Algebraic Aspects of Orthomodular Lattices

Total Page:16

File Type:pdf, Size:1020Kb

Algebraic Aspects of Orthomodular Lattices Algebraic Asp ects of Orthomo dular Lattices Gunter Bruns McMaster University Hamilton Ontario LS K Canada John Harding New Mexico State University Las Cruces NM USA In this pap er we try to give an uptodate account of certain asp ects of the the ory of ortholattices abbreviated OLs orthomo dular lattices abbreviated OMLs and mo dular ortholattices abbreviated MOLs not hiding our own research in terests Since most of the questions we deal with have their origin in Universal Alge bra we start with a chapter discussing the basic concepts and results of Universal Algebra without pro ofs In the next three chapters we discuss mostly with pro ofs the basic results and standard techniques of the theory of OMLs In the remaining ve chapters we work our way to the b order of present day research mostly no or only sketchy pro ofs Chapter deals with pro ducts and sub direct pro ducts chap ter with free structures and chapter with classes of OLs dened by equations In chapter we discuss emb eddings of OLs into complete ones The last chap ter deals with questions originating in Category Theory mainly amalgamation epimorphisms and monomorphisms The later chapters of this pap er contain an abundance of op en problems We hop e that this will initiate further research Basic Universal Algebra We assume a denition of natural numb ers which makes every natural numb er n the set of all natural numb ers k n An nary op eration on a set A is a map f of n n A into A An element a A gives rise to a sequence a a an of A more commonly written with indices a a a The numb er n is called 0 1 n1 0 the arity of the op eration It is imp ortant to allow the case n Since A fg a ary or nullary op eration is a map of fg into A Since such a map is completely determined by the element f we usually sp ecify ary op erations also called constants by giving the element f A similar remark applies to unary ary op erations We identify them with maps from A to itself A closure system over a set A is a set C of subsets of A satisfying T If B C then B C Here we make the convention that the intersection of the empty subset of C is A so that A C If C is a closure system over A and if X A we dene the closure T X of X with resp ect to the closure system C by X fC jX C C g X is obviously the smallest element of C containing X as a subset If for B C we W S V T dene B B and B B then C b ecomes a complete lattice is the smallest and A is the largest element of this lattice An algebraic closure system is a closure system C satisfying S If K C is a chain ie totally ordered by then K C This denition one of many equivalent ones is particularly useful in pro ofs in volving Zorns lemma An algebra is a pair A A f where A is a set called the underlying i iI set or the universe of the algebra and each f is for some n an n ary op eration i i i on A The family n is called the typ e of the algebra Whereas every n i iI i is nite it is necessary in order to cover imp ortant examples to admit innitely many op erations f i A subuniverse of an algebra A A f is a set B A which is closed i iI under all op erations f ie satises i n i then f a B If a B i or in more common and more cumb ersome notation If a a a B then f a a a B 0 1 n 1 i 0 1 n 1 i i Let S ubA b e the set of all subuniverses of A The most imp ortant and in fact characteristic prop erty is Prop osition If A is an algebra then S ubA is an algebraic closure system As a consequence of this we obtain that for any X A there exists a smallest subuniverse X containing X X is said to b e the subuniverse generated by X A subalgebra of an algebra A A f is an algebra B B g i iI i iI n i ie such that B A and g is the restriction of f to B i i n i then g a f a If a B i i Clearly this requires that B is a subuniverse of A Conversely if B is a subuniverse n i then B g b ecomes a subalgebra of of A and g is the restriction of f to B i iI i i A Because of this oneone corresp ondence b etween subuniverses and subalgebras we will not b e to o fussy ab out distinguishing them Thus we refer to S ubA as the closure system or lattice of subalgebras of A Many authors require the denition of algebra and subalgebra that the underlying set b e not empty We see no reason for this Let A A f and B B g b e algebras of the same typ e A i iI i iI homomorphism of A into B is a map A B satisfying for every i I and n i a A f a g a i i or in cumb ersome notation f a a a g a a a i 0 1 n 1 i 0 1 n 1 i 1 B is said to b e a homomorphic image of A i there exists a homomorphism of A onto B An emb edding of A into B is a oneone homomorphism of A into B An isomorphism is an emb edding which is onto Closely related to homomorphisms are congruence relations A congruence relation short congruence on an algebra A A f is an equivalence i iI relation on A ie a reexive symmetric and transitive relation R satisfying n i and ak R bk k n then f aR f b If a b A i i i We express this by saying that R is compatible with the op eration f If R is an i equivalence relation on A and a A dene the equivalence congruence if R is a congruence class of a mo dulo R by aR fbjaR bg and the quotient set of A mo dulo R by AR faR ja Ag n i If R is a congruence in A we may dene op erations g in AR If a A i n i by aR k ak R Then dene g by dene aR AR i n i then g aR f aR if a A i i in cumb ersome notation g a R a R a R f a a a R i 0 1 n 1 i 0 1 n 1 i i With these op erations AR g b ecomes an algebra of the same typ e as A i iI the so called quotient algebra AR of A mo dulo R The map A AR R dened by a aR b ecomes a homomorphism of A onto AR called the R canonical homomorphism of A onto AR We are now in a p osition to establish the basic relationship b etween homo morphisms and congruences known under various names Homomorphism Theorem Let A B be a homomorphism of A into B Dene a relation R ker the kernel of by aR b i a b Then R is a congruence in A and there exists a unique map AR B such that This map is a oneone homomorphism of AR into B R A B R AR If is onto then clearly is onto hence an isomorphism Thus every homo morphic image of A is isomorphic with a quotient algebra of A It is of some imp ortance that the set C onA of all congruences in A is an algebraic closure system over A A Q A of the family consists Let A b e a family of sets The pro duct k k k K k K of all choice functions on the family ie all maps with domain K such that Q A there come maps pr of k A for all k K With every pro duct k k k k K the pro duct onto A dened by pr k The map pr is called the k th k k k k pro jection If the A A f are algebras we dene op erations f in the k k iI i i k pro duct comp onentwise ie by f k f pr The resulting algebra i k i Q A is called the pro duct of the family A In case of a pro duct of k k k K k K algebras the pr are homomorphisms k The cartesian pro duct A B of two sets is dened in basic set theory as fa bja A b B g If A A f B B g we may dene op era i iI i iI tions h in A B by h a f pr a g pr a This gives a new algebra i i i A i B A B This can b e subsumed under the pro duct dened b efore We leave out the details An imp ortant prop erty of pro ducts which in more general settings can b e used to dene pro ducts is the Extension Prop erty of Pro ducts If A A k K are algebras and for every k k K is a homomorphism of A into A then there exists a unique homomor k k Q A satisfying pr for every k phism of A into k k k k K A sub direct pro duct of a family A of algebras is a subalgebra A of the k k K Q A such that every pr maps A onto A A sub direct representation pro duct k k k k K Q A such that the of an algebra A is an emb edding of A into a pro duct k k K maps pr map A onto A An algebra A is said to b e sub directly irreducible i k k Q for every sub direct representation A A one of the maps pr is one k k k K one hence an isomorphism The fundamental result ab out sub directly irreducibles is Birkho s Sub direct Representation Theorem Every algebra is isomorphic with a subdirect product of subdirectly irreducible algebras Sub direct irreducibility of an algebra has a neat and very useful character ization in terms of congruences The smallest congruence of an algebra A A f is obviously the diagonal fa aja Ag An algebra A i iI A A f is sub directly irreducible i there is a smallest congruence dierent i iI from A Let K b e a class of algebras of the same typ e We dene H K to b e the class of all homomorphic images of algebras in K S K the class of all subalgebras of algebras in K and P K the class of all pro ducts of algebras in K An equational class or variety of algebras is a class K with H K K S K K and P K K If K is any class of algebras of the same typ e then HSP K is the smallest variety containing K In our general considerations so far we have distinguished corresp onding op erations in algebras of the same typ e by giving them the same index This is prac tically never done in concrete cases In these cases one identies corresp onding op erations by denoting them by the same symb ol For illustration let us consider the case of groups In order to get subgroups as a sp ecial case of our general notion of subalgebras we have to consider a group as an algebra with the group multiplication as a binary op eration the forming of inverses as a unary op eration and the unit as a constant In order to make this t our general development so far
Recommended publications
  • Free Objects and Free Extensions in the Category of Frames
    FREE OBJECTS AND FREE EXTENSIONS IN THE CATEGORY OF FRAMES CONSTANTINE TSINAKIS This work is dedicated to Rick Ball on the occasion of his retirement. Abstract. This article is concerned with free objects and free extensions over posets in the category of frames. Its primary goal is to present novel representations for these objects as subdirect products of certain chains. Constructions for the corresponding objects in the category of bounded distributive lattices are also presented. 1. Discussion and the Main Results The primary aim of this note is to present novel representations for free objects and free extensions over posets in the category Frm of frames. Representations for the corresponding objects in the category D of bounded distributive lattices are also presented. Free frames are easy to describe, see for example Johnstone [5]. The free frame F over a set X is usually represented as the frame of lower sets of the free meet-semilattice with identity, or more concretely, as the the frame of lower sets of the semilattice of all finite subsets of X ordered by reverse set-inclusion. It can also be shown that F is isomorphic to the ideal completion of the free bounded distributive lattice over X. The latter representation follows from the results of the present paper, but it can also be obtained directly by using the universal properties of free distributive lattices and ideal completions of lattices. The statements for the main results will require some notation. For any poset P , we write ? ⊕ P ⊕ > for the poset obtained from P by adjoining a new least element ? and a new greatest element >.
    [Show full text]
  • Congruence Lattices of Semilattices
    PACIFIC JOURNAL OF MATHEMATICS Vol. 49, No. 1, 1973 CONGRUENCE LATTICES OF SEMILATTICES RALPH FREESE AND J. B. NATION The main result of this paper is that the class of con- gruence lattices of semilattices satisfies no nontrivial lattice identities. It is also shown that the class of subalgebra lattices of semilattices satisfies no nontrivial lattice identities. As a consequence it is shown that if 5^* is a semigroup variety all of whose congruence lattices satisfy some fixed nontrivial lattice identity, then all the members of 5^" are groups with exponent dividing a fixed finite number. Given a variety (equational class) J^ of algebras, among the inter- esting questions we can ask about the members of SίΓ is the following: does there exist a lattice identity δ such that for each algebra A e S?~, the congruence lattice Θ(A) satisfies S? In the case that 5ίΓ has dis- tributive congruences, many strong conclusions can be drawn about the algebras of J%Γ [1, 2, 7]. In the case that 3ίΓ has permutable con- gruences or modular congruences, there is reason to hope that some similar results may be obtainable [4, 8]. A standard method of proving that a class of lattices satisfies no nontrivial lattice identities is to show that all partition lattices (lattices of equivalence relations) are contained as sublattices. The lattices of congruences of semilattices, however, are known to be pseudo-complemented [9]. It follows that the partition lattice on a three-element set (the five-element two-dimensional lattice) is not isomorphic to a sublattice of the congruence lattice of a semi- lattice, and in fact is not a homomorphic image of a sublattice of the congruence lattice of a finite semilattice.
    [Show full text]
  • G. Grätzer and J. Sichler, Free Decompositions of a Lattice
    Can. J. Math., VoL XXVII, No.2, 1975, pp. 276-285 FREE DECOMPOSITIONS OF A LATTICE G. GRATZER AND J. SICHLER 1. Introduction. Two basic questions have been raised for free products of lattices: 1, Do any two free products have a common refinement? 2. Can every lattice be decomposed into a free product of freely indecom­ posable lattices? Both questions have been around for some time and attempts at solving them were made especially after the Structure Theorem for Free Products was discovered (see G. Gratzer, H. Lasker, and C. R. Platt (3]). Partial answer to question one was supplied in A. Kostinsky (7]. In this paper we answer both questions. Our basic observation is that the proper framework for these results is the theory of free K-products, that is, free products in an arbitrary equational class K of lattices. This approach has the advantage that the answers are supplied for all equational classes of lattices. It is especially simple to answer Question 1 for equational classes having a special property (J) (see §2) describing certain sublattices of free products. We also show that many equational classes fail to have (J). 2. Results. An equational class K of lattices is called trivial if it is theclass of aU one element lattices; otherwise it is nontrivial. THEOREM 1, Let K be a nontrivial equational class of lattices. For any L in K, any two representations of L as a free K-product have a common refinement. It is easy to state what the common refinement is. To simplify our notation, we agree that we use the "internal" definition of free K-product, that is, the free K-factors are considered as sublattices of the free K-products.
    [Show full text]
  • Free Lattices Department of Mathematics University of Hawaii Honolulu, Hawaii 96822 Ralph@@Math.Hawaii.Edu MFF, Charles Universi
    Free Lattices Ralph Freese Department of Mathematics University of Hawaii Honolulu, Hawaii 96822 ralph@@math.hawaii.edu Jaroslav Jeˇzek MFF, Charles University Sokolovsk´a83 18600 Praha 8 Czech Republic jezek@@karlin.mff.cuni.cz J. B. Nation Department of Mathematics University of Hawaii Honolulu, Hawaii 96822 jb@@math.hawaii.edu 1991 Mathematics Subject Classification. Primary 06B25; Secondary 06–04, 68Q25, 06A06, 06B20 This research supported by NSF Grants DMS–9204481 and DMS–9122011. Contents Introduction 1 Chapter I. Whitman’s Solution to the Word Problem 9 1. Basic Concepts from Lattice Theory 9 2. Free Lattices 13 3. Canonical Form 20 4. Continuity 25 5. Fixed Point Free Polynomials and Incompleteness 26 6. Sublattices of Free Lattices 30 Chapter II. Bounded Homomorphisms and Related Concepts 35 1. Bounded Homomorphisms 35 2. Continuity 48 3. Doubling and Congruences on a Finite Lattice 49 4. A Refinement of the D Relation 59 5. Semidistributive Lattices 64 6. Splitting Lattices 72 7. Day’s Theorem: Free Lattices are Weakly Atomic 81 8. Applications to Congruence Varieties 85 Chapter III. Covers in Free Lattices 89 1. Elementary Theorems on Covers in FL(X) 89 2. J–closed Sets and the Standard Epimorphism 94 3. Finite Lower Bounded Lattices 99 4. The Lattice L ⊔ (w) 102 5. Syntactic Algorithms 105 6. Examples 110 7. Connected Components and the Bottom of FL(X) 115 Chapter IV. Day’s Theorem Revisited 119 Chapter V. Sublattices of Free Lattices and Projective Lattices 125 1. Projective Lattices 125 2. The Free Lattice Generated by an Ordered Set 136 3.
    [Show full text]
  • Lecture Notes in Mathematics 2029
    Lecture Notes in Mathematics 2029 Editors: J.-M. Morel, Cachan B. Teissier, Paris For further volumes: http://www.springer.com/series/304 • Pierre Gillibert • Friedrich Wehrung From Objects to Diagrams for Ranges of Functors 123 Pierre Gillibert Friedrich Wehrung Charles University in Prague University of Caen, LMNO, CNRS Department of Mathematics UMR 6139, Sokolovsk´a83 Department of Mathematics 18600 Prague Praha 14032 Caen, Cedex Czech Republic France [email protected] [email protected] ISBN 978-3-642-21773-9 e-ISBN 978-3-642-21774-6 DOI 10.1007/978-3-642-21774-6 Springer Heidelberg Dordrecht London New York Lecture Notes in Mathematics ISSN print edition: 0075-8434 ISSN electronic edition: 1617-9692 Library of Congress Control Number: 2011933135 Mathematics Subject Classification (2010): Primary 18A30, 18A25, 18A20, 18A35; Secondary 03E05, 05D10, 06A07, 06A12 c Springer-Verlag Berlin Heidelberg 2011 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Congruence Lattices of Free Lattices in Non-Distributive Varieties Miroslav Ploscica, Jiri Tuma, Friedrich Wehrung
    Congruence lattices of free lattices in non-distributive varieties Miroslav Ploscica, Jiri Tuma, Friedrich Wehrung To cite this version: Miroslav Ploscica, Jiri Tuma, Friedrich Wehrung. Congruence lattices of free lattices in non- distributive varieties. Colloquium Mathematicum, 1998, 76, no. 2, pp.269-278. hal-00004064 HAL Id: hal-00004064 https://hal.archives-ouvertes.fr/hal-00004064 Submitted on 25 Jan 2005 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. CONGRUENCE LATTICES OF FREE LATTICES IN NON-DISTRIBUTIVE VARIETIES MIROSLAV PLOSˇCICA,ˇ JIRˇ´I TUMA,˚ AND FRIEDRICH WEHRUNG Abstract. We prove that for any free lattice F with at least ℵ2 generators in any non-distributive variety of lattices, there exists no sectionally complemen- ted lattice L with congruence lattice isomorphic to the one of F . This solves a question formulated by Gr¨atzer and Schmidt in 1962. This yields in turn further examples of simply constructed distributive semilattices that are not isomorphic to the semilattice of finitely generated two-sided ideals in any von Neumann regular ring. Introduction One of the oldest and most famous open problems in lattice theory, the Congru- ence Lattice Problem, is to decide whether for every distributive (join-) semilattice S with zero, there exists a lattice L such that the semilattice C(L) of compact congruences of L (the congruence semilattice of L) is isomorphic to S.
    [Show full text]
  • Arxiv:1901.07638V3 [Math.GR] 8 Jan 2020 Rpitsbitdt Arxiv to Submitted Preprint E Gi 4.I Hspprw Show, We Paper This in [4]
    Orders on groups, and spectral spaces of lattice-groups Almudena Colacitoa, Vincenzo Marrab aMathematisches Institut, Universitat¨ Bern, Alpeneggstrasse 22, 3012 Bern, Switzerland bDipartimento di Matematica “Federigo Enriques”, Universita` degli Studi di Milano, via Cesare Saldini 50, 20133 Milano, Italy Abstract Extending pioneering work by Weinberg, Conrad, McCleary, and others, we provide a systematic way of relating spaces of right orders on a partially ordered group, on the one hand, and spectral spaces of free lattice-ordered groups, on the other. The aim of the theory is to pave the way for further fruitful interactions between the study of right orders on groups and that of lattice-groups. Special attention is paid to the important case of orders on groups. Keywords: Partially ordered group, Total order, Right order, Free lattice-ordered group, Spectral space, Stone duality. 2010 MSC: Primary: 06F15. Secondary: 06E15, 03C05, 08B15. 1. Introduction A right order on a group G is a total order 6 on G such that x 6 y implies xt 6 yt, for all x,y,t ∈ G. There are at least two distinct motivations for studying such orders on groups. First, a countable group admits a right order if, and only if, it acts faithfully on the real line by orientation-preserving homeomorphisms. This, as far as we know, is folklore; see [11, Theorem 6.8] for a proof. (While we use right orders in this paper, other authors prefer left orders as in [11], the difference being immaterial.) The result indicates that orders on groups play a roleˆ in topological dynamics. For more on this, besides Section 6.5 of Ghys’ beautiful survey [11], see the research monograph [4].
    [Show full text]
  • Free Lattices, 1995 41 Hal L
    http://dx.doi.org/10.1090/surv/042 Recent Titles in This Series 42 Ralph Freese, Jaroslav Jezek, and J. B. Nation, Free lattices, 1995 41 Hal L. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, 1995 40.1 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, 1994 39 Sigurdur Helgason, Geometric analysis on symmetric spaces, 1993 38 Guy David and Stephen Semmes, Analysis of and on uniformly rectifiable sets, 1993 37 Leonard Lewin, Editor, Structural properties of polylogarithms, 1991 36 John B. Conway, The theory of subnormal operators, 1991 35 Shreeram S. Abhyankar, Algebraic geometry for scientists and engineers, 1990 34 Victor Isakov, Inverse source problems, 1990 33 Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, 1990 32 Howard Jacobowitz, An introduction to CR structures, 1990 31 Paul J. Sally, Jr. and David A. Vogan, Jr., Editors, Representation theory and harmonic analysis on semisimple Lie groups, 1989 30 Thomas W. Cusick and Mary E. Flahive, The Markoff and Lagrange spectra, 1989 29 Alan L. T. Paterson, Amenability, 1988 28 Richard Beals, Percy Deift, and Carlos Tomei, Direct and inverse scattering on the line, 1988 27 Nathan J. Fine, Basic hypergeometric series and applications, 1988 26 Hari Bercovici, Operator theory and arithmetic in H°°9 1988 25 Jack K. Hale, Asymptotic behavior of dissipative systems, 1988 24 Lance W. Small, Editor, Noetherian rings and their applications, 1987 23 E. H. Rothe, Introduction to various aspects of degree theory in Banach spaces, 1986 22 Michael E.
    [Show full text]
  • Free-Lattice Functors Weakly Preserve Epi-Pullbacks
    Free-lattice functors weakly preserve epi-pullbacks H. Peter Gumm, Ralph Freese March 18, 2021 Abstract Suppose p(x,y,z) and q(x,y,z) are terms. If there is a common “an- cestor” term s(z1,z2,z3,z4) specializing to p and q through identifying some variables p(x,y,z) ≈ s(x,y,z,z) q(x,y,z) ≈ s(x,x,y,z), then the equation p(x,x,z) ≈ q(x,z,z) is trivially obtained by syntactic unification of s(x,y,z,z) with s(x,x,y,z). In this note we show that for lattice terms, and more generally for terms of lattice-ordered algebras, the converse is true, too. Given terms p,q, and an equation p(u1,...,um) ≈ q(v1,...,vn) (1) where {u1,...,um} = {v1,...,vn}, there is always an “ancestor term” s(z1,...,zr) such that p(x1,...,xm) and q(y1,...,yn) arise as substitu- tion instances of s, whose unification results in the original equation (1). In category theoretic terms the above proposition, when restricted to lattices, has a much more concise formulation: Free-lattice functors weakly preserves pullbacks of epis. arXiv:2103.09566v1 [math.RA] 17 Mar 2021 1 Introduction The motivation of this study arose from coalgebra. When studying F -coalgebras for a type functor F , the limit preservation properties of F are known to exert a crucial influence on the structure theory of the class of all F -coalgebras. In particular, weak preservation of pullbacks is a property which many familiar Set- endofunctors enjoy.
    [Show full text]
  • The Completion of a Lattice Ordered Group
    THE COMPLETION OF A LATTICE ORDERED GROUP , PAUL CONRAD and DONALD McALISTER 1 (Received 8 May 1967) 1. Introduction A lattice ordered group ('/-group') is called complete if each set of elements that is bounded above has a least upper bound (and dually). A complete /-group is archimedean and hence abelian, and each archimedean /-group has a completion in the sense of the following theorem. THEOREM 1.1. // G is an archimedean l-group, then there exists a complete l-group GA with the following properties (1) G is an l-subgroup of G*, and (2) if heGA, then h = y{geG\g ^ h). Moreover, if H is any complete l-group with these properties, then there exists a unique l-isomorphism a of G* onto H such that go = g for all g eG. Note that for each h e C\ —h = \/{g e G\g ^ —h} so that (2') h = /\{geG\g^h} also holds. The complete /-group G* described in this theorem is the Dedekind- MacNeille 'completion by cuts' of G (see [4] or [12] for details of its con- struction). Although Theorem 1.1 gives a more abstract characterisation of G* it does not enable one to compute the completion of an archimedean /-group. In Theorem 2.4 we give an abstract characterisation of GA which makes no mention of infinite suprema or infima, and using this result we can precisely describe the completion of an archimedean /-group with a basis. As a further application of Theorem 2.4 we show that the completion of an /-group of real valued functions is an /-group of real valued functions over the same domain (Theorem 3.2) and give a reasonably decent description of this completion (Theorem 3.3).
    [Show full text]
  • Arxiv:Math/0501375V1
    A SURVEY OF RECENT RESULTS ON CONGRUENCE LATTICES OF LATTICES JIRˇ´I TUMA˚ AND FRIEDRICH WEHRUNG Dedicated to Ralph McKenzie on his 60-th birthday Abstract. We review recent results on congruence lattices of (infinite) lat- tices. We discuss results obtained with box products, as well as categorical, ring-theoretical, and topological results. Contents 1. Introduction 1 2. Uniform Refinement Properties 3 3. The M3hLi construction, tensor product, and box product 9 4. The functor Conc on partial lattices 13 5. Lifting diagrams of semilattices by diagrams of partial lattices 14 6. Extensions of partial lattices to lattices 17 7. Connections to ring theory 20 8. Dual topological spaces 21 9. Open problems 23 Acknowledgments 25 Added in proof 25 References 25 1. Introduction For a lattice L, the congruence lattice of L, denoted here by Con L, is the lattice of all congruences of L under inclusion. As the congruence lattice of any algebraic arXiv:math/0501375v1 [math.GM] 22 Jan 2005 system, the lattice Con L is algebraic. The compact elements of Con L are the finitely generated congruences, that is, the congruences of the form ΘL(ai,bi), _ i<n Date: September 21, 2018. 2000 Mathematics Subject Classification. 06B10, 06E05. Key words and phrases. Lattice, congruence, box product, partial lattice, amalgamation, reg- ular ring, locally matricial ring, dual topological space. The first author was partially supported by GA UK grant no. 162/1999 and by GA CR grant no. 201/99. The second author was partially supported by the Fund of Mobility of the Charles University (Prague), by FRVS grant no.
    [Show full text]
  • Properties of Lattices of Subquasivarieties
    APPENDIX A Properties of Lattices of Subquasivarieties A.1. Representations of Quasivariety Lattices The span of nearly two decades since the publication of Viktor Gor- bunov’s book on quasivarieties [77] has made it desirable to have an updated review of what is known about lattices of quasivarieties. This appendix pro- vides a summary of their basic properties, with references to the literature. A.2. Representations of Quasivariety Lattices Representations of a lattice can reveal structural properties, so let us be- gin there. For a quasivariety K,letLq(K) denote the lattice of quasivarieties contained in K, ordered by inclusion. No assumption is made yet on the type of the structures in K, but the type will generally have both operations and relations. Of course Lq(K) is a complete lattice. The theory of a quasivariety K is the set of all quasi-equations holding in K. The theory of a subquasivariety Q ≤ K contains the theory of K. (More quasi-equations means fewer models.) The lattice QTh(K) of all quasi- equational theories extending the theory of K, ordered by containment, is dually isomorphic to the lattice of subquasivarieties Lq(K). In Adaricheva and Nation [19], it is shown that QTh(K)canberepre- sented as the congruence lattice of a semilattice with operators. That is, ∼ there is an algebra S such that QTh(K) = Con S,whereS =(S, ∨, 0,F)isa join semilattice with 0 endowed with a set of operations f : S → S such that f(x ∨ y)=f(x) ∨ f(y)andf(0) = 0 for all f ∈ F .
    [Show full text]