Applications of Reinforcement Learning to Routing and Virtualization in Computer Networks

Total Page:16

File Type:pdf, Size:1020Kb

Applications of Reinforcement Learning to Routing and Virtualization in Computer Networks Applications of Reinforcement Learning to Routing and Virtualization in Computer Networks by Soroush Haeri B. Eng., Multimedia University, Malaysia, 2010 Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the School of Engineering Science Faculty of Applied Science © Soroush Haeri 2016 SIMON FRASER UNIVERSITY Spring 2016 All rights reserved. However, in accordance with the Copyright Act of Canada, this work may be reproduced without authorization under the conditions for “Fair Dealing.” Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately. Abstract Computer networks and reinforcement learning algorithms have substantially advanced over the past decade. The Internet is a complex collection of inter-connected networks with a numerous of inter-operable technologies and protocols. Current trend to decouple the network intelligence from the network devices enabled by Software-Defined Networking (SDN) provides a centralized implementation of network intelligence. This offers great computational power and memory to network logic processing units where the network intelligence is implemented. Hence, reinforcement learning algorithms viable options for addressing a variety of computer networking challenges. In this dissertation, we propose two applications of reinforcement learning algorithms in computer networks. We first investigate the applications of reinforcement learning for deflection routing in buffer- less networks. Deflection routing is employed to ameliorate packet loss caused by contention in buffer-less architectures such as optical burst-switched (OBS) networks. We present a framework that introduces intelligence to deflection routing (iDef). The iDef framework decouples design of the signaling infrastructure from the underlying learning algorithm. It is implemented in the ns-3 network simulator and is made publicly available. We propose the predictive Q-learning deflection routing (PQDR) algorithm that enables path recov- ery and reselection, which improves the decision making ability of the node in high load conditions. We also introduce the Node Degree Dependent (NDD) signaling algorithm. The complexity of the algorithm only depends on the degree of the node that is NDD compliant while the complexity of the currently available reinforcement learning-based de- flection routing algorithms depends on the size of the network. Therefore, NDD is better suited for larger networks. Simulation results show that NDD-based deflection routing al- gorithms scale well with the size of the network and outperform the existing algorithms. We also propose a feed-forward neural network (NN) and a feed-forward neural network with episodic updates (ENN). They employ a single hidden layer and update their weights using an associative learning algorithm. Current reinforcement learning-based deflection routing algorithms employ Q-learning, which does not efficiently utilize the received feed- back signals. We introduce the NN and ENN decision-making algorithms to address the deficiency of Q-learning. The NN-based deflection routing algorithms achieve better results than Q-learning-based algorithms in networks with low to moderate loads. iii The second application of reinforcement learning that we consider in this dissertation is for modeling the Virtual Network Embedding (VNE) problem. We develop a VNE simulator (VNE-Sim) that is also made publicly available. We define a novel VNE objective function and prove its upper bound. We then formulate the VNE as a reinforcement learning prob- lem using the Markov Decision Process (MDP) framework and then propose two algorithms (MaVEn-M and MaVEn-S) that employ Monte Carlo Tree Search (MCTS) for solving the VNE problem. In order to further improve the performance, we parallelize the algorithms by employing MCTS root parallelization. The advantage of the proposed algorithms is that, time permitting, they search for more profitable embeddings compared to the avail- able algorithms that find only a single embedding solution. The simulation results show that proposed algorithms achieve superior performance. Keywords: Computer networks; machine learning; reinforcement learning; deflection rout- ing; virtual network embedding iv For Inga, Baba, Maman, and Sina v Acknowledgements Writing this dissertation would not have been possible without the intellectual and emo- tional contributions of the generous individuals I met throughout this journey. I would like to thank my Senior Supervisor Dr. Ljiljana Trajković who dedicated count- less hours of hard work for reviewing my works and guiding my research. She was very generous and encouraging to allow me to explore my ideas and I am truly grateful for the confidence she invested in me and my research. I would also like to thank my committee members Dr. Hardy, Dr. Gu, Dr. Peters, and Dr. Boukerche for reviewing my dissertation and providing constructive suggestions and comments. I would like to thank Dr. Wilson Wang-Kit Thong. He piqued my interest in deflection routing and introduced me to the ns-3 tool. The ideas in the first portion of this dissertation were conceived during the time he was a visiting Ph.D. student at the Communication Networks Laboratory at Simon Fraser University. I would like to express my gratitude to Marilyn Hay and Toby Wong of BCNET as well as Nabil Seddigh and Dr. Biswajit Nandy of Solana Networks, with whom I collaborated on industry-based projects. Although these projects are not part of this dissertation, many subjects I learned during our collaborations helped me develop my research skill. I would like to thank my brother Dr. Sina Haeri who has always been a source of support and encouragement. His excellence in parallel programming helped me develop the parallel Monte-Carlo Tree Search that is used in this dissertation. I would like to thank my Mom and Dad for their unconditional love and support through- out my life. Their support enabled me to study and pursue my educational goals. I would also like to thank the scuba divers of Vancouver’s Tec Club, especially John Nunes, Roger Sonnberger, and Eli Wolpin. Furthermore, I would like to extend my gratitude to Royse Jackson and Alan Johnson of the International Diving Center as well as Paul Quiggle of Vancouver’s Diving Locker. Many ideas presented in this dissertation were conceived exploring the majestic waters of Vancouver. I would like to extend my gratitude to my friends Majid Arianezhad, Alireza Jafarpour, Shima Nourbakhsh, Kenneth Fenech, and Luis Domingo Suarez Canales who have helped me and provided support in countless ways. Last but not least, I would like to thank my lovely wife Inga. You supported me through the toughest times of my life. Without you, I would not have made it this far. vi Table of Contents Approval ii Abstract iii Dedication v Acknowledgements vi Table of Contents vii List of Tables x List of Figures xi List of Abbreviations xv 1 Introduction 1 1.1 Optical Burst-Switching and Deflection Routing . 3 1.2 Virtual Network Embedding . 4 1.3 Roadmap . 5 2 Reinforcement Learning 6 2.1 Q-Learning . 7 2.2 Feed-Forward Neural Networks for Reinforcement Learning . 7 2.3 Markov Decision Process . 9 2.3.1 Solution of Markov Decision Processes: The Exact Algorithms . 9 2.3.2 Solution of Large Markov Decision Processes and Monte Carlo Tree Search . 11 2.3.3 Parallel Monte Carlo Tree Search . 14 3 Reinforcement Learning-Based Deflection Routing in Buffer-Less Net- works 16 3.1 Buffer-Less Architecture, Optical Burst Switching, and Contention . 18 3.1.1 Optical Burst Switching and Burst Traffic . 18 vii 3.1.2 Contention in Optical Burst-Switched Networks . 20 3.2 Deflection Routing by Reinforcement Learning . 21 3.3 The iDef Framework . 23 3.4 Predictive Q-Learning-Based Deflection Routing Algorithm . 24 3.5 The Node Degree Dependent Signaling Algorithm . 27 3.6 Neural Networks for Deflection Routing . 30 3.6.1 Feed-Forward Neural Networks for Deflection Routing with Single- Episode Updates . 30 3.6.2 Feed-Forward Neural Networks for Deflection Routing with k-Episode Updates . 33 3.6.3 Time Complexity Analysis . 34 3.7 Network Topologies: A Brief Overview . 34 3.8 Performance Evaluation . 36 3.8.1 National Science Foundation Network Scenario . 37 3.8.2 Complex Network Topologies and Memory Usage . 39 3.9 Discussion . 43 4 Reinforcement Learning-Based Algorithms for Virtual Network Em- bedding 46 4.1 Virtual Network Embedding Problem . 48 4.1.1 Objective of Virtual Network Embedding . 49 4.1.2 Virtual Network Embedding Performance Metrics . 52 4.2 Available Virtual Network Embedding Algorithms . 53 4.2.1 Virtual Node Mapping Algorithms . 53 4.2.2 Virtual Link Mapping Algorithms . 57 4.3 Virtual Network Embedding Algorithms and Data Center Networks . 59 4.3.1 Data Center Network Topologies . 60 4.4 Virtual Network Embedding as a Markov Decision Process . 61 4.4.1 A Finite-Horizon Markov Decision Process Model for Coordinated Virtual Node Mapping . 61 4.4.2 Monte Carlo Tree Search for Solving the Virtual Node Mapping . 62 4.4.3 MaVEn Algorithms . 63 4.4.4 Parallelization of MaVEn . 66 4.5 Performance Evaluation . 67 4.5.1 Simulation Environment . 67 4.5.2 Internet Service Provider Substrate Network Topology . 68 4.5.3 Variable Virtual Network Request Arrival Rate Scenarios . 70 4.5.4 Parallel MaVEn Simulation Scenarios . 75 4.5.5 Data Center Substrate Networks . 77 viii 4.6 Discussion . 84 5 VNE-Sim: A Virtual Network Embedding Simulator 86 5.1 The Simulator Core: src/core .......................... 89 5.1.1 Network Component Classes . 90 5.1.2 Virtual Network Embedding Classes . 91 5.1.3 Discrete Event Simulation Classes . 92 5.1.4 Experiment and Result Collection Classes . 93 5.1.5 Operation Related Classes . 93 6 Conclusion 95 Bibliography 97 Appendix A iDef: Selected Code Sections 109 Appendix B VNE-Sim: Selected Code Sections 119 ix List of Tables Table 3.1 Summary of the presented algorithms.
Recommended publications
  • NASA Develops Wireless Tile Scanner for Space Shuttle Inspection
    August 2007 NASA, Microsoft launch collaboration with immersive photography NASA and Microsoft Corporation a more global view of the launch facil- provided us with some outstanding of Redmond, Wash., have released an ity. The software uses photographs images, and the result is an experience interactive, 3-D photographic collec- from standard digital cameras to that will wow anyone wanting to get a tion of the space shuttle Endeavour construct a 3-D view that can be navi- closer look at NASA’s missions.” preparing for its upcoming mission to gated and explored online. The NASA The NASA collections were created the International Space Station. Endea- images can be viewed at Microsoft’s in collaboration between Microsoft’s vour launched from NASA Kennedy Live Labs at: http://labs.live.com Live Lab, Kennedy and NASA Ames. Space Center in Florida on Aug. 8. “This collaboration with Microsoft “We see potential to use Photo- For the first time, people around gives the public a new way to explore synth for a variety of future mission the world can view hundreds of high and participate in America’s space activities, from inspecting the Interna- resolution photographs of Endeav- program,” said William Gerstenmaier, tional Space Station and the Hubble our, Launch Pad 39A and the Vehicle NASA’s associate administrator for Space Telescope to viewing landing Assembly Building at Kennedy in Space Operations, Washington. “We’re sites on the moon and Mars,” said a unique 3-D viewer. NASA and also looking into using this new tech- Chris C. Kemp, director of Strategic Microsoft’s Live Labs team developed nology to support future missions.” Business Development at Ames.
    [Show full text]
  • Sysml Distilled: a Brief Guide to the Systems Modeling Language
    ptg11539604 Praise for SysML Distilled “In keeping with the outstanding tradition of Addison-Wesley’s techni- cal publications, Lenny Delligatti’s SysML Distilled does not disappoint. Lenny has done a masterful job of capturing the spirit of OMG SysML as a practical, standards-based modeling language to help systems engi- neers address growing system complexity. This book is loaded with matter-of-fact insights, starting with basic MBSE concepts to distin- guishing the subtle differences between use cases and scenarios to illu- mination on namespaces and SysML packages, and even speaks to some of the more esoteric SysML semantics such as token flows.” — Jeff Estefan, Principal Engineer, NASA’s Jet Propulsion Laboratory “The power of a modeling language, such as SysML, is that it facilitates communication not only within systems engineering but across disci- plines and across the development life cycle. Many languages have the ptg11539604 potential to increase communication, but without an effective guide, they can fall short of that objective. In SysML Distilled, Lenny Delligatti combines just the right amount of technology with a common-sense approach to utilizing SysML toward achieving that communication. Having worked in systems and software engineering across many do- mains for the last 30 years, and having taught computer languages, UML, and SysML to many organizations and within the college setting, I find Lenny’s book an invaluable resource. He presents the concepts clearly and provides useful and pragmatic examples to get you off the ground quickly and enables you to be an effective modeler.” — Thomas W. Fargnoli, Lead Member of the Engineering Staff, Lockheed Martin “This book provides an excellent introduction to SysML.
    [Show full text]
  • Modernization of Digital Enterprises Ai at the Core
    MODERNIZATION OF DIGITAL ENTERPRISES AI AT THE CORE From Models to Outcomes Hardik Tiwari, Prateek Das Humankind has always been fascinated by the ability of machines to learn Movies, Books, Art Thomas Bayes conceptualized Bayes Mathematicians and Scientists envisioned Theorem in 1763 the possibilities of predicting outcomes Alan Turing Arthur Samuel The world started imagining what if machines are Coined the term Wrote the first smarter “Turing Test” in Machine Learning 1950 code in 1952 And now we live in a present in which humans and intelligent systems are bound together in a symbiotic autonomy Smart Reply Apr 1, 2009: An April Fool’s Day joke Nov 5, 2015: Launched real product Feb 1, 2016: >10% of mobile Inbox replies AI permeates our daily lives — from search engines to ride-share schedulers to ever needful digital personal assistants Received a reminder about Confluence from Google Checked route on maps Booked a cab on Uber Received a location update for Taj Taking notes on Evernote Took a selfie for Instagram AI has reached a stage where intelligent systems have bettered the humans at times Face Recognition Human AI/ Machine 97.5% 97.7% Lip reading 41.3% 57.9% Pneumonia Detection 75.3% 75.9% And now AI technologies have become pervasive in every industry BFSI $25B Estimated revenue from AI products & Top Brands services in 2025 Fraud Detection Automated Cognitive RPA Uses automated analysis to help Trading identify clients best positioned for follow-on equity offerings. Chatbots Robo- Portfolio Advisors ~5M Management Potential jobs to be Loan/ Risk impacted in US by Insurance Management 2025 Credit underwriting Scoring Personalized Added AI enhancements to its Financial mobile banking app, which will give Scaleof disruption Products users personalized insights into ~10,000 their finances.
    [Show full text]
  • Collaboration Analytics Need More Comprehensive Models and Methods. an Opinion Paper Areum Han1, Florian Krieger2, Samuel Greiff3
    Volume 8(1), 13–29. http://doi.org/10.18608/jla.2021.7288 Collaboration Analytics Need More Comprehensive Models and Methods. An Opinion Paper Areum Han1, Florian Krieger2, Samuel Greiff3 Abstract As technology advances, learning analytics is expanding to include students’ collaboration settings. Despite their increasing application in practice, some types of analytics might not fully capture the comprehensive educational contexts in which students’ collaboration takes place (e.g., when data is collected and processed without predefined models, which forces users to make conclusions without sufficient contextual information). Furthermore, existing definitions and perspectives on collaboration analytics are incongruent. In light of these circumstances, this opinion paper takes a collaborative classroom setting as context and explores relevant comprehensive models for collaboration analytics. Specifically, this paper is based on Pei-Ling Tan and Koh’s ecological lens (2017, Situating learning analytics pedagogically: Towards an ecological lens. Learning: Research and Practice, 3(1), 1–11. https://doi.org/10.1080/23735082.2017.1305661), which illustrates the co-emergence of three interactions among students, teachers, and content interwoven with time. Moreover, this paper suggests several factors to consider in each interaction when executing collaboration analytics. Agendas and recommendations for future research are also presented. Notes for Practice • Studies of educational contexts using collaboration analytics are being implemented, but some analytics practices may unintentionally fail to fully capture the comprehensive context (e.g., when users without sufficient contextual information must make final decisions based on data collected without predefined learning models). Furthermore, definitions and perspectives on collaboration analytics vary across disciplines and underlying perspectives on collaboration.
    [Show full text]
  • Patents and Standards : a Modern Framework for IPR-Based Standardisation
    Patents and standards : a modern framework for IPR-based standardisation Citation for published version (APA): Bekkers, R. N. A., Birkman, L., Canoy, M. S., De Bas, P., Lemstra, W., Ménière, Y., Sainz, I., Gorp, van, N., Voogt, B., Zeldenrust, R., Nomaler, Z. O., Baron, J., Pohlmann, T., Martinelli, A., Smits, J. M., & Verbeek, A. (2014). Patents and standards : a modern framework for IPR-based standardisation. European Commission. https://doi.org/10.2769/90861 DOI: 10.2769/90861 Document status and date: Published: 01/01/2014 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
    [Show full text]
  • SMB Group's 2017 Top 10 SMB Technology Trends
    Authored by SMB Group’s 2017 Top 10 SMB Technology Trends Sponsored by 2017 has the potential to bring unprecedented changes to the technology landscape for SMBs. In most years, the top tech trends tend to develop in an evolutionary way, but this year we also will see some more dramatic shifts that SMBs need to put on their radar. Areas such as cloud and mobile continue to evolve in important ways, and they are also paving the way for newer trends in areas including artificial intelligence (AI) and machine learning, integration and the Internet of Things (IoT) to take hold among SMBs. Although we can’t cover all of them in our Top 10 list, here’s our take on the trends that hold the most promise for SMBs in 2017. (Note: SMB Group is the source for all research data quoted unless otherwise noted.) 1. The Cloud Continues to Power SMB Digital Transformation. 2. IoT Moves from Hype to Reality for Early-Adopter SMBs. 3. The Rise of Smart Apps for SMBs. 4. Focused, Tailored CRM Solutions Take Hold Within SMBs. 5. SMBs Get Connected with New Collaboration Tools. 6. SMBs Modernize On-Premises IT with Hyper-Converged Infrastructure. 7. Application Integration Gets Easier for Small Businesses. 8. SMB Mobile Momentum Continues, but Mobile Management Lags. 9. Online Financing Options for Small Businesses Multiply. 10. Proactive SMBs Turn to MSSPs and Cyber Insurance to Face Security Challenges. 1. The Cloud Continues to Power SMB Digital Transformation. Most SMBs understand that they need to put technology to work to transform their businesses for the future: 72% of SMB decision makers say that technology solutions can help them significantly improve business outcomes and/or run the business better, and 53% plan to increase technology investments.
    [Show full text]
  • 3D Visualization and Interactive Image Manipulation for Surgical Planning in Robot-Assisted Surgery
    3D Visualization and Interactive Image Manipulation for Surgical Planning in Robot-assisted Surgery A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy By Mohammadreza Maddah B.S. University of Tehran, Iran, 1999 M.S. Semnan University, 2011 2018 Wright State University Wright State University Graduate School April 27, 2018 I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY SUPERVISION BY Mohammadreza Maddah ENTITLED 3D Visualization and Interactive Image Manipulation for Surgical Planning in Robot-assisted Surgery BE ACCEPTED IN PARTIAL FULLFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy. Caroline. G.L. Cao, Ph.D. Dissertation Director Frank W. Ciarallo, Ph.D. Director, Ph.D. in Engineering Program Barry Milligan, Ph.D. Professor and Interim Dean of the Graduate School Committee on Final Examination Caroline. G.L. Cao, Ph.D. Thomas Wischgoll, Ph.D. Zach Fuchs, Ph.D. Xinhui Zhang, Ph.D. Cedric Dumas, Ph.D. ABSTRACT Maddah, Mohammadreza. Ph.D., Engineering Ph.D. Program, Department of Biomedical, Industrial, and Human Factors Engineering, Wright State University, 2018. 3D visualization and interactive image manipulation for surgical planning in robot-assisted surgery. Robot-assisted surgery, or “robotic” surgery, has been developed to address the difficulties with the traditional laparoscopic surgery. The da Vinci (Intuitive Surgical, CA and USA) is one of the FDA-approved surgical robotic system which is widely used in the case of abdominal surgeries like hysterectomy and cholecystectomy. The technology includes a system of master and slave tele-manipulators that enhances manipulation precision. However, inadequate guidelines and lack of a human-machine interface system for planning the ports on the abdomen surface are some of the main issues with robotic surgery.
    [Show full text]
  • A Developer's Guide to Building AI Applications
    A Developer’s Guide to Building AI Applications Create Your First Intelligent Bot with Microsoft AI Anand Raman and Wee Hyong Tok Beijing Boston Farnham Sebastopol Tokyo A Developer’s Guide to Building AI Applications by Anand Raman and Wee Hyong Tok Copyright © 2018 O’Reilly Media, Inc. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online edi‐ tions are also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/institutional sales department: 800-998-9938 or [email protected]. Editor: Nicole Tache Interior Designer: David Futato Production Editor: Nicholas Adams Cover Designer: Karen Montgomery Copyeditor: Octal Publishing, Inc. Illustrator: Rebecca Demarest May 2018: First Edition Revision History for the First Edition 2018-05-24: First Release The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. A Developer’s Guide to Building AI Applications, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc. While the publisher and the authors have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the authors disclaim all responsi‐ bility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.
    [Show full text]
  • A Feature-Based Survey of Model View Approaches Hugo Bruneliere, Erik Burger, Jordi Cabot, Manuel Wimmer
    A Feature-based Survey of Model View Approaches Hugo Bruneliere, Erik Burger, Jordi Cabot, Manuel Wimmer To cite this version: Hugo Bruneliere, Erik Burger, Jordi Cabot, Manuel Wimmer. A Feature-based Survey of Model View Approaches. Software and Systems Modeling, Springer Verlag, 2019, 18 (3), pp.1931-1952. 10.1007/s10270-017-0622-9. hal-01590674 HAL Id: hal-01590674 https://hal.inria.fr/hal-01590674 Submitted on 19 Sep 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Software and Systems Modeling (SoSyM) manuscript No. (will be inserted by the editor) A Feature-based Survey of Model View Approaches Hugo Bruneliere · Erik Burger · Jordi Cabot · Manuel Wimmer Received: date / Accepted: date Abstract When dealing with complex systems, information is very often frag- mented across many different models expressed within a variety of (modeling) languages. To provide the relevant information in an appropriate way to dif- ferent kinds of stakeholders, (parts of) such models have to be combined and potentially revamped by focusing on concerns of particular interest for them. This work has been partially funded by the MoNoGe national collaborative project (French FUI #15), the Electronic Component Systems for European Leadership (ECSEL) Joint Un- dertaking & the European Union’s Horizon 2020 research/innovation program under grant agreement No.
    [Show full text]
  • Software Development Methods and Usability : a Systematic Literature Review
    Linköping University | IDA 30 hp/Master Thesis |Computer Science Autumn term 2017 | LIU-IDA/LITH-EX-A—17/055--SE Software Development Methods and Usability : A Systematic Literature Review Prabhu Raj Prem Kumar Tutor, Johan Åberg, Linköpings universitet Examiner, Kristian Sandahl, Linköpings universitet 2 Final Thesis Software Development Methods and Usability: A Systematic Literature Review by Prabhu Raj Prem Kumar [email protected] Supervisor: Johan Åberg, Linköpings universitet Examiner: Kristian Sandahl, Linköpings universitet Linköping, 4th December, 2017 3 Upphovsrätt Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under en längre tid från publiceringsdatum under förutsättning att inga extra-ordinära omständigheter uppstår. Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart. För ytterligare information om Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/ Copyright The publishers will keep this document online on the Internet - or its possible replacement - for a considerable time from the date of publication barring exceptional circumstances.
    [Show full text]
  • A Framework for Vector-Weighted Deep Neural Networks
    UNLV Theses, Dissertations, Professional Papers, and Capstones 5-1-2020 A Framework for Vector-Weighted Deep Neural Networks Carter Chiu Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Artificial Intelligence and Robotics Commons, and the Computer Engineering Commons Repository Citation Chiu, Carter, "A Framework for Vector-Weighted Deep Neural Networks" (2020). UNLV Theses, Dissertations, Professional Papers, and Capstones. 3876. http://dx.doi.org/10.34917/19412042 This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. A FRAMEWORK FOR VECTOR-WEIGHTED DEEP NEURAL NETWORKS By Carter Chiu Bachelor of Science { Computer Science University of Nevada, Las Vegas 2016 A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy { Computer Science Department of Computer Science Howard R. Hughes College of Engineering The Graduate College University of Nevada, Las Vegas May 2020 c Carter Chiu, 2020 All Rights Reserved Dissertation Approval The Graduate College The University of Nevada, Las Vegas April 16, 2020 This dissertation prepared by Carter Chiu entitled A Framework for Vector-Weighted Deep Neural Networks is approved in partial fulfillment of the requirements for the degree of Doctor of Philosophy – Computer Science Department of Computer Science Justin Zhan, Ph.D.
    [Show full text]
  • Adopting Agile Project Management Methods in Software Projects Involving Outsourcing
    Adopting Agile Project Management Methods in Software Projects Involving Outsourcing By Nivarthana Warnakulasooriya A thesis submitted to the Victoria University of Wellington In partial fulfilment of the requirements for the degree of Master of Commerce Victoria University of Wellington 2016 Abstract With the evolvement of how software was built, how quickly the initial requirements change, how fast new technologies were appearing in tech world and evolving innovation needs of dynamic businesses, the software industry was feeling the need for a better way of managing projects. In 2002 a group of well-known software professionals got together to develop a set of industry guidelines now known as ‘The Agile Manifesto’ to help standardize this new way of managing projects which helped lay foundations to now widely used ‘The Agile Project Management methodology’. While Agile was gaining momentum, the software development world saw the rise of another way of developing software which is known as outsourcing. Outsourcing in commonly referred form involves two or more geographically dispersed teams collaborating to develop the same software. However the fusion of agile methodology with outsourcing opens up new challenges which includes cultural, geographical and time barriers. This study tries to understand how well agile works with outsourced projects using a quantitative approach. The study will also look at how factors physical distance, time and culture impact success of agile in outsourced projects using a quantitative approach. Identifying factor/factors which has the biggest impact on success of agile in outsourced project will also help identify and prioritize which principles and practices need to be fixed first.
    [Show full text]