Yvette, France 4 Laboratoire AIM, CEA/DSM - CNRS - Université Paris Diderot, IRFU/Service d’Astrophysique, CEA-Saclay, 91191 Gif-sur-Yvette, France 5 Harvard-Smithsonian Centre For Astrophysics, 60 Garden Street, Cambridge, MA, 02138, USA 6 CSIRO Australia Telescope National Facillity, PO Box 76, Epping, NSW 1710, Australia 7 Centre for Astronomy, James Cook University, Townsville, QLD 4811, Australia 8 Departmento de Astronoma, Universidad de Chile, Casilla 36-D, Santiago, Chile 9 Université de Bordeaux, Laboratoire d’Astrophysique de Bordeaux, 33000 Bordeaux, France 10 CNRS/INSU, UMR 5804, BP 89, 33271 Floirac Cedex, France 11 School of Physics, University of Exeter, Stocker Road, EX4 4QL, Exeter, UK 12 Leiden Observatory, Leiden University, PO BOX 9513, 2300 RA Leiden, the Netherlands Received 16 November 2008 / Accepted 3 July 2009 ABSTRACT Context. Recent 1.2-mm continuum observations have shown the giant H II region NGC 3576 to be embedded in the centre of an extended filamentary dust-cloud.
    [Show full text]
  • Walker 90/V590 Monocerotis
    Brigham Young University BYU ScholarsArchive Faculty Publications 2008-05-17 The enigmatic young object: Walker 90/V590 Monocerotis M. D. Joner [email protected] M. R. Perez B. McCollum M. E. van dend Ancker Follow this and additional works at: https://scholarsarchive.byu.edu/facpub Part of the Astrophysics and Astronomy Commons, and the Physics Commons BYU ScholarsArchive Citation Joner, M. D.; Perez, M. R.; McCollum, B.; and van dend Ancker, M. E., "The enigmatic young object: Walker 90/V590 Monocerotis" (2008). Faculty Publications. 189. https://scholarsarchive.byu.edu/facpub/189 This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. A&A 486, 533–544 (2008) Astronomy DOI: 10.1051/0004-6361:200809933 & c ESO 2008 Astrophysics The enigmatic young object: Walker 90/V590 Monocerotis, M. R. Pérez1, B. McCollum2,M.E.vandenAncker3, and M. D. Joner4 1 Los Alamos National Laboratory, PO Box 1663, ISR-1, MS B244, Los Alamos, NM 87545, USA e-mail: [email protected] 2 Caltech, SIRTF Science Center, MS, 314-6, Pasadena, CA 91125, USA e-mail: [email protected] 3 European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748, Garching bei München, Germany e-mail: [email protected] 4 Brigham Young University, Dept. of Physics and Astronomy – ESC – N488, Provo, Utah 84602, USA e-mail: [email protected] Received 8 April 2008 / Accepted 17 May 2008 ABSTRACT Aims.
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • David Charbonneau Refereed Publications As of May 2015
    David Charbonneau Refereed Publications as of May 2015 160. Low False Positive Rate of Kepler Candidates Estimated From A Combination Of Spitzer And Follow-Up Observations Désert, Jean-Michel; Charbonneau, David; Torres, Guillermo; Fressin, François; Ballard, Sarah; Bryson, Stephen T.; Knutson, Heather A.; Batalha, Natalie M.; Borucki, William J.; Brown, Timothy M.; Deming, Drake; Ford, Eric B.; Fortney, Jonathan J.; Gilliland, Ronald L.; Latham, David W.; Seager, Sara The Astrophysical Journal, Volume 804, Issue 1, article id. 59 (2015). 159. The Mass of Kepler-93b and The Composition of Terrestrial Planets Dressing, Courtney D.; Charbonneau, David; Dumusque, Xavier; Gettel, Sara; Pepe, Francesco; Collier Cameron, Andrew; Latham, David W.; Molinari, Emilio; Udry, Stéphane; Affer, Laura; Bonomo, Aldo S.; Buchhave, Lars A.; Cosentino, Rosario; Figueira, Pedro; Fiorenzano, Aldo F. M.; Harutyunyan, Avet; Haywood, Raphaëlle D.; Johnson, John Asher; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David F.; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Chris The Astrophysical Journal, Volume 800, Issue 2, article id. 135 (2015). 158. An Empirical Calibration to Estimate Cool Dwarf Fundamental Parameters from H-band Spectra Newton, Elisabeth R.; Charbonneau, David; Irwin, Jonathan; Mann, Andrew W. The Astrophysical Journal, Volume 800, Issue 2, article
    [Show full text]
  • The Impact of the Astro2010 Recommendations on Variable Star Science
    The Impact of the Astro2010 Recommendations on Variable Star Science Corresponding Authors Lucianne M. Walkowicz Department of Astronomy, University of California Berkeley [email protected] phone: (510) 642–6931 Andrew C. Becker Department of Astronomy, University of Washington [email protected] phone: (206) 685–0542 Authors Scott F. Anderson, Department of Astronomy, University of Washington Joshua S. Bloom, Department of Astronomy, University of California Berkeley Leonid Georgiev, Universidad Autonoma de Mexico Josh Grindlay, Harvard–Smithsonian Center for Astrophysics Steve Howell, National Optical Astronomy Observatory Knox Long, Space Telescope Science Institute Anjum Mukadam, Department of Astronomy, University of Washington Andrej Prsa,ˇ Villanova University Joshua Pepper, Villanova University Arne Rau, California Institute of Technology Branimir Sesar, Department of Astronomy, University of Washington Nicole Silvestri, Department of Astronomy, University of Washington Nathan Smith, Department of Astronomy, University of California Berkeley Keivan Stassun, Vanderbilt University Paula Szkody, Department of Astronomy, University of Washington Science Frontier Panels: Stars and Stellar Evolution (SSE) February 16, 2009 Abstract The next decade of survey astronomy has the potential to transform our knowledge of variable stars. Stellar variability underpins our knowledge of the cosmological distance ladder, and provides direct tests of stellar formation and evolution theory. Variable stars can also be used to probe the fundamental physics of gravity and degenerate material in ways that are otherwise impossible in the laboratory. The computational and engineering advances of the past decade have made large–scale, time–domain surveys an immediate reality. Some surveys proposed for the next decade promise to gather more data than in the prior cumulative history of astronomy.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
    geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3].
    [Show full text]
  • And Ecclesiastical Cosmology
    GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc.
    [Show full text]
  • An X-Ray Tour of Massive Star-Forming Regions with Chandra
    An X-ray Tour of Massive Star-forming Regions with Chandra By LEISA K. TOWNSLEY1 1 Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802, USA The Chandra X-ray Observatory is providing fascinating new views of massive star-forming re- gions, revealing all stages in the life cycles of massive stars and their effects on their surroundings. I present a Chandra tour of some of the most famous of these regions: M17, NGC 3576, W3, Tr14 in Carina, and 30 Doradus. Chandra highlights the physical processes that characterize the lives of these clusters, from the ionizing sources of ultracompact HII regions (W3) to superbubbles so large that they shape our views of galaxies (30 Dor). X-ray observations usually reveal hundreds of pre-main sequence (lower-mass) stars accompanying the OB stars that power these great HII region complexes, although in one case (W3 North) this population is mysteriously absent. The most massive stars themselves are often anomalously hard X-ray emitters; this may be a new indicator of close binarity. These complexes are sometimes suffused by soft diffuse X-rays (M17, NGC 3576), signatures of multi-million-degree plasmas created by fast O-star winds. In older regions we see the X-ray remains of the deaths of massive stars that stayed close to their birthplaces (Tr14, 30 Dor), exploding as cavity supernovae within the superbubbles that these clusters created. 1. Revealing the Life Cycle of a Massive Stellar Cluster High-resolution X-ray images from the Chandra X-ray Observatory and XMM-Newton elucidate all stages in the life cycles of massive stars – from ultracompact HII (UCHII) regions to supernova remnants – and the effects that those massive stars have on their surroundings.
    [Show full text]
  • Search for X-Ray Emission from Bona-Fide and Candidate Brown
    A&A manuscript no. (will be inserted by hand later) ASTRONOMY AND Your thesaurus codes are: ASTROPHYSICS 06(08.12.1; 08.12.2; 13.25.5) 11.9.2018 Search for X-ray emission from bona-fide and candidate brown dwarfs R. Neuh¨auser1, C. Brice˜no2, F. Comer´on3, T. Hearty1, E.L. Mart´ın4, J.H.M.M. Schmitt5, B. Stelzer1, R. Supper1, W. Voges1, and H. Zinnecker6 1 MPI f¨ur extraterrestrische Physik, Giessenbachstraße 1, D-85740 Garching, Germany 2 Yale University, Department of Physics, New Haven, CT 06520-8121, USA 3 European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748 Garching, Germany 4 Astronomy Department, University of California at Berkeley, Berkeley, CA 94720, USA 5 Universit¨at Hamburg, Sternwarte, Gojensbergweg 112, D-21029 Hamburg, Germany 6 Astrophysikalisches Institut, An der Sternwarte 16, D-14482 Potsdam, Germany Received 24 Sep 1998; accepted 10 Dec 1998 Abstract. Following the recent classification of the X- for a recent review. They continue to contract until elec- ray detected object V410 x-ray 3 with a young brown tron degeneracy halts further contraction. Depending on dwarf candidate (Brice˜no et al. 1998) and the identifica- metallicity and model assumptions made in for calculating tion of an X-ray source in Chamaeleon as young bona- theoretical evolutionary tracks, the limiting mass between fide brown dwarf (Neuh¨auser & Comer´on 1998), we inves- normal stars and brown dwarfs is ∼ 0.075 to 0.08 M⊙ tigate all ROSAT All-Sky Survey and archived ROSAT (Burrows et al. 1995, 1997, D’Antona & Mazzitelli 1994, PSPC and HRI pointed observations with bona-fide or 1997, Allard et al.
    [Show full text]
  • Rules & Requirements for an SBAS Observing Certificate 1. You Must
    Rules & Requirements for an SBAS Observing Certificate 1. You must be a member of the SBAS in good standing to receive a certificate. 2. No Go To or Push To aided attempts will be accepted. Reading charts and star hopping are essential skills in our hobby. (You may use these methods to confirm your findings.) 3. Honor system is in full effect. These lists benefit your knowledge of the sky. Cheating only cheats yourself and the SBAS membership. Observations will be verified against digital planetarium charts. You may be required to answer questions about the objects you observed to verify your work. You may also be asked to show one of these objects at a star party. Once a list is completed, it is assumed you are familiar with every object on that list to the point where you can find it again and describe it to another person. 4. Upon completion of a list, submit the original paper version in person to Coy Wagoner at an SBAS meeting, public star party, or informal observing at the Worley. No digital submissions will be accepted at this time. 5. No observations may overlap. If one object is on two lists, your observations must be done on separate dates/times for credit. Copies of your observing logs will be saved and later compared to additional lists to make sure nothing overlaps. No observations prior to January 1, 2015 will be accepted for credit. 6. Observations should be done on your own. If you observe an object in someone else’s telescope or binoculars, the observation does not count unless you did the work to find it.
    [Show full text]