JB Nation's Notes on Lattice Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ORTHOGONAL GROUP of CERTAIN INDEFINITE LATTICE Chang Heon Kim* 1. Introduction Given an Even Lattice M in a Real Quadratic Space
JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 20, No. 1, March 2007 ORTHOGONAL GROUP OF CERTAIN INDEFINITE LATTICE Chang Heon Kim* Abstract. We compute the special orthogonal group of certain lattice of signature (2; 1). 1. Introduction Given an even lattice M in a real quadratic space of signature (2; n), Borcherds lifting [1] gives a multiplicative correspondence between vec- tor valued modular forms F of weight 1¡n=2 with values in C[M 0=M] (= the group ring of M 0=M) and meromorphic modular forms on complex 0 varieties (O(2) £ O(n))nO(2; n)=Aut(M; F ). Here NM denotes the dual lattice of M, O(2; n) is the orthogonal group of M R and Aut(M; F ) is the subgroup of Aut(M) leaving the form F stable under the natural action of Aut(M) on M 0=M. In particular, if the signature of M is (2; 1), then O(2; 1) ¼ H: O(2) £ O(1) and Borcherds' theory gives a lifting of vector valued modular form of weight 1=2 to usual one variable modular form on Aut(M; F ). In this sense in order to work out Borcherds lifting it is important to ¯nd appropriate lattice on which our wanted modular group acts. In this article we will show: Theorem 1.1. Let M be a 3-dimensional even lattice of all 2 £ 2 integral symmetric matrices, that is, ½µ ¶ ¾ AB M = j A; B; C 2 Z BC Received December 30, 2006. 2000 Mathematics Subject Classi¯cation: Primary 11F03, 11H56. -
ON the SHELLABILITY of the ORDER COMPLEX of the SUBGROUP LATTICE of a FINITE GROUP 1. Introduction We Will Show That the Order C
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 353, Number 7, Pages 2689{2703 S 0002-9947(01)02730-1 Article electronically published on March 12, 2001 ON THE SHELLABILITY OF THE ORDER COMPLEX OF THE SUBGROUP LATTICE OF A FINITE GROUP JOHN SHARESHIAN Abstract. We show that the order complex of the subgroup lattice of a finite group G is nonpure shellable if and only if G is solvable. A by-product of the proof that nonsolvable groups do not have shellable subgroup lattices is the determination of the homotopy types of the order complexes of the subgroup lattices of many minimal simple groups. 1. Introduction We will show that the order complex of the subgroup lattice of a finite group G is (nonpure) shellable if and only if G is solvable. The proof of nonshellability in the nonsolvable case involves the determination of the homotopy type of the order complexes of the subgroup lattices of many minimal simple groups. We begin with some history and basic definitions. It is assumed that the reader is familiar with some of the rudiments of algebraic topology and finite group theory. No distinction will be made between an abstract simplicial complex ∆ and an arbitrary geometric realization of ∆. Maximal faces of a simplicial complex ∆ will be called facets of ∆. Definition 1.1. A simplicial complex ∆ is shellable if the facets of ∆ can be ordered σ1;::: ,σn so that for all 1 ≤ i<k≤ n thereexistssome1≤ j<kand x 2 σk such that σi \ σk ⊆ σj \ σk = σk nfxg. The list σ1;::: ,σn is called a shelling of ∆. -
7 LATTICE POINTS and LATTICE POLYTOPES Alexander Barvinok
7 LATTICE POINTS AND LATTICE POLYTOPES Alexander Barvinok INTRODUCTION Lattice polytopes arise naturally in algebraic geometry, analysis, combinatorics, computer science, number theory, optimization, probability and representation the- ory. They possess a rich structure arising from the interaction of algebraic, convex, analytic, and combinatorial properties. In this chapter, we concentrate on the the- ory of lattice polytopes and only sketch their numerous applications. We briefly discuss their role in optimization and polyhedral combinatorics (Section 7.1). In Section 7.2 we discuss the decision problem, the problem of finding whether a given polytope contains a lattice point. In Section 7.3 we address the counting problem, the problem of counting all lattice points in a given polytope. The asymptotic problem (Section 7.4) explores the behavior of the number of lattice points in a varying polytope (for example, if a dilation is applied to the polytope). Finally, in Section 7.5 we discuss problems with quantifiers. These problems are natural generalizations of the decision and counting problems. Whenever appropriate we address algorithmic issues. For general references in the area of computational complexity/algorithms see [AB09]. We summarize the computational complexity status of our problems in Table 7.0.1. TABLE 7.0.1 Computational complexity of basic problems. PROBLEM NAME BOUNDED DIMENSION UNBOUNDED DIMENSION Decision problem polynomial NP-hard Counting problem polynomial #P-hard Asymptotic problem polynomial #P-hard∗ Problems with quantifiers unknown; polynomial for ∀∃ ∗∗ NP-hard ∗ in bounded codimension, reduces polynomially to volume computation ∗∗ with no quantifier alternation, polynomial time 7.1 INTEGRAL POLYTOPES IN POLYHEDRAL COMBINATORICS We describe some combinatorial and computational properties of integral polytopes. -
Topological Duality and Lattice Expansions Part I: a Topological Construction of Canonical Extensions
TOPOLOGICAL DUALITY AND LATTICE EXPANSIONS PART I: A TOPOLOGICAL CONSTRUCTION OF CANONICAL EXTENSIONS M. ANDREW MOSHIER AND PETER JIPSEN 1. INTRODUCTION The two main objectives of this paper are (a) to prove topological duality theorems for semilattices and bounded lattices, and (b) to show that the topological duality from (a) provides a construction of canonical extensions of bounded lattices. The paper is first of two parts. The main objective of the sequel is to establish a characterization of lattice expansions, i.e., lattices with additional operations, in the topological setting built in this paper. Regarding objective (a), consider the following simple question: Is there a subcategory of Top that is dually equivalent to Lat? Here, Top is the category of topological spaces and continuous maps and Lat is the category of bounded lattices and lattice homomorphisms. To date, the question has been answered positively either by specializing Lat or by generalizing Top. The earliest examples are of the former sort. Tarski [Tar29] (treated in English, e.g., in [BD74]) showed that every complete atomic Boolean lattice is represented by a powerset. Taking some historical license, we can say this result shows that the category of complete atomic Boolean lattices with complete lat- tice homomorphisms is dually equivalent to the category of discrete topological spaces. Birkhoff [Bir37] showed that every finite distributive lattice is represented by the lower sets of a finite partial order. Again, we can now say that this shows that the category of finite distributive lattices is dually equivalent to the category of finite T0 spaces and con- tinuous maps. -
On Scattered Convex Geometries
ON SCATTERED CONVEX GEOMETRIES KIRA ADARICHEVA AND MAURICE POUZET Abstract. A convex geometry is a closure space satisfying the anti-exchange axiom. For several types of algebraic convex geometries we describe when the collection of closed sets is order scat- tered, in terms of obstructions to the semilattice of compact elements. In particular, a semilattice Ω(η), that does not appear among minimal obstructions to order-scattered algebraic modular lattices, plays a prominent role in convex geometries case. The connection to topological scat- teredness is established in convex geometries of relatively convex sets. 1. Introduction We call a pair X; φ of a non-empty set X and a closure operator φ 2X 2X on X a convex geometry[6], if it is a zero-closed space (i.e. ) and φ satisfies the anti-exchange axiom: ( ) ∶ → x A y and x∅ =A∅imply that y A x for all x y in X and all closed A X: ∈ ∪ { } ∉ ∉ ∪ { } The study of convex geometries in finite≠ case was inspired by their⊆ frequent appearance in mod- eling various discrete structures, as well as by their juxtaposition to matroids, see [20, 21]. More recently, there was a number of publications, see, for example, [4, 43, 44, 45, 48, 7] brought up by studies in infinite convex geometries. A convex geometry is called algebraic, if the closure operator φ is finitary. Most of interesting infinite convex geometries are algebraic, such as convex geometries of relatively convex sets, sub- semilattices of a semilattice, suborders of a partial order or convex subsets of a partially ordered set. -
Arxiv:1908.00749V2 [Math.CO] 24 May 2021 the Best Extending Cover
The best extending cover-preserving geometric lattices of semimodular lattices∗ Peng He1,† Xue-ping Wang2‡ 1. College of Applied Mathematics, Chengdu University of Information Technology Chengdu 610225, Sichuan, People’s Republic of China 2. School of Mathematical Sciences, Sichuan Normal University Chengdu 610066, Sichuan, People’s Republic of China Corresponding author’s e-mail address: [email protected] Abstract In 2010, G´abor Cz´edli and E. Tam´as Schmidt mentioned that the best cover- preserving embedding of a given semimodular lattice is not known yet [A cover-preserving embedding of semimodular lattices into geometric lattices, Advances in Mathematics 225 (2010) 2455-2463]. That is to say: What are the geometric lattices G such that a given finite semimodular lattice L has a cover- preserving embedding into G with the smallest |G|? In this paper, we propose an algorithm to calculate all the best extending cover-preserving geometric lattices G of a given semimodular lattice L and prove that the length and the number of atoms of every best extending cover-preserving geometric lattice G arXiv:1908.00749v2 [math.CO] 24 May 2021 equal the length of L and the number of non-zero join-irreducible elements of L, respectively. Therefore, we comprehend the best cover-preserving embedding of a given semimodular lattice. AMS classification: 06C10; 06B15 Keywords: Finite atomistic lattice; Semimodular lattice; Geometric lattice; Cover-preserving embedding ∗Supported by the National Natural Science Foundation of China (nos.11901064 and 12071325) †E-mail address: [email protected] ‡Corresponding author 1 1 Introduction Let L be a lattice. For all a, b ∈ L, a k b denotes that a b and a b, and a ∦ b denotes that a ≥ b or a ≤ b. -
Advanced Discrete Mathematics Mm-504 &
1 ADVANCED DISCRETE MATHEMATICS M.A./M.Sc. Mathematics (Final) MM-504 & 505 (Option-P3) Directorate of Distance Education Maharshi Dayanand University ROHTAK – 124 001 2 Copyright © 2004, Maharshi Dayanand University, ROHTAK All Rights Reserved. No part of this publication may be reproduced or stored in a retrieval system or transmitted in any form or by any means; electronic, mechanical, photocopying, recording or otherwise, without the written permission of the copyright holder. Maharshi Dayanand University ROHTAK – 124 001 Developed & Produced by EXCEL BOOKS PVT. LTD., A-45 Naraina, Phase 1, New Delhi-110 028 3 Contents UNIT 1: Logic, Semigroups & Monoids and Lattices 5 Part A: Logic Part B: Semigroups & Monoids Part C: Lattices UNIT 2: Boolean Algebra 84 UNIT 3: Graph Theory 119 UNIT 4: Computability Theory 202 UNIT 5: Languages and Grammars 231 4 M.A./M.Sc. Mathematics (Final) ADVANCED DISCRETE MATHEMATICS MM- 504 & 505 (P3) Max. Marks : 100 Time : 3 Hours Note: Question paper will consist of three sections. Section I consisting of one question with ten parts covering whole of the syllabus of 2 marks each shall be compulsory. From Section II, 10 questions to be set selecting two questions from each unit. The candidate will be required to attempt any seven questions each of five marks. Section III, five questions to be set, one from each unit. The candidate will be required to attempt any three questions each of fifteen marks. Unit I Formal Logic: Statement, Symbolic representation, totologies, quantifiers, pradicates and validity, propositional logic. Semigroups and Monoids: Definitions and examples of semigroups and monoids (including those pertaining to concentration operations). -
Algebraic Aspects of Orthomodular Lattices
Algebraic Asp ects of Orthomo dular Lattices Gunter Bruns McMaster University Hamilton Ontario LS K Canada John Harding New Mexico State University Las Cruces NM USA In this pap er we try to give an uptodate account of certain asp ects of the the ory of ortholattices abbreviated OLs orthomo dular lattices abbreviated OMLs and mo dular ortholattices abbreviated MOLs not hiding our own research in terests Since most of the questions we deal with have their origin in Universal Alge bra we start with a chapter discussing the basic concepts and results of Universal Algebra without pro ofs In the next three chapters we discuss mostly with pro ofs the basic results and standard techniques of the theory of OMLs In the remaining ve chapters we work our way to the b order of present day research mostly no or only sketchy pro ofs Chapter deals with pro ducts and sub direct pro ducts chap ter with free structures and chapter with classes of OLs dened by equations In chapter we discuss emb eddings of OLs into complete ones The last chap ter deals with questions originating in Category Theory mainly amalgamation epimorphisms and monomorphisms The later chapters of this pap er contain an abundance of op en problems We hop e that this will initiate further research Basic Universal Algebra We assume a denition of natural numb ers which makes every natural numb er n the set of all natural numb ers k n An nary op eration on a set A is a map f of n n A into A An element a A gives rise to a sequence a a an of A more commonly written with indices -
Semimodular Lattices Theory and Applications
P1: SDY/SIL P2: SDY/SJS QC: SSH/SDY CB178/Stern CB178-FM March 3, 1999 9:46 ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS Semimodular Lattices Theory and Applications MANFRED STERN P1: SDY/SIL P2: SDY/SJS QC: SSH/SDY CB178/Stern CB178-FM March 3, 1999 9:46 PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK http://www.cup.cam.ac.uk 40 West 20th Street, New York, NY 10011-4211, USA http://www.cup.org 10 Stamford Road, Oakleigh, Melbourne 3166, Australia c Cambridge University Press 1999 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 1999 Printed in the United States of America Typeset in 10/13 Times Roman in LATEX2ε[TB] A catalog record for this book is available from the British Library. Library of Congress Cataloging-in-Publication Data Stern, Manfred. Semimodular lattices: theory and applications. / Manfred Stern. p. cm. – (Encyclopedia of mathematics and its applications ; v. 73) Includes bibliographical references and index. I. Title. II. Series. QA171.5.S743 1999 511.303 – dc21 98-44873 CIP ISBN 0 521 46105 7 hardback P1: SDY/SIL P2: SDY/SJS QC: SSH/SDY CB178/Stern CB178-FM March 3, 1999 9:46 Contents Preface page ix 1 From Boolean Algebras to Semimodular Lattices 1 1.1 Sources of Semimodularity -
Arxiv:Math/0405535V2
INEQUALITIES FOR THE H- AND FLAG H-VECTORS OF GEOMETRIC LATTICES KATHRYN NYMAN AND ED SWARTZ Abstract. We prove that the order complex of a geometric lattice has a convex ear decomposition. As a consequence, if ∆(L) is the order complex of a rank (r + 1) geometric lattice L, then for all i ≤ r/2 the h-vector of ∆(L) satisfies hi−1 ≤ hi and hi ≤ hr−i. We also obtain several inequalities for the flag h-vector of ∆(L) by analyzing the weak Bruhat order of the symmetric group. As an application, we obtain a zonotopal cd-analogue of the Dowling-Wilson characterization of geometric lattices which minimize Whitney numbers of the second kind. In addition, we are able to give a combinatorial flag h-vector proof of hi−1 ≤ hi when 2 5 i ≤ 7 (r + 2 ). 1. Introduction The order complex of a geometric lattice is one of many simplicial complexes associated to matroids. For a geometric lattice L, the order complex of L, ∆(L), is the simplicial complex whose simplices consist of all chains in L, 0ˆ 6= x1 < x2 < .. < xk 6= 1ˆ. The number of flats in each rank, also known as the Whitney numbers of the second kind, can be viewed as special cases of the flag f-vector of ∆(L). The Euler characteristic of ∆(L) is the M¨obius invariant of L [Fo]. Surveys of these topics are [Ai], [Bj4] and [Za]. Other enumerative invariants of ∆(L) have not received as much attention. The explicit relationship between the flag h-vector of ∆(L) and the cd-index of oriented matroids and zonotopes discovered in [BER] suggests that it may be time to study the h-vector and flag h-vector of ∆(L). -
Completely Representable Lattices
Completely representable lattices Robert Egrot and Robin Hirsch Abstract It is known that a lattice is representable as a ring of sets iff the lattice is distributive. CRL is the class of bounded distributive lattices (DLs) which have representations preserving arbitrary joins and meets. jCRL is the class of DLs which have representations preserving arbitrary joins, mCRL is the class of DLs which have representations preserving arbitrary meets, and biCRL is defined to be jCRL ∩ mCRL. We prove CRL ⊂ biCRL = mCRL ∩ jCRL ⊂ mCRL =6 jCRL ⊂ DL where the marked inclusions are proper. Let L be a DL. Then L ∈ mCRL iff L has a distinguishing set of complete, prime filters. Similarly, L ∈ jCRL iff L has a distinguishing set of completely prime filters, and L ∈ CRL iff L has a distinguishing set of complete, completely prime filters. Each of the classes above is shown to be pseudo-elementary hence closed under ultraproducts. The class CRL is not closed under elementary equivalence, hence it is not elementary. 1 Introduction An atomic representation h of a Boolean algebra B is a representation h: B → ℘(X) (some set X) where h(1) = {h(a): a is an atom of B}. It is known that a representation of a Boolean algebraS is a complete representation (in the sense of a complete embedding into a field of sets) if and only if it is an atomic repre- sentation and hence that the class of completely representable Boolean algebras is precisely the class of atomic Boolean algebras, and hence is elementary [6]. arXiv:1201.2331v3 [math.RA] 30 Aug 2016 This result is not obvious as the usual definition of a complete representation is thoroughly second order. -
Groups with Almost Modular Subgroup Lattice Provided by Elsevier - Publisher Connector
Journal of Algebra 243, 738᎐764Ž. 2001 doi:10.1006rjabr.2001.8886, available online at http:rrwww.idealibrary.com on View metadata, citation and similar papers at core.ac.uk brought to you by CORE Groups with Almost Modular Subgroup Lattice provided by Elsevier - Publisher Connector Francesco de Giovanni and Carmela Musella Dipartimento di Matematica e Applicazioni, Uni¨ersita` di Napoli ‘‘Federico II’’, Complesso Uni¨ersitario Monte S. Angelo, Via Cintia, I 80126, Naples, Italy and Yaroslav P. Sysak1 Institute of Mathematics, Ukrainian National Academy of Sciences, ¨ul. Tereshchenki¨ska 3, 01601 Kie¨, Ukraine Communicated by Gernot Stroth Received November 14, 2000 DEDICATED TO BERNHARD AMBERG ON THE OCCASION OF HIS 60TH BIRTHDAY 1. INTRODUCTION A subgroup of a group G is called modular if it is a modular element of the lattice ᑦŽ.G of all subgroups of G. It is clear that everynormal subgroup of a group is modular, but arbitrarymodular subgroups need not be normal; thus modularitymaybe considered as a lattice generalization of normality. Lattices with modular elements are also called modular. Abelian groups and the so-called Tarski groupsŽ i.e., infinite groups all of whose proper nontrivial subgroups have prime order. are obvious examples of groups whose subgroup lattices are modular. The structure of groups with modular subgroup lattice has been described completelybyIwasawa wx4, 5 and Schmidt wx 13 . For a detailed account of results concerning modular subgroups of groups, we refer the reader towx 14 . 1 This work was done while the third author was visiting the Department of Mathematics of the Universityof Napoli ‘‘Federico II.’’ He thanks the G.N.S.A.G.A.