Gelsolin and Related Proteins in Vertebrate Model Organisms

Total Page:16

File Type:pdf, Size:1020Kb

Gelsolin and Related Proteins in Vertebrate Model Organisms e-ISSN 1734-9168 Folia Biologica (Kraków), vol. 67 (2019), No 4 http://www.isez.pan.krakow.pl/en/folia-biologica.html https://doi.org/10.3409/fb_67-4.16 Gelsolin and Related Proteins in Vertebrate Model Organisms Marta MIGOCKA-PATRZA£EK , Joanna NIEDBALSKA-TARNOWSKA , Arnold GARBIEC , Magda DUBIÑSKA-MAGIERA , and Ma³gorzata DACZEWSKA Accepted December 17, 2019 Published online December 30, 2019 Issue online December 31, 2019 Review MIGOCKA-PATRZA£EK M., NIEDBALSKA-TARNOWSKA J., GARBIEC A., DUBIÑSKA-MAGIERA M., DACZEWSKA M. 2019. Gelsolin and related proteins in vertebrate model organisms. Folia Biologica (Kraków) 67: 159-167. Gelsolin, encoded by the Gsn gene, is a highly conserved actin-binding protein detected in all studied eukaryotic organisms. Gelsolin is the founding member of the gelsolin superfamily of proteins, whose main functions are binding, severing, and capping actin filaments. Moreover, gelsolin is engaged in apoptosis regulation, signal transduction, and embryonic development. Gelsolin is also implicated in some human diseases such as Alzheimer disease and familial amyloidosis of the Finnish type (FAF). Because of its multifunctionality, gelsolin is a potential candidate for diverse therapeutic applications. Most of our knowledge about gelsolin superfamily proteins comes from investigations conducted on vertebrate model organisms such as zebrafish (Danio rerio), African clawed frogs (Xenopus laevis), chickens (Gallus gallus), and mice (Mus musculus). Here, we present fundamental findings as well as new knowledge to indicate main research directions and future possibilities. Different model organisms provide specific possibilities and present particular advantages. However, all of them give useful data, which allow us to gain a better understanding of the function of gelsolin and related proteins. Key words: gelsolin, adseverin, CapG, flightless I, advillin, villin, villin-like, supervillin, apoptosis. * Marta MIGOCKA-PATRZA£EK , Joanna NIEDBALSKA-TARNOWSKA, Arnold GARBIEC, Magda DUBIÑSKA-MAGIERA, Ma³gorzata DACZEWSKA, Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroc³aw, Sienkiewicza 21, 50-335 Wroc³aw, Poland. E-mail: [email protected] Joanna NIEDBALSKA-TARNOWSKA, Laboratory of Molecular and Cellular Immunology Department of Tumor Immunology Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroc³aw, Poland. Gelsolin, a protein of 82-84 kDa, is an actin-bind- acids called a linker sequence (Fig. 1) (KWIATKOWSKI ing protein regulated by calcium (SILACCI et al. et al. 1986, 1988, 1989; BOLLATI et al. 2019). It 2004). In mammals, gelsolin superfamily proteins was proposed that the six gelsolin subunits comprise gelsolin, adseverin, CapG, flightless I, (S1–S6) evolved from a single domain prototype advillin, villin, villin-like and supervillin (LI et al. through gene triplication, followed by a duplica- 2012; NAG et al. 2013; SHEKHAR et al. 2016). This tion event (WAY &WEEDS 1988). In mammals, conserved protein superfamily, widely expressed differences between gelsolin isoforms arise from in eukaryotic cells, exists as cytoplasmic, the presence of a disulfide bond between Cys188 plasma/secreted and brain isoforms. In mammals, and Cys201 in plasma gelsolin, and 11 additional gelsolin is encoded by a single gene and expressed amino acid residues on the N-terminal domain in through alternative splicing. The basic functions brain gelsolin. Furthermore, contrary to cytoplas- of gelsolin are binding, severing, and capping ac- mic gelsolin, the plasma isoform contains a signal tin filaments (SUN et al. 1999; FELDT et al. 2018). peptide and 23-25 amino acid residues more on the A common sequence of all isoforms contains N-terminal domain (BUCKI et al. 2008). 730 amino acids. Gelsolin has six subunits (S1-S6), It has been shown that gelsolin has three different organized into two domains: on the N- (S1-S3) and actin binding regions: a calcium-independent mono- C-terminal (S4-S6) halves, linked through 70 amino mer binding fragment (S1), a calcium-independent Ó Institute of Systematics and Evolution of Animals, PAS, Kraków, 2019 Open Access article distributed under the terms of the Creative Commons Attribution License (CC-BY) OPEN Ð ACCESS http://creativecommons.org/licences/by/4.0 160 M. MIGOCKA-PATRZA£EK et al. Fig. 1. Cross-species comparison of the gelsolin protein structure. The upper part of the figure shows a comparison of the gelsolin protein’s architecture in various organisms: human (Homo sapiens), mouse (Mus musculus), chicken (Gallus gallus), African clawed frog (Xenopus laevis), and zebrafish (Danio rerio). Conserved functional domains and binding sites are highlighted by different color boxes. The proportions between individual sequences of proteins, domains, and binding sites have been preserved. On the lower part of the figure, a phylogenetic tree based on a protein sequence comparison of the gelsolin family from the various organisms is shown. Sequence alignment and phylogenetic tree: ClustalW2, www.ebi.ac.uk. filament binding fragment (S2-3), and a calcium- part in cytoskeleton structure reorganization, and dependent monomer binding fragment (S4-6) influences cell shape changes and cell movement. (BRYAN 1988). Besides Ca2+ promoting gelsolin The main function of plasma gelsolin, is participa- activity, intracellular pH, phosphoinositides, and tion in the removal of G-actin and F-actin from the tyrosine phosphorylation affect gelsolin regula- bloodstream after cell damage. It is noteworthy tion (SILACCI et al. 2004). Gelsolin also binds to that actin in the extracellular environment has phosphatidylinositol 4,5-bisphosphate (PIP2). toxic effects (LI et al. 2012). The third isoform, PIP2 inhibits the actin filament, severing activity brain gelsolin, is involved in myelin sheath forma- of a proteolytic fragment of gelsolin encompass- tion and central nervous system development ing its N-terminal half (JANMEY &STOSSEL (VOUYIOUKLIS &BROPHY 1997; MAZUR et al. 1987). 2016). The gelsolin cytoplasmic and plasma isoforms In gelsolin, the substitution of Asp187Asn or are produced by skeletal, smooth, and cardiac Asp187Tyr causes familial amyloidosis of the Fin- muscles, whereas the brain isoform is observed in nish type (FAF), a rare hereditary amyloid poly- oligodendrocytes, lungs, and testis. Differences in neuropathy characterized by corneal lattice the structure of individual isoforms also modulate dystrophy, progressive cranial, and peripheral their functions. Cytoplasmic gelsolin is responsi- neuropathy, and skin changes (SOLOMON et al. ble for the regulation of cell actin dynamics, takes 2012). Gelsolin could be potentially used for the Gelsolin in Vertebrate Model Organisms 161 treatment of Alzheimer’s disease, caused by the larly sized exons (JIA et al. 2009). Like scinla, accumulation and deposition of amyloid beta in scinlb is expressed in the adult cornea, although at the brain. Plasma and cytoplasmic gelsolin have lower levels than scinla (JIA et al. 2007). Both the ability to connect with amyloid beta, thus limit- scinla and scinlb belong to a distinct branch that ing the aggregation of this protein (ISAACSON et al. clusters with, but is separate from, the scinderin 1999; HUFF et al. 2003; ANTEQUERA et al. 2009; vertebrate cluster. Thus, scinla and scinlb are ZORGATI et al. 2019). fish-specific paralogs of scinderin (JIA et al. In our review, we focused on the role of gelsolin 2009). Scinla, scinlb,andgsnb are preferentially and related proteins in vertebrate model organisms expressed in the adult cornea, whereas gsna is ex- such as zebrafish (Danio rerio), African clawed pressed to a similar extent in the cornea, lens, frogs (Xenopus laevis), chickens (Gallus gallus), brain, and heart (JIA et al. 2007). The authors re- andmice(Mus musculus). We present fundamen- ported that two zebra fish scinl genes are involved tal findings and new scientific data to show the in cornea crystallization. In addition to its accumu- main direction in research and future possibilities. lation in the cornea, the scinla gene is expressed at Our goal was to present the diverse and specific low concentrations during early zebrafish devel- advantages of each animal model in the field of re- opment, where it appears to have a signaling role in search related to gelsolin and gelsolin-family pro- dorsal-ventral patterning. Overexpression of scinla teins. Our summary also underlines the enormous dorsalizes the embryo and can lead to axis duplica- multifunctionality of gelsolin and its specific role tion, while the interruption of scinla expression in numerous biological processes such as develop- with a specific morpholino oligonucleotide ven- ment, morphogenesis, and pathogenesis, which tralizes the embryo, and interferes with brain and makes gelsolin a potential candidate for diverse eye development (KANUNGO et al. 2003, 2004; therapeutic applications. JIA et al. 2007). In contrast to the effect of knocking down scinla Zebrafish (Danio rerio) expression, it has been shown that reducing scinlb expression does not affect dorsal-ventral signaling Based on the gelsolin domains in zebrafish, phy- (JIA et al. 2009). However, the phenotypes with logenetic analysis revealed that there are six genes low scinlb expression exhibited a subtle change in encoding gelsolin-like proteins: the gsna and gsnb the structure of the developing brain that was asso- group with the vertebrate gelsolin gene, scina and ciated with increased cell
Recommended publications
  • Injury by Mechanical Ventilation Gene Transcription and Promotion Of
    Modulation of Lipopolysaccharide-Induced Gene Transcription and Promotion of Lung Injury by Mechanical Ventilation This information is current as William A. Altemeier, Gustavo Matute-Bello, Sina A. of September 29, 2021. Gharib, Robb W. Glenny, Thomas R. Martin and W. Conrad Liles J Immunol 2005; 175:3369-3376; ; doi: 10.4049/jimmunol.175.5.3369 http://www.jimmunol.org/content/175/5/3369 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2005/08/23/175.5.3369.DC1 Material http://www.jimmunol.org/ References This article cites 37 articles, 7 of which you can access for free at: http://www.jimmunol.org/content/175/5/3369.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 29, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Modulation of Lipopolysaccharide-Induced Gene Transcription and Promotion of Lung Injury by Mechanical Ventilation1 William A.
    [Show full text]
  • Genetics of Cell Surface Receptors for Bioactive Polypeptides
    Proc. Nati. Acad. Sci. USA Vol. 77, No. 6, pp. 3600-3604, June 1980 Genetics Genetics of cell surface receptors for bioactive polypeptides: Binding of epidermal growth factor is associated with the presence of human chromosome 7 in human-mouse cell hybrids (hormone/gene mapping/gene regulation) NOBUYOSHI SHIMIZU, M. ALI BEHZADIAN, AND YOSHIKO SHIMIZU Department of Cellular and Developmental Biology, University of Arizona, Tucson, Arizona 85721 Communicated by Frank H. Ruddle, March 24, 1980 ABSTRACT Mouse A9 cells, L-cell-derived mutants defi- Although recent work has identified the EGF receptor as a cient in hypoxanthine phosphoribosyltransferase (HPRT; glycoprotein with subunit structure (6-8), little is known about IMP:pyrophosphate Ihosphoribosyltransferase, EC 2.4.2.8) were its genetics and biosynthesis. By an application of somatic cell foun to e incapable of binding 25I-labeled epidermal growth factor (EGF) to the cell surface. The A9 cells were fused with genetics we have been studying the genetic and molecular basis human diploid fibroblasts (WI-38) possessing EGF-binding of receptor-mediated mitogenic action of EGF (9). In this report ability, and human-mouse cell hybrids (TA series) were isolated we present the evidence for the dominance of EGF-binding after hypoxanthine/aminopterin/thymidine/ouabain selection. ability and its linkage with human chromosome 7 based on Analyses of isozyme markers and chromosomes of four repre- analysis of human-mouse cell hybrids. sentative clones of TA hybrids indicated that the expression of EGF-binding ability is correlated with the presence of human chromosome 7 or 19. Four subclones were isolated from an MATERIALS AND METHODS EGF-binding-positive line, TA4, and segregation of EGF- Cell Lines.
    [Show full text]
  • Genes in a Refined Smith-Magenis Syndrome Critical Deletion Interval on Chromosome 17P11.2 and the Syntenic Region of the Mouse
    Downloaded from genome.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Article Genes in a Refined Smith-Magenis Syndrome Critical Deletion Interval on Chromosome 17p11.2 and the Syntenic Region of the Mouse Weimin Bi,1,6 Jiong Yan,1,6 Paweł Stankiewicz,1 Sung-Sup Park,1,7 Katherina Walz,1 Cornelius F. Boerkoel,1 Lorraine Potocki,1,3 Lisa G. Shaffer,1 Koen Devriendt,4 Małgorzata J.M. Nowaczyk,5 Ken Inoue,1 and James R. Lupski1,2,3,8 Departments of 1Molecular & Human Genetics, 2Pediatrics, Baylor College of Medicine, 3Texas Children’s Hospital, Houston, Texas 77030, USA; 4Centre for Human Genetics, University Hospital Gasthuisberg, Catholic University of Leuven, B-3000 Leuven, Belgium; 5Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4J9, Canada Smith-Magenis syndrome (SMS) is a multiple congenital anomaly/mental retardation syndrome associated with behavioral abnormalities and sleep disturbance. Most patients have the same ∼4 Mb interstitial genomic deletion within chromosome 17p11.2. To investigate the molecular bases of the SMS phenotype, we constructed BAC/PAC contigs covering the SMS common deletion interval and its syntenic region on mouse chromosome 11. Comparative genome analysis reveals the absence of all three ∼200-kb SMS-REP low-copy repeats in the mouse and indicates that the evolution of SMS-REPs was accompanied by transposition of adjacent genes. Physical and genetic map comparisons in humans reveal reduced recombination in both sexes. Moreover, by examining the deleted regions in SMS patients with unusual-sized deletions, we refined the minimal Smith-Magenis critical region (SMCR) to an ∼1.1-Mb genomic interval that is syntenic to an ∼1.0-Mb region in the mouse.
    [Show full text]
  • Epithelial Polarity, Villin Expression, and Enterocytic Differentiation of Cultured Human Colon Carcinoma Cells: a Survey of Twenty Cell Lines1
    [CANCER RESEARCH 48, 1936-1942, April 1, 1988] Epithelial Polarity, Villin Expression, and Enterocytic Differentiation of Cultured Human Colon Carcinoma Cells: A Survey of Twenty Cell Lines1 Isabelle Chantret,2 Alain Barbat, Elisabeth Dussaulx, Michael G. Brattain, and Alain Zweibaum UnitédeRecherches sur le Métabolismeet la Différenciationde Cellules en Culture, INSERM U178, 94807 Villejuif Cedex, France [I. C., A. B., E. D., A. Z.], and Bristol-Baylor Laboratory, Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030 [ M. G. B.J ABSTRACT binding protein known to be specifically associated with the cytoskeleton of the brush border microvilli (17), has been re Twenty human colon carcinoma cell lines were studied for their ability ported only in Caco-2 (18) and HT-29 cells (18-20). Surpris to develop some of the characteristics of the normal intestinal epithelium, ingly, villin was expressed in the latter cells even when undif- e.g., epithelial polarity, presence of the actin-binding protein villin, or the ferentiated, although at a lower level and with a different occurrence of an enterocytic differentiation either when cultured under cellular localization (18-20). That other colon cell lines should standard conditions, as for Caco-2 cells, or when grown in a glucose-free medium, as for IIT-29 cells. Except for the regular presence of villin, also express some of these differentiation features is suggested by the observations that (a) villin is present in a number of which can be considered a marker of the colonie origin of the cells, the colon tumors3 (18) and (b) an enterocytic differentiation is cell lines of this study could be classified into four types with regard to their differentiation characteristics.
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • The KMT1A-GATA3-STAT3 Circuit Is a Novel Self-Renewal Signaling of Human Bladder Cancer Stem Cells Zhao Yang1, Luyun He2,3, Kais
    The KMT1A-GATA3-STAT3 circuit is a novel self-renewal signaling of human bladder cancer stem cells Zhao Yang1, Luyun He2,3, Kaisu Lin4, Yun Zhang1, Aihua Deng1, Yong Liang1, Chong Li2, 5, & Tingyi Wen1, 6, 1CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China 2Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China 3CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China 4Department of Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215000, China 5Beijing Jianlan Institute of Medicine, Beijing 100190, China 6Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China Correspondence author: Tingyi Wen, e-mail: [email protected] Chong Li, e-mail: [email protected] Supplementary Figure S1. Isolation of human bladder cancer stem cells. BCMab1 and CD44 were used to isolate bladder cancer stem cells (BCSCs: BCMab1+CD44+) and bladder cancer non-stem cells (BCNSCs: BCMab1-CD44-) from EJ, samples #1 and #2 by flow cytometry. Supplementary Figure S2. Gene ontology analysis of downregulated genes of human BCSCs. (A) Pathway enrichment of 103 downregulated genes in BCSCs. (B) The seven downregulated genes in BCSCs participating in centromeric heterochromatin, mRNA-3’-UTR binding and translation regulator activity signaling pathways were validated by qRT-PCR. Data are presented as mean ± SD. P < 0.05; P < 0.01. Supplementary Figure S3. The expression of KMT1A is higher in human BC than that in peri-tumor tissues. (A) The expression of KMT1A was higher in BC samples than that in peri-tumors as assessed by immunohistochemistry, Scale bar = 50 m.
    [Show full text]
  • Genomic Organization of the Approximately 1.5 Mb Smith
    European Journal of Human Genetics (2001) 9, 892 ± 902 ã 2001 Nature Publishing Group All rights reserved 1018-4813/01 $15.00 www.nature.com/ejhg ARTICLE Genomic organisation of the ~1.5 Mb Smith-Magenis syndrome critical interval: Transcription map, genomic contig, and candidate gene analysis Rebecca E Lucas1, Christopher N Vlangos1, Parimal Das4, Pragna I Patel4 and Sarah H Elsea*,1,2,3 1Genetics Graduate Program, Michigan State University, East Lansing, Michigan, MI 48824, USA; 2Department of Zoology, Michigan State University, East Lansing, Michigan, MI 48824, USA; 3Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan, MI 48824, USA; 4Department of Neurology, Baylor College of Medicine, Houston, Texas, TX 77030, USA Smith-Magenis syndrome (SMS) is a multiple congenital anomalies/mental retardation syndrome associated with an interstitial deletion of chromosome 17 involving band p11.2. SMS is hypothesised to be a contiguous gene syndrome in which the phenotype arises from the haploinsufficiency of multiple, functionally-unrelated genes in close physical proximity, although the true molecular basis of SMS is not yet known. In this study, we have generated the first overlapping and contiguous transcription map of the SMS critical interval, linking the proximal 17p11.2 region near the SMS-REPM and the distal region near D17S740 in a minimum tiling path of 16 BACs and two PACs. Additional clones provide greater coverage throughout the critical region. Not including the repetitive sequences that flank the critical interval, the map is comprised of 13 known genes, 14 ESTs, and six genomic markers, and is a synthesis of Southern hybridisation and polymerase chain reaction data from gene and marker localisation to BACs and PACs and database sequence analysis from the human genome project high-throughput draft sequence.
    [Show full text]
  • B Inhibition in a Mouse Model of Chronic Colitis1
    The Journal of Immunology Differential Expression of Inflammatory and Fibrogenic Genes and Their Regulation by NF-␬B Inhibition in a Mouse Model of Chronic Colitis1 Feng Wu and Shukti Chakravarti2 Fibrosis is a major complication of chronic inflammation, as seen in Crohn’s disease and ulcerative colitis, two forms of inflam- matory bowel diseases. To elucidate inflammatory signals that regulate fibrosis, we investigated gene expression changes under- lying chronic inflammation and fibrosis in trinitrobenzene sulfonic acid-induced murine colitis. Six weekly 2,4,6-trinitrobenzene sulfonic acid enemas were given to establish colitis and temporal gene expression patterns were obtained at 6-, 8-, 10-, and 12-wk time points. The 6-wk point, TNBS-w6, was the active, chronic inflammatory stage of the model marked by macrophage, neu- trophil, and CD3؉ and CD4؉ T cell infiltrates in the colon, consistent with the idea that this model is T cell immune response driven. Proinflammatory genes Cxcl1, Ccl2, Il1b, Lcn2, Pla2g2a, Saa3, S100a9, Nos2, Reg2, and Reg3g, and profibrogenic extra- cellular matrix genes Col1a1, Col1a2, Col3a1, and Lum (lumican), encoding a collagen-associated proteoglycan, were up-regulated at the active/chronic inflammatory stages. Rectal administration of the NF-␬B p65 antisense oligonucleotide reduced but did not abrogate inflammation and fibrosis completely. The antisense oligonucleotide treatment reduced total NF-␬B by 60% and down- regulated most proinflammatory genes. However, Ccl2, a proinflammatory chemokine known to promote fibrosis, was not down- regulated. Among extracellular matrix gene expressions Lum was suppressed while Col1a1 and Col3a1 were not. Thus, effective treatment of fibrosis in inflammatory bowel disease may require early and complete blockade of NF-␬B with particular attention to specific proinflammatory and profibrogenic genes that remain active at low levels of NF-␬B.
    [Show full text]
  • In This Table Protein Name, Uniprot Code, Gene Name P-Value
    Supplementary Table S1: In this table protein name, uniprot code, gene name p-value and Fold change (FC) for each comparison are shown, for 299 of the 301 significantly regulated proteins found in both comparisons (p-value<0.01, fold change (FC) >+/-0.37) ALS versus control and FTLD-U versus control. Two uncharacterized proteins have been excluded from this list Protein name Uniprot Gene name p value FC FTLD-U p value FC ALS FTLD-U ALS Cytochrome b-c1 complex P14927 UQCRB 1.534E-03 -1.591E+00 6.005E-04 -1.639E+00 subunit 7 NADH dehydrogenase O95182 NDUFA7 4.127E-04 -9.471E-01 3.467E-05 -1.643E+00 [ubiquinone] 1 alpha subcomplex subunit 7 NADH dehydrogenase O43678 NDUFA2 3.230E-04 -9.145E-01 2.113E-04 -1.450E+00 [ubiquinone] 1 alpha subcomplex subunit 2 NADH dehydrogenase O43920 NDUFS5 1.769E-04 -8.829E-01 3.235E-05 -1.007E+00 [ubiquinone] iron-sulfur protein 5 ARF GTPase-activating A0A0C4DGN6 GIT1 1.306E-03 -8.810E-01 1.115E-03 -7.228E-01 protein GIT1 Methylglutaconyl-CoA Q13825 AUH 6.097E-04 -7.666E-01 5.619E-06 -1.178E+00 hydratase, mitochondrial ADP/ATP translocase 1 P12235 SLC25A4 6.068E-03 -6.095E-01 3.595E-04 -1.011E+00 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 Protein kinase C and casein Q9BY11 PACSIN1 3.837E-03 -5.863E-01 3.680E-06 -1.824E+00 kinase substrate in neurons protein 1 Tubulin polymerization- O94811 TPPP 6.466E-03 -5.755E-01 6.943E-06 -1.169E+00 promoting protein MIC C9JRZ6 CHCHD3 2.912E-02 -6.187E-01 2.195E-03 -9.781E-01 Mitochondrial 2-
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Mclean, Chelsea.Pdf
    COMPUTATIONAL PREDICTION AND EXPERIMENTAL VALIDATION OF NOVEL MOUSE IMPRINTED GENES A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Chelsea Marie McLean August 2009 © 2009 Chelsea Marie McLean COMPUTATIONAL PREDICTION AND EXPERIMENTAL VALIDATION OF NOVEL MOUSE IMPRINTED GENES Chelsea Marie McLean, Ph.D. Cornell University 2009 Epigenetic modifications, including DNA methylation and covalent modifications to histone tails, are major contributors to the regulation of gene expression. These changes are reversible, yet can be stably inherited, and may last for multiple generations without change to the underlying DNA sequence. Genomic imprinting results in expression from one of the two parental alleles and is one example of epigenetic control of gene expression. So far, 60 to 100 imprinted genes have been identified in the human and mouse genomes, respectively. Identification of additional imprinted genes has become increasingly important with the realization that imprinting defects are associated with complex disorders ranging from obesity to diabetes and behavioral disorders. Despite the importance imprinted genes play in human health, few studies have undertaken genome-wide searches for new imprinted genes. These have used empirical approaches, with some success. However, computational prediction of novel imprinted genes has recently come to the forefront. I have developed generalized linear models using data on a variety of sequence and epigenetic features within a training set of known imprinted genes. The resulting models were used to predict novel imprinted genes in the mouse genome. After imposing a stringency threshold, I compiled an initial candidate list of 155 genes.
    [Show full text]