Computer Aided Process Planning for High-Speed Milling of Thin-Walled Parts Strategy-Based Support
Total Page:16
File Type:pdf, Size:1020Kb
Computer aided process planning for high-speed milling of thin-walled parts Michiel Popma Computer aided process planning for high-speed milling of thin-walled parts Strategy-based support Michiel Popma COMPUTER AIDED PROCESS PLANNING FOR HIGH-SPEED MILLING OF THIN-WALLED PARTS STRATEGY-BASED SUPPORT PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit Twente, op gezag van de rector magni¯cus, prof.dr. H. Brinksma, volgens besluit van het College voor Promoties in het openbaar te verdedigen op woensdag 2 juni 2010 om 15.00 uur door Michiel Gijsbrecht Roeland Popma geboren op 5 mei 1974 te Nijmegen Dit proefschrift is goedgekeurd door de promotor Prof. Dr. Ir. F.J.A.M. van Houten. Computer Aided Process Planning for High-Speed Milling of Thin-Walled Parts Strategy-Based Support PhD Thesis by Michiel Popma at the Department of Engineering Technology (CTW) of the University of Twente, Enschede, the Netherlands. Enschede, April 2010 Samenstelling van de promotiecommissie: Prof. Dr. F. Eising Universiteit Twente, voorzitter/secretaris Prof. Dr. Ir. F.J.A.M. van Houten Universiteit Twente, promotor Prof. Dr. Ir. R. Akkerman Universiteit Twente Prof. Dr. Ir. J. Hu¶etink Universiteit Twente Prof. Dr. Ir. B. Lauwers Katholieke Universiteit Leuven Prof. Dr. Ir. M.J.L. van Tooren Technische Universiteit Delft Prof.Dr.-Ing. Dr.-Ing.E.h. Dr.h.c. F. Klocke RWTH Aachen University Dr. Ir. A.H. van 't Erve Siemens PLM Software Keywords: Computer-aided process planning, high-speed milling, thin geometry ISBN 978-90-365-3040-8 Copyright °c 2010 Michiel Popma Cover image by Lars SundstrÄom,licensed under the RGBStock.com license. Cover design by Michiel Popma Printed by Gildeprint Drukkerijen, Enschede, the Netherlands This work has been typeset using LATEX. Summary Technological developments have made high-speed milling economically attractive. It is now a manufacturing technology that can competitively manufacture thin-walled parts. Such parts however can require a lot of material to be machined. With high-speed milling, this can take a lot of toolpaths. Process planning such products is di±cult and time-consuming due to the vast amount of paths to program and the low sti®ness of the ¯nal part. The workpiece at one point becomes the weakest element during machining, and its sti®ness properties change as machining progresses. This thesis presents an error avoidance based approach for computer aided process planning for these parts, to help automate process planning and make it more reliable. The core of process planning thin-walled parts is ensuring that thin workpiece geo- metry is su±ciently supported at the point of machining. In the approach in this thesis, the support comes from remaining workpiece material. This makes the order of material removal crucial. Material removal strategies can be needed on di®erent levels, depending on the scope of the thinness, and can di®er for di®erent shapes. This support-based planning has therefore been detailed di®erently on di®erent levels, in a feature-based, knowledge-based form. To separate sti®ness issues from (high-speed) machining process issues where possible, sti®ness features are introduced in addition to machining features. Nevertheless, particularly on the level of volumes to remove, a degree of interaction remains between sti®ness considerations and machining considerations. Due to the nature of the parts and the process planning approach - process planning based on the above described support principle requires control over more or less the whole workpiece - manufacturing strategies need to consider a larger environment than in traditional milling. This makes the strategies and the knowledge to apply more complex. Therefore, it becomes considerably more di±cult to increase the level of automation. The approach and concepts have been implemented into software, based on an ex- isting feature-based, knowledge-based CAPP package. The core steps of planning the volumes to remove, how to machine them, and in which order, have been automated in a knowledge-based way. Also supplementary software utilities and functionality have been implemented. From evaluation of the resulting application for industrial practice, the automatic determination of the machining sequence for thin-walled geometry and the improved overview of the process plan were considered great bene¯ts. v vi Samenvatting Door technologische ontwikkelingen is hogesnelheidsfrezen economisch gezien aantrek- kelijk geworden. Het is tegenwoordig een fabricagetechnologie die concurrerend dunwan- dige onderdelen kan fabriceren. Bij zulke onderdelen moet echter vaak veel materiaal worden verspaand en met hogesnelheidsfrezen vergt dit veel gereedschapsbanen. Werk- voorbereiding van dergelijke producten is lastig en tijdrovend vanwege de grote hoe- veelheid te programmeren gereedschapsbanen en de lage stijfheid van het eindproduct. Het werkstuk wordt op een gegeven moment het meest kwetsbare element tijdens het verspanen en zijn stijfheidseigenschappen veranderen gedurende het bewerkingsproces. Dit proefschrift beschrijft een benadering voor computer ondersteunde werkvoorberei- ding voor dit soort onderdelen, ten bate van automatisering en betrouwbaarheid van de werkvoorbereiding. De essentie van werkvoorbereiding voor dunwandige onderdelen is garanderen dat dunne werkstukgeometrie voldoende wordt ondersteund op plaats en moment van bewer- king. In de benadering die dit proefschrift behandelt, wordt deze ondersteuning gegeven door werkstukmateriaal dat nog niet is verspaand. Hierdoor wordt de volgorde van be- werken, d.w.z. van materiaal verwijderen, cruciaal. StrategieÄen hiervoor kunnen nodig zijn op verschillende niveaus, afhankelijk van de mate van dunwandigheid, en kunnen variÄeren voor verschillende vormen. De op ondersteuning gebaseerde planning is daarom op verschillende manieren uitgewerkt voor diverse niveaus, in een feature- en kennisgeba- seerde vorm. Om zoveel mogelijk stijfheidskwesties te scheiden van kwesties gerelateerd aan het (hogesnelheids)verspaningsproces, zijn stijfheidsfeatures geijntroduceerd, in aan- vulling op het bestaande concept van bewerkingsfeatures. Desondanks blijft er overigens, met name op het niveau van te verwijderen volumes, sprake van een mate van interactie tussen stijfheidsoverwegingen en operatie-overwegingen. Vanwege de aard van de onderdelen en de werkvoorbereidingsaanpak is het nodig dat bewerkingsstrategiÄen een grotere omgeving in aanmerking nemen dan bij traditioneel frezen. Werkvoorbereiding op basis van het hierboven beschreven ondersteuningsprincipe vereist immers dat min of meer het hele werkstuk onder controle moet worden gehouden. Hierdoor worden de toe te passen strategiÄen en kennis complexer. Derhalve wordt het beduidend moeilijker om de automatiseringsgraad te verhogen. De aanpak en concepten zijn omgezet in een software-implementatie, gebaseerd op een bestaand feature- en kennisgebaseerd CAPP software-pakket. De kerntaken, het plannen van de te verwijderen volumes, hoe ze te verspanen, en in welke volgorde, vii zijn op een kennisgebaseerde manier geautomatiseerd. Daarnaast zijn er aanvullende hulpmiddelen en functionaliteit geijmplementeerd in de software. Uit evaluatie van de resulterende applicatie voor de praktijk bleek, dat de automatische bepaling van de bewerkingsvolgorde voor dunwandige geometrie en het verbeterde overzicht over het bewerkingplan werden gezien als belangrijke winstpunten. viii Preface Probably I myself was the last person who thought I would get a PhD. When the project on which this thesis is based started, it was an independent, challenging, scienti¯c assignment, which I was eager to take on. The possibility to obtain a PhD on the research and development presented itself to me later, and took some convincing from my supervisors. So in a way, they are really to blame. But this manuscript is not the only fruit harvested from this period. I learned a lot during the project, like coding properly, or that there are many reasons for bringing cake that just can't be denied, to name just a few. None of this may have happened if the opportunity to do this project hadn't been pointed out to me by my MSc supervisor, Otto Salomons, whom I'd like to thank also for supervising and aiding me in the ¯rst phases of the project. Also, the people at Fokker Aerostructures were supportive and cooperative from the very start. So, for their con¯dence, but also for their valuable feedback, I'd like to thank Jan Wubs and Rob Salomons. For the realisation of this thesis, I owe a lot to my supervisor, Professor Van Houten. His input in our many discussions was always keen and sharp. Also researchers need a sounding board. More on the development side, Tom van 't Erve and Theo Balkenende from (then) Tecnomatix Machining Automation acted as one for me. I also had valuable 'accomplices' in the MSc students that worked on the project; Joost Andringa, Gijs Hagen and Gijs van Ouwerkerk. Their input, contributions and company were much appreciated. But also other team members, Hartwin Lier, Michiel Post, Frank Reimering and Maurits Hol, helped tremendously to put those weird ideas of mine into working software. For the larger part of the project, I spent my working hours in the Tecnomatix o±ce just across the street from the University. I truly enjoyed working alongside the Tecnomatix employees, who treated me as a colleague despite the fact that I was just 'visiting'. The humorous conversations and remarks during and in between breaks ("En wat zeggen we dan tegen de