Molecular Phylogenetic and Evolutionary Studies of Parasitic Plants Daniel L

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Phylogenetic and Evolutionary Studies of Parasitic Plants Daniel L 8 Molecular Phylogenetic and Evolutionary Studies of Parasitic Plants Daniel L. Nickrent, R. Joel Duff, Alison E. Colwell, Andrea D. Wolfe, Nelson D. Young, Kim E. Steiner, and Claude W. dePamphilis The parasitic nutritional mode is a frequently 1995). For the vast majority of parasitic plants, evolved adaptation in animals (Price, 1980), as negative effects upon the host are difficult to de­ well as in flowering plants (Kuijt, 1969). Het­ tect, yet others (e.g., Striga, Orobanche) are se­ erotrophic angiosperms can be classified as ei­ rious weeds of economically important crops ther mycotrophs or as haustorial parasites. The (Kuijt, 1969; Musselman, 1980; Eplee, 1981; former derive nutrients via a symbiotic relation­ Stewart and Press, 1990; Press and Graves, ship with mycorrhizal fungi. Haustorial para­ 1995). sites, in contrast, directly penetrate host tissues The degree of nutritional dependence on the via a modified root called a haustorium and host varies among haustorial parasites. Hemi­ thereby obtain water and nutrients. Although parasites are photosynthetic during at least one such categories are often a matter of semantics, phase of their life cycle and derive mainly water we use the term parasite in a strict sense to refer and dissolved minerals from their hosts. Oblig­ to haustorial parasites. Angiosperm parasites are ate hemiparasites require a host plant to com­ restricted to the dicot subclasses Magnoliidae, plete their life cycles whereas facultative hemi­ Rosidae, and Asteridae; have evolved approxi­ parasites do not. Hemiparasites can be found in mately 11 times; and represent approximately Laurales (Cassytha), Polygalales (Krameria), 22 families, 265 genera, and 4,000 species, that and all families of Santalales. In Solanales is, about 1% of all angiosperms (Fig. 8.1). Ow­ (Cuscuta) and Scrophulariales, some species ing to their unique adaptations, parasitic plants are chlorophyllous hemiparasites whereas other have long been the focus of anatomical, mor­ species are achlorophyllous holoparasites. Holo­ phological, biochemical, systematic, and eco­ parasites represent the most extreme manifesta­ logical research (Kuijt, 1969; Press and Graves, tion of the parasitic mode because they lack This work was supported by grants from the National Science Foundation (DEB 94-07984 to DLN, DEB 91-20258 to CWO, and BIR 93-03630 to ADW), the Special Research Program of the Office of Research Development Administration, SIUC and the University Research Council of Vanderbilt University. Thanks go to C. Augspurger, W. Barthlott, I. Beaman, D. E. Bran, S. Carlquist, W. Forstreuter, I. Leebens-Mack, A. Markey, C. Marticorena, D. McCauley, S. Medbury, M. Melampy, Willem Meijer, B. Molloy, L. Musselman, R. N(lfayana, M. Nees, I. Paxton, S. Sargent, B. Swalla, W. Takeuchi, and M. Wetherwax for helpful discussions and/or for contributing plant material. The manuscript was improved by the criti­ cal comments of M. Bowe and an anonymous reviewer. 212 MOLECULAR SYSTEMATICS OF PLANTS /""/"""""~, ~ Sanlalales ~ Solanales , Ol"""c,,, (271190) , , IoIls.,.,.,ndr",,". (118) ~ ~ lor.nlh.ce•• (741cI. 700), , Opillacuc (9129) , , Sanlilleo•• (371480) ~ Boraginales ~ (Incl. Elcmoloptcl.ee.e) , l,nnoocial (315) ~ Vlsca.,.l. (6-7/350) /' ';J;;""""", Cynomoriales CynomOlloull (111·2) Scrophulariates Scrophul.... I""... s. I. >-oI;-.,........ I-~ (Incl. Orobancllae ..,) Q) ---- (ell. 78/1938) ~ Balanophorales Qj Silanophoflcen (3117) ~ Dac'Yllnlhle••• (314) 1-+-T3~ III D­ Sircophylace." (213) O lIlrlCOphlllee .. (6/9) '0 lophophylilceae (318) J: "C ;: !!! Cy1lnales :G Cy1In.ce.e (117) c:: o Z Raffieslales Rlllllllae.la .... (3119) Apodanlhac.ae (2119) IoIlIr.51.monlc ••" (112) Bdallophyron (III"') Hydnorales Hydnor.ceae (2114-18) Figure 8.1. The distribution of haustorial parasitism among angiosperms. This generalized diagram incorporates information from global molecular phylogenetic studies using rbcL (Chase, Soltis, Olmstead et al. 1993) and nuclear 18S rONA (Soltis, Soltis, Nickrent et aI., 1997). No attempt was made to show all taxa, only to indicate groups that were supported by both studies. Hemiparasitic angiosperms are enclosed within dashed borders and holoparasites by black borders. Both trophic modes occur in Scrophulariaceae s. I. and Cuscuta. Arrows that touch a group indicate that strong evidence exists for the placement of that parasitic taxon within the group. Uncertain affinities are indicated by arrows with question marks. The familial classification of the nonasterid holoparasites is modified from Tahktajan (1987); however the placement of these orders is not concordant with his superordinal classification. The number of genera and species is indicated in parentheses following each family name. For Scrophulariaceae s. I., only the parasitic members are tabulated. photosynthesis and must rely upon the host for (1988) by excluding Balanophoraceae, Medu­ both water and inorganic and organic nutrients. sandraceae, and Dipentodontaceae. Morpholog­ Six groups (orders or families-Fig. 8.1) are ical, cytological, and molecular evidence all represented entirely by holoparasites: Bal­ point toward the separation of Cynomoriaceae anophorales, Cynomoriaceae, Cytinaceae, Hyd­ from Balanophoraceae and of Cytinaceae from noraceae, Lennoaceae, and Rafflesiales. Rafflesiaceae (Takhtajan, 1987; Nickrent and The relationships shown in Figure 8.1 are Duff, 1996; Pazy et aI., 1996). Traditional clas­ based upon those of Takhtajan (1987) as well as sifications have often allied these holoparasites results of recent molecular analyses. For this pa­ with Santalales; however, considerable variation per, Santalales are considered, in a strict sense, can be seen in alternate classifications and such to include Olacaceae, Misodendraceae, Loran­ an affinity is not apparent from molecular inves­ thaceae, Opiliaceae, Santalaceae, and Viscaceae. tigations (see below). Given this, the term This composition differs from that of Cronquist nonasterid holoparasites will be used to distin- PARASITIC PLANTS 213 guish these plants from holoparasites in Asteri­ sites. Our goals are to demonstrate the utility of dae such as those found in Scrophulariales, Bor­ these molecular markers in documenting phylo­ aginales, and Solanales. The nonasterid holo­ genetic relationships (at the genus level and parasites are Balanophorales, Cynomoriales, above) and to show how parasitic plants repre­ Cytinales, Hydnorales, and Rafflesiales (Fig. sent unique models that can be used to study 8.1). Results of molecular phylogenetic studies molecular evolutionary and genetic processes indicate that the nonasterid holoparasites are not such as the structure, function, and evolution of closely related to each other (Nickrent and Duff, plant genomes. For example, the continuum of 1996), hence the term is applied for reference trophic modes in Scrophulariaceae s. 1. from purposes only. nonparasitic to hemiparasitic to holoparasitic Additional parasitic plants can be found in makes this group ideal for investigating ques­ Scrophulariaceae, a large family (over 250 gen­ tions concerning the evolution of parasitism and era) that is broadly and at present inexactly de­ the molecular changes that accompany adapta­ fined within Scrophulariales/Lamiales (Burtt, tion to a heterotrophic existence. Holoparasitic 1965; Cronquist, 1981; Thorne, 1992; Olmstead plants that show increased rates of molecular and Reeves, 1995). Although most species are evolution pose particular problems for phyloge­ completely autotrophic, the members of two netic analysis but at the same time provide tribes (Buchnereae, Pediculareae; [Pennell, intriguing subjects for studying genome reorga­ 1935]) display a wide range of parasitic modes nizations that accompany the loss of photosyn­ from fully photosynthetic, facultative hemipara­ thesis. sites, to nonphotosynthetic holoparasites. Orobanchaceae are a group of nonphotosyn­ Problems with the Classification thetic holoparasites closely related to the of Parasitic Plants holoparasitic Scrophulariaceae. A continuum of morphological and physiological traits unites The placement of many parasitic plants within the two, as do several "transitional genera" (Har­ the global angiosperm phylogeny is not dis­ veya, Hyobanche, and Lathraea) that have been puted. For example, despite questions about fa­ classified alternatively in one family or the other milial boundaries and interfamilial relationships (Boeshore, 1920; Kuijt, 1969; Minkin and Esh­ within Scrophulariales, it is clear that Scrophu­ baugh, 1989). Orobanchaceae are alternatively lariaceae are allied with other sympetalous di­ included within Scrophu1ariaceae (Takhtajan, cots of Asteridae s. 1. Such is not the case, how­ 1987; Thorne, 1992) or recognized, by tradition, ever, for the nonasterid holoparasites whose at the family level (Cronquist, 1981). Regardless higher-level classification still remains prob­ of rank, most workers are in agreement that lematic. Two processes that occur during the Orobanchaceae are derived from within the par­ evolution of advanced parasitism are reduction asitic Scrophulariaceae. Numerous lines of evi­ (and/or extreme modification) of morphological dence support this conclusion, including the features and convergence. The first may involve shared presence of several morphological char­ loss of leaves, chlorophyll, perianth parts, or acters (Boeshore, 1920; Weber, 1980), pollen even ovular integuments. Loss of features con­ features, and a derived chloroplast DNA restric­ founds
Recommended publications
  • Fair Use of This PDF File of Herbaceous
    Fair Use of this PDF file of Herbaceous Perennials Production: A Guide from Propagation to Marketing, NRAES-93 By Leonard P. Perry Published by NRAES, July 1998 This PDF file is for viewing only. If a paper copy is needed, we encourage you to purchase a copy as described below. Be aware that practices, recommendations, and economic data may have changed since this book was published. Text can be copied. The book, authors, and NRAES should be acknowledged. Here is a sample acknowledgement: ----From Herbaceous Perennials Production: A Guide from Propagation to Marketing, NRAES- 93, by Leonard P. Perry, and published by NRAES (1998).---- No use of the PDF should diminish the marketability of the printed version. This PDF should not be used to make copies of the book for sale or distribution. If you have questions about fair use of this PDF, contact NRAES. Purchasing the Book You can purchase printed copies on NRAES’ secure web site, www.nraes.org, or by calling (607) 255-7654. Quantity discounts are available. NRAES PO Box 4557 Ithaca, NY 14852-4557 Phone: (607) 255-7654 Fax: (607) 254-8770 Email: [email protected] Web: www.nraes.org More information on NRAES is included at the end of this PDF. Acknowledgments This publication is an update and expansion of the 1987 Cornell Guidelines on Perennial Production. Informa- tion in chapter 3 was adapted from a presentation given in March 1996 by John Bartok, professor emeritus of agricultural engineering at the University of Connecticut, at the Connecticut Perennials Shortcourse, and from articles in the Connecticut Greenhouse Newsletter, a publication put out by the Department of Plant Science at the University of Connecticut.
    [Show full text]
  • Playing with Extremes Origins and Evolution of Exaggerated Female
    Molecular Phylogenetics and Evolution 115 (2017) 95–105 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Playing with extremes: Origins and evolution of exaggerated female forelegs MARK in South African Rediviva bees ⁎ Belinda Kahnta,b, , Graham A. Montgomeryc, Elizabeth Murrayc, Michael Kuhlmannd,e, Anton Pauwf, Denis Michezg, Robert J. Paxtona,b, Bryan N. Danforthc a Institute of Biology/General Zoology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany b German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany c Department of Entomology, Cornell University, 3124 Comstock Hall, Ithaca, NY 14853-2601, USA d Zoological Museum, Kiel University, Hegewischstr. 3, 24105 Kiel, Germany e Dept. of Life Sciences, Natural History Museum, Cromwell Rd., London SW7 5BD, UK f Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa g Laboratoire de Zoologie, Research institute of Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium ARTICLE INFO ABSTRACT Keywords: Despite close ecological interactions between plants and their pollinators, only some highly specialised polli- Molecular phylogenetics nators adapt to a specific host plant trait by evolving a bizarre morphology. Here we investigated the evolution Plant-pollinator interaction of extremely elongated forelegs in females of the South African bee genus Rediviva (Hymenoptera: Melittidae), in Ecological adaptation which long forelegs are hypothesised to be an adaptation for collecting oils from the extended spurs of their Greater cape floristic region Diascia host flowers. We first reconstructed the phylogeny of the genus Rediviva using seven genes and inferred Trait evolution an origin of Rediviva at around 29 MYA (95% HPD = 19.2–40.5), concurrent with the origin and radiation of the Melittidae Succulent Karoo flora.
    [Show full text]
  • A New Application for Phylogenetic Marker Development Using Angiosperm Transcriptomes Author(S): Srikar Chamala, Nicolás García, Grant T
    MarkerMiner 1.0: A New Application for Phylogenetic Marker Development Using Angiosperm Transcriptomes Author(s): Srikar Chamala, Nicolás García, Grant T. Godden, Vivek Krishnakumar, Ingrid E. Jordon- Thaden, Riet De Smet, W. Brad Barbazuk, Douglas E. Soltis, and Pamela S. Soltis Source: Applications in Plant Sciences, 3(4) Published By: Botanical Society of America DOI: http://dx.doi.org/10.3732/apps.1400115 URL: http://www.bioone.org/doi/full/10.3732/apps.1400115 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. ApApplicatitionsons Applications in Plant Sciences 2015 3 ( 4 ): 1400115 inin PlPlant ScienSciencesces S OFTWARE NOTE M ARKERMINER 1.0: A NEW APPLICATION FOR PHYLOGENETIC 1 MARKER DEVELOPMENT USING ANGIOSPERM TRANSCRIPTOMES S RIKAR C HAMALA 2,12 , N ICOLÁS G ARCÍA 2,3,4 * , GRANT T . G ODDEN 2,3,5 * , V IVEK K RISHNAKUMAR 6 , I NGRID E.
    [Show full text]
  • Present-Day Genetic Structure of the Holoparasite Conopholis Americana
    Int. J. Plant Sci. 177(2):132–144. 2016. q 2015 by The University of Chicago. All rights reserved. 1058-5893/2016/17702-0003$15.00 DOI: 10.1086/684180 PRESENT-DAY GENETIC STRUCTURE OF THE HOLOPARASITE CONOPHOLIS AMERICANA (OROBANCHACEAE) IN EASTERN NORTH AMERICA AND THE LOCATION OF ITS REFUGIA DURING THE LAST GLACIAL CYCLE Anuar Rodrigues1,* and Saša Stefanović* *Department of Biology, University of Toronto, Mississauga, Ontario L5L 1C6, Canada Editor: Félix Forest Premise of research. Understanding how various organisms respond to previous changes in climate could provide insight into how they may respond or adapt to the current changes. Conopholis americana has a broad distribution across eastern North America, covering both previously glaciated and unglaciated regions. In this study, we investigated the postglacial history and phylogeographic structure of this parasitic plant spe- cies to characterize its genetic variation and structure and to identify the number and locations of refugia. Methodology. Molecular data from 10 microsatellite markers and DNA sequences from the plastid gene/ introns (clpP) were obtained for 281 individuals sampled from 75 populations spanning the current range of the species in eastern North America and analyzed using a variety of phylogeographic methods. Distribution modeling was carried out to determine regions with relatively suitable climate niches for populations at the Last Glacial Maximum (LGM) and present. Pivotal results. We inferred the persistence of a minimum of two glacial refugia for C. americana at the LGM, one in north-central Florida and southern Alabama and another in the Appalachian Mountains near the southern tip of the Blue Ridge Mountains.
    [Show full text]
  • Towards Resolving Lamiales Relationships
    Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales.
    [Show full text]
  • Pinery Provincial Park Vascular Plant List Flowering Latin Name Common Name Community Date
    Pinery Provincial Park Vascular Plant List Flowering Latin Name Common Name Community Date EQUISETACEAE HORSETAIL FAMILY Equisetum arvense L. Field Horsetail FF Equisetum fluviatile L. Water Horsetail LRB Equisetum hyemale L. ssp. affine (Engelm.) Stone Common Scouring-rush BS Equisetum laevigatum A. Braun Smooth Scouring-rush WM Equisetum variegatum Scheich. ex Fried. ssp. Small Horsetail LRB Variegatum DENNSTAEDIACEAE BRACKEN FAMILY Pteridium aquilinum (L.) Kuhn Bracken-Fern COF DRYOPTERIDACEAE TRUE FERN FAMILILY Athyrium filix-femina (L.) Roth ssp. angustum (Willd.) Northeastern Lady Fern FF Clausen Cystopteris bulbifera (L.) Bernh. Bulblet Fern FF Dryopteris carthusiana (Villars) H.P. Fuchs Spinulose Woodfern FF Matteuccia struthiopteris (L.) Tod. Ostrich Fern FF Onoclea sensibilis L. Sensitive Fern FF Polystichum acrostichoides (Michaux) Schott Christmas Fern FF ADDER’S-TONGUE- OPHIOGLOSSACEAE FERN FAMILY Botrychium virginianum (L.) Sw. Rattlesnake Fern FF FLOWERING FERN OSMUNDACEAE FAMILY Osmunda regalis L. Royal Fern WM POLYPODIACEAE POLYPODY FAMILY Polypodium virginianum L. Rock Polypody FF MAIDENHAIR FERN PTERIDACEAE FAMILY Adiantum pedatum L. ssp. pedatum Northern Maidenhair Fern FF THELYPTERIDACEAE MARSH FERN FAMILY Thelypteris palustris (Salisb.) Schott Marsh Fern WM LYCOPODIACEAE CLUB MOSS FAMILY Lycopodium lucidulum Michaux Shining Clubmoss OF Lycopodium tristachyum Pursh Ground-cedar COF SELAGINELLACEAE SPIKEMOSS FAMILY Selaginella apoda (L.) Fern. Spikemoss LRB CUPRESSACEAE CYPRESS FAMILY Juniperus communis L. Common Juniper Jun-E DS Juniperus virginiana L. Red Cedar Jun-E SD Thuja occidentalis L. White Cedar LRB PINACEAE PINE FAMILY Larix laricina (Duroi) K. Koch Tamarack Jun LRB Pinus banksiana Lambert Jack Pine COF Pinus resinosa Sol. ex Aiton Red Pine Jun-M CF Pinery Provincial Park Vascular Plant List 1 Pinery Provincial Park Vascular Plant List Flowering Latin Name Common Name Community Date Pinus strobus L.
    [Show full text]
  • Extensive Plastome Reduction and Loss of Photosynthesis Genes in Diphelypaea Coccinea, a Holoparasitic Plant of the Family Orobanchaceae
    Extensive plastome reduction and loss of photosynthesis genes in Diphelypaea coccinea, a holoparasitic plant of the family Orobanchaceae Eugeny V. Gruzdev1,2, Vitaly V. Kadnikov1, Alexey V. Beletsky1, Andrey V. Mardanov1 and Nikolai V. Ravin1,2 1 Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia 2 Moscow State University, Moscow, Russia ABSTRACT Background. Parasitic plants have the ability to obtain nutrients from their hosts and are less dependent on their own photosynthesis or completely lose this capacity. The reduction in plastid genome size and gene content in parasitic plants predominantly results from loss of photosynthetic genes. Plants from the family Orobanchaceae are used as models for studying plastid genome evolution in the transition from an autotrophic to parasitic lifestyle. Diphelypaea is a poorly studied genus of the Orobanchaceae, comprising two species of non-photosynthetic root holoparasites. In this study, we sequenced the plastid genome of Diphelypaea coccinea and compared it with other Orobanchaceae, to elucidate patterns of plastid genome evolution. In addition, we used plastid genome data to define the phylogenetic position of Diphelypaea spp. Methods. The complete nucleotide sequence of the plastid genome of D. coccinea was obtained from total plant DNA, using pyrosequencing technology. Results. The D. coccinea plastome is only 66,616 bp in length, and is highly rearranged; however, it retains a quadripartite structure. It contains only four rRNA genes, 25 tRNA genes and 25 protein-coding genes, being one of the most highly reduced plastomes Submitted 16 May 2019 among the parasitic Orobanchaceae. All genes related to photosynthesis, including the Accepted 4 September 2019 Published 2 October 2019 ATP synthase genes, had been lost, whereas most housekeeping genes remain intact.
    [Show full text]
  • Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY
    Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY BIBLIOGRAPHY Ackerfield, J., and J. Wen. 2002. A morphometric analysis of Hedera L. (the ivy genus, Araliaceae) and its taxonomic implications. Adansonia 24: 197-212. Adams, P. 1961. Observations on the Sagittaria subulata complex. Rhodora 63: 247-265. Adams, R.M. II, and W.J. Dress. 1982. Nodding Lilium species of eastern North America (Liliaceae). Baileya 21: 165-188. Adams, R.P. 1986. Geographic variation in Juniperus silicicola and J. virginiana of the Southeastern United States: multivariant analyses of morphology and terpenoids. Taxon 35: 31-75. ------. 1995. Revisionary study of Caribbean species of Juniperus (Cupressaceae). Phytologia 78: 134-150. ------, and T. Demeke. 1993. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42: 553-571. Adams, W.P. 1957. A revision of the genus Ascyrum (Hypericaceae). Rhodora 59: 73-95. ------. 1962. Studies in the Guttiferae. I. A synopsis of Hypericum section Myriandra. Contr. Gray Herbarium Harv. 182: 1-51. ------, and N.K.B. Robson. 1961. A re-evaluation of the generic status of Ascyrum and Crookea (Guttiferae). Rhodora 63: 10-16. Adams, W.P. 1973. Clusiaceae of the southeastern United States. J. Elisha Mitchell Sci. Soc. 89: 62-71. Adler, L. 1999. Polygonum perfoliatum (mile-a-minute weed). Chinquapin 7: 4. Aedo, C., J.J. Aldasoro, and C. Navarro. 1998. Taxonomic revision of Geranium sections Batrachioidea and Divaricata (Geraniaceae). Ann. Missouri Bot. Gard. 85: 594-630. Affolter, J.M. 1985. A monograph of the genus Lilaeopsis (Umbelliferae). Systematic Bot. Monographs 6. Ahles, H.E., and A.E.
    [Show full text]
  • The Acanthaceae, Derived from Acanthus Are
    Vol. 7(36), pp. 2707-2713, 25 September, 2013 DOI: 10.5897/JMPR2013.5194 ISSN 1996-0875 ©2013 Academic Journals Journal of Medicinal Plants Research http://www.academicjournals.org/JMPR Full Length Research Paper Ethnobotany of Acanthaceae in the Mount Cameroon region Fongod A.G.N*, Modjenpa N.B. and Veranso M.C Department of Botany Plant Physiology, University of Buea, P.O Box 63, Buea. Cameroon. Accepted 2 September, 2013 An ethnobotanical survey was carried out in the Mount Cameroon area, southwest region of Cameroon to determine the uses of different species of the Acanthaceae. An inventory of identified Acanthaceaes used by different individuals and traditional medical practitioners (TMPs) was established from information gathered through the show-and-tell/semi-structured method and interviews during field expeditions. Sixteen villages were selected for this research: Munyenge, Mundongo, Ekona, Lelu, Bokoso, Bafia. Bakingili, Ekonjo, Mapanja, Batoke, Wututu, Idenau, Njongi, Likoko, Bokwango and Upper farms. The study yielded 18 plant species used for treating twenty five different diseases and 16 species with ornamental potentials out of the Acanthaceaes identified. Results revealed that 76% of species are used medicinally, while 34% are employed or used for food, rituals, forage and hunting. The leaves of these species are the most commonly used plant parts. The species with the highest frequency of use was Eremomastax speciosa (Hotsch.) with 29 respondents followed by Acanthus montanus (Nes.) T. Anders. The study reveals the medicinal and socio-cultural uses of the Acanthaceaes in the Mount Cameroon Region and a need for proper investigation of the medicinal potentials of these plants.
    [Show full text]
  • Atlas of Pollen and Plants Used by Bees
    AtlasAtlas ofof pollenpollen andand plantsplants usedused byby beesbees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (organizadores) Atlas of pollen and plants used by bees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (orgs.) Atlas of pollen and plants used by bees 1st Edition Rio Claro-SP 2020 'DGRV,QWHUQDFLRQDLVGH&DWDORJD©¥RQD3XEOLFD©¥R &,3 /XPRV$VVHVVRULD(GLWRULDO %LEOLRWHF£ULD3ULVFLOD3HQD0DFKDGR&5% $$WODVRISROOHQDQGSODQWVXVHGE\EHHV>UHFXUVR HOHWU¶QLFR@RUJV&O£XGLD,Q¬VGD6LOYD>HW DO@——HG——5LR&ODUR&,6(22 'DGRVHOHWU¶QLFRV SGI ,QFOXLELEOLRJUDILD ,6%12 3DOLQRORJLD&DW£ORJRV$EHOKDV3µOHQ– 0RUIRORJLD(FRORJLD,6LOYD&O£XGLD,Q¬VGD,, 5DGDHVNL-HIIHUVRQ1XQHV,,,$UHQD0DULDQD9LFWRULQR 1LFRORVL,9%DXHUPDQQ6RUDLD*LUDUGL9&RQVXOWRULD ,QWHOLJHQWHHP6HUYL©RV(FRVVLVWHPLFRV &,6( 9,7¯WXOR &'' Las comunidades vegetales son componentes principales de los ecosistemas terrestres de las cuales dependen numerosos grupos de organismos para su supervi- vencia. Entre ellos, las abejas constituyen un eslabón esencial en la polinización de angiospermas que durante millones de años desarrollaron estrategias cada vez más específicas para atraerlas. De esta forma se establece una relación muy fuerte entre am- bos, planta-polinizador, y cuanto mayor es la especialización, tal como sucede en un gran número de especies de orquídeas y cactáceas entre otros grupos, ésta se torna más vulnerable ante cambios ambientales naturales o producidos por el hombre. De esta forma, el estudio de este tipo de interacciones resulta cada vez más importante en vista del incremento de áreas perturbadas o modificadas de manera antrópica en las cuales la fauna y flora queda expuesta a adaptarse a las nuevas condiciones o desaparecer.
    [Show full text]
  • Plant Propagation Protocol for Collinsia Parviflora ESRM 412
    Plant Propagation Protocol for Collinsia parviflora ESRM 412 – Native Plant Production Protocol URL: TAXONOMY Plant Family Scientific Name Plantaginaceae Common Name Mare’s-tail Species Name Scientific Name Collinsia parviflora Lindl. Varieties None Sub-species None Cultivar None Common Synonym(s) Antirrhinum tenellum Pursh, Collinsia grandiflora Lindl. var. pusilla A. Gray, Collinsia tenella (Pursh) Piper Common Name(s) Maiden Blue-Eyed Mary, Small-Flowered Blue-Eyed Mary, Few Flowered Blue-Eyed Mary, Small Flowered Collinsia Species Code COPA3 GENERAL INFORMATION Geographical range (Native range in green) Ecological distribution Gravelly, open flats and banks, with little other vegetation and some grasses. Can also occur in open forests or uncovered patches of forest. Climate and elevation range Of unknown climate type and occurs in regions of 25-2330m elevation. Local habitat and abundance Lowland to montane zones, in nitrogen-free/limited, well- drained soils, free of shade, and increases in abundance with increasing temperature and decreases with moisture. Relatively common. Occurs in Sagebrush Scrub, Yellow Pine Forest, Red Fir Forest, Lodgepole Forest, and Subalpine Forest. Plant strategy type / Stress-tolerator. successional stage Plant characteristics Herb. PROPAGATION DETAILS Ecotype Paradise Creek drainage, Pullman, WA Propagation Goal Seeds. Propagation Method Seed. Product Type Propagules (seeds, cuttings, poles, etc.) Stock Type Unknown. Time to Grow 7 Months Target Specifications (size or Unspecified. characteristics of target plants to be produced) Propagule Collection Flowers are borne in the leaf axils and plants flower and ripen Instructions seed indeterminately. Collecting the tiny capsules by hand is tedious. Plants are cut or pulled up and dried in paper bags at room temperature until cleaned.
    [Show full text]
  • Systematics of Gratiola (Plantaginaceae)
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2008 Systematics of Gratiola (Plantaginaceae) Larry D. Estes University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Ecology and Evolutionary Biology Commons Recommended Citation Estes, Larry D., "Systematics of Gratiola (Plantaginaceae). " PhD diss., University of Tennessee, 2008. https://trace.tennessee.edu/utk_graddiss/381 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Larry D. Estes entitled "Systematics of Gratiola (Plantaginaceae)." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Ecology and Evolutionary Biology. Randall L. Small, Major Professor We have read this dissertation and recommend its acceptance: Edward E. Schilling, Karen W. Hughes, Sally P. Horn Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a dissertation written by Larry Dwayne Estes entitled “Systematics of Gratiola (Plantaginaceae).” I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Ecology and Evolution.
    [Show full text]