Is There a Benefit to Positive Allosteric Modulation of P2X Receptors?

Total Page:16

File Type:pdf, Size:1020Kb

Is There a Benefit to Positive Allosteric Modulation of P2X Receptors? REVIEW published: 12 May 2020 doi: 10.3389/fphar.2020.00627 To Inhibit or Enhance? Is There a Benefit to Positive Allosteric Modulation of P2X Receptors? Leanne Stokes*, Stefan Bidula, Lucˇ ka Bibicˇ and Elizabeth Allum School of Pharmacy, University of East Anglia, Norwich, United Kingdom The family of ligand-gated ion channels known as P2X receptors were discovered several decades ago. Since the cloning of the seven P2X receptors (P2X1-P2X7), a huge research effort has elucidated their roles in regulating a range of physiological and pathophysiological processes. Transgenic animals have been influential in understanding which P2X receptors could be new therapeutic targets for disease. Furthermore, understanding how inherited mutations can increase susceptibility to disorders and diseases has advanced this knowledge base. There has been an emphasis on the discovery and development of pharmacological tools to help dissect Edited by: the individual roles of P2X receptors and the pharmaceutical industry has been involved in Elena Adinolfi, pushing forward clinical development of several lead compounds. During the discovery University of Ferrara, Italy phase, a number of positive allosteric modulators have been described for P2X receptors Reviewed by: and these have been useful in assigning physiological roles to receptors. This review will Günther Schmalzing, RWTH Aachen University, Germany consider the major physiological roles of P2X1-P2X7 and discuss whether enhancement Ralf Schmid, of P2X receptor activity would offer any therapeutic benefit. We will review what is known University of Leicester, about identified compounds acting as positive allosteric modulators and the recent United Kingdom fi *Correspondence: identi cation of drug binding pockets for such modulators. Leanne Stokes Keywords: P2X receptor, allosteric modulator, pharmacology, drug discovery, P2X4, P2X7 [email protected] Specialty section: This article was submitted to INTRODUCTION Experimental Pharmacology and Drug Discovery, Over the last decade we have seen new developments in pharmacological agents targeting P2X4, a section of the journal P2X7, and P2X3 receptors with some candidates entering clinical trials (Keystone et al., 2012; Stock Frontiers in Pharmacology et al., 2012; Eser et al., 2015; Matsumura et al., 2016; Timmers et al., 2018; Muccino and Green, Received: 20 December 2019 2019). Drug discovery for other P2X receptors such as P2X1 and P2X2 is somewhat slower with very Accepted: 21 April 2020 few selective and potent drugs being identified (Burnstock, 2018). Advances in structural biology Published: 12 May 2020 have helped move drug design for P2X receptors forward. Accompanying this is the advance in Citation: knowledge of the types of physiological responses controlled by this family of ion channels and ˇ Stokes L, Bidula S, Bibic L and Allum E clinical areas where such drugs may be therapeutically useful. Much emphasis has been placed on (2020) To Inhibit or Enhance? Is There the development of antagonist agents and relatively little attention has been on the discovery or a Benefit to Positive Allosteric Modulation of P2X Receptors? development of positive modulators. In this review, we take stock of all the evidence regarding the Front. Pharmacol. 11:627. known physiological roles of the major P2X receptors and present what we currently know about doi: 10.3389/fphar.2020.00627 pharmacological agents that can enhance ATP-mediated responses. Frontiers in Pharmacology | www.frontiersin.org 1 May 2020 | Volume 11 | Article 627 Stokes et al. PAMs at P2X Receptors “ ” In receptor function and pharmacology, the word allosteric benzodiazepines act as PAMs at the GABAA receptor and are is commonplace. The historical use of this word is discussed by clinically used as sedatives, anti-convulsants, and anaesthetic Colquhoun and Lape (2012) and the use of the term allosteric in agents (Solomon et al., 2019). Newer developments have seen current pharmacological terminology is used in the context of multiple PAMs for a7 nAchR advance into clinical trials for allosteric modulators, allosteric interactions, and allosteric Alzheimer’s disease, schizophrenia, and ADHD (Yang T. et al., transitions (Neubig et al., 2003). Allosteric transition describes 2017). PAMs for NMDA ionotropic glutamate receptors could the mechanism underlying receptor activation; following ligand be useful for disorders where their hypofunction is implicated binding to an orthosteric site, there is conformational (e.g., schizophrenia) (Yao and Zhou, 2017) and PAMs for AMPA communication through the protein to activate the biological ionotropic glutamate receptors could be useful in several response, for example, ion channel pore opening (Changeux and cognitive disorders (Lee et al., 2016). For the P2X receptors, Christopoulos, 2016). Pharmacologically, multiple sites exist on only ivermectin, a PAM with activity on P2X4, has been assessed receptor proteins where ligands can bind. While agonists bind at in a pilot Phase 1 clinical trial for alcohol-use disorders (Roche orthosteric sites, modulators act at distinct allosteric (other) sites et al., 2016). and typically affect agonist action (Neubig et al., 2003). Allosteric We have recently discovered and characterized novel positive drug interactions can have different outcomes, either positive, allosteric modulators that act on P2X7 and P2X4 receptors negative, or neutral/silent modulatory effects (Neubig et al., 2003; (Helliwell et al., 2015; Dhuna et al., 2019)andthishas Changeux and Christopoulos, 2016). For positive allosteric prompted us to ask questions about whether PAMs hold any modulators (PAMs), these can alter sensitivity to the agonist therapeutic benefit for P2X receptors. We present here a review by shifting the concentration-response curve, alter agonist of the latest literature on P2X receptors focusing on the major efficacy by increasing the maximum response, or alter gating identified subtypes P2X1, P2X2, P2X2/3, P2X4, and P2X7 with kinetics of the ion channel by affecting activation or deactivation well-known physiological roles (P2X5 and P2X6 have no (Chang et al., 2010). At the molecular level, it is thought that assigned physiological roles as homomeric receptors). PAMs reduce the energy barrier for gating thus making it easier for an ion channel to transition into an active, open state (Chang et al., 2010). These two different effects on the agonist actions P2X1 RECEPTOR have been classified by some as Type I (increasing the maximum response or efficacy) and Type II (shifting the concentration- The P2X1 receptor is a fast desensitizing ion channel activated by response curve and thus altering agonist EC50 values) (Hackos ATP, ab-Me-ATP, bg-Me-ATP, 2-MeSATP, BzATP, and Ap4A and Hanson, 2017). These two effects may not always be (North and Surprenant, 2000). Human P2X1 was cloned from separated with some PAMs exhibiting both effects (mixed Type urinary bladder RNA, and later from human platelets (Longhurst I/II) (Figure 1). The therapeutic beauty of PAMs is their reliance et al., 1996; Sun et al., 1998). Mackenzie et al. first recorded P2X1 on the presence of the endogenous agonist for activity. Therefore, currents from human platelets (Mackenzie et al., 1996) and in disease states where agonist-induced receptor signaling is P2X1-dependent Ca2+signaling in platelet activation was perhaps defective, PAMs could help to bring those responses characterized (Sage et al., 1997). In 1999, P2X1 was stated to back into the “normal” range. have no significant role in platelet aggregation (Takano et al., Other ligand-gated ion channels such as the Cys-loop family 1999) however, a later study by Oury et al. demonstrated that (GABAA receptor, glycine receptor, nicotinic acetylcholine P2X1 did act as a positive regulator of platelet responses (Oury receptor, and 5-HT3 receptor) have many drug binding et al., 2001). Further to this, a transgenic mouse over-expressing pockets which are well characterized for both PAMs and P2X1 in megakaryocytes demonstrated increased ab-Me-ATP- negative allosteric modulators (NAMs). The barbiturates and sensitive Ca2+ responses ex vivo and more profound platelet FIGURE 1 | Schematic diagram of types of positive allosteric modulator (PAM) effects on concentration-response curves. Three different types of PAM effect are displayed on concentration-response curves (for illustration purposes only, curves are hand-drawn). A Type I effect is defined as increasing the maximum response without a change in EC50 value. A Type II effect is defined as a left-ward shift in the concentration-response curve (and a reduction in the EC50 value) without affecting efficacy (maximum response). A mixed Type I/II effect is defined as both a left-ward shift in concentration-response curve and an increase in efficacy (maximum response). Frontiers in Pharmacology | www.frontiersin.org 2 May 2020 | Volume 11 | Article 627 Stokes et al. PAMs at P2X Receptors shape changes to this agonist (Oury et al., 2003). Tests on these thought to stabilize the glomerular filtration rate (Guan et al., P2X1 over-expressing platelets revealed an increase in collagen- 2007). P2X1-/- mice have an impairment in this protective induced aggregation and in the transgenic mouse, an increase in autoregulatory behavior (Inscho et al., 2003). In hypertensive fatal pulmonary thromboembolism was observed compared to disorders, this renal autoregulation can be defective and wild-type mice (Oury et al., 2003). This work demonstrates that purinergic receptors may contribute
Recommended publications
  • JULY 2019 Mrx Pipeline a View Into Upcoming Specialty and Traditional Drugs TABLE of CONTENTS
    JULY 2019 MRx Pipeline A view into upcoming specialty and traditional drugs TABLE OF CONTENTS EDITORIAL STAFF Introduction Maryam Tabatabai, PharmD Editor in Chief Senior Director, Drug Information Pipeline Deep Dive Carole Kerzic, RPh Executive Editor Drug Information Pharmacist Keep on Your Radar Consultant Panel Michelle Booth, Pharm D Director, Medical Pharmacy Strategy Becky Borgert, PharmD, BCOP Pipeline Drug List Director, Clinical Oncology Product Development Lara Frick, PharmD, BCPS, BCPP Drug Information Pharmacist Glossary Robert Greer, RPh, BCOP Senior Director, Clinical Strategy and Programs YuQian Liu, PharmD Manager, Specialty Clinical Programs Troy Phelps Senior Director, Analytics Nothing herein is or shall be construed as a promise or representation regarding past or future events and Magellan Rx Management expressly disclaims any and all liability relating to the use of or reliance on the information contained in this presentation. The information contained in this publication is intended for educational purposes only and should not be considered clinical, financial, or legal advice. By receipt of this publication, each recipient agrees that the information contained herein will be kept confidential and that the information will not be photocopied, reproduced, distributed to, or disclosed to others at any time without the prior written consent of Magellan Rx Management. 1 | magellanrx.com INTRODUCTION Welcome to the MRx Pipeline. In its third year of publication, this quarterly report offers clinical insights and competitive intelligence on anticipated drugs in development. Our universal forecast addresses trends applicable across market segments. Traditional and specialty drugs, agents under the pharmacy and medical benefits, new molecular entities, pertinent new and expanded indications for existing medications, and biosimilars are profiled in the report.
    [Show full text]
  • Purinergic Signaling in Endometriosis-Associated Pain
    International Journal of Molecular Sciences Review Purinergic Signaling in Endometriosis-Associated Pain Carla Trapero 1,2 and Mireia Martín-Satué 1,2,* 1 Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, Campus Bellvitge, Universitat de Barcelona, 08907 Barcelona, Spain; [email protected] 2 Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell Program, CIBERONC, 08908 Barcelona, Spain * Correspondence: [email protected] Received: 9 October 2020; Accepted: 10 November 2020; Published: 12 November 2020 Abstract: Endometriosis is an estrogen-dependent gynecological disease, with an associated chronic inflammatory component, characterized by the presence of endometrial tissue outside the uterine cavity. Its predominant symptom is pain, a condition notably altering the quality of life of women with the disease. This review is intended to exhaustively gather current knowledge on purinergic signaling in endometriosis-associated pain. Altered extracellular ATP hydrolysis, due to changes in ectonucleotidase activity, has been reported in endometriosis; the resulting accumulation of ATP in the endometriotic microenvironment points to sustained activation of nucleotide receptors (P2 receptors) capable of generating a persistent pain message. P2X3 receptor, expressed in sensory neurons, mediates nociceptive, neuropathic, and inflammatory pain, and is enrolled in endometriosis-related pain. Pharmacological inhibition of P2X3 receptor is under evaluation as a pain relief treatment for women with endometriosis. The role of other ATP receptors is also discussed here, e.g., P2X4 and P2X7 receptors, which are involved in inflammatory cell–nerve and microglia–nerve crosstalk, and therefore in inflammatory and neuropathic pain. Adenosine receptors (P1 receptors), by contrast, mainly play antinociceptive and anti-inflammatory roles.
    [Show full text]
  • (CHMP) Agenda for the Meeting on 22-25 March 2021 Chair: Harald Enzmann – Vice-Chair: Bruno Sepodes
    22 March 2021 EMA/CHMP/171652/2021 Human Medicines Division Committee for medicinal products for human use (CHMP) Agenda for the meeting on 22-25 March 2021 Chair: Harald Enzmann – Vice-Chair: Bruno Sepodes 22 March 2021, 09:00 – 19:30, virtual meeting/ room 1C 23 March 2021, 08:30 – 19:30, virtual meeting/ room 1C 24 March 2021, 08:30 – 19:30, virtual meeting/ room 1C 25 March 2021, 08:30 – 19:30, virtual meeting/ room 1C Disclaimers Some of the information contained in this agenda is considered commercially confidential or sensitive and therefore not disclosed. With regard to intended therapeutic indications or procedure scopes listed against products, it must be noted that these may not reflect the full wording proposed by applicants and may also vary during the course of the review. Additional details on some of these procedures will be published in the CHMP meeting highlights once the procedures are finalised and start of referrals will also be available. Of note, this agenda is a working document primarily designed for CHMP members and the work the Committee undertakes. Note on access to documents Some documents mentioned in the agenda cannot be released at present following a request for access to documents within the framework of Regulation (EC) No 1049/2001 as they are subject to on- going procedures for which a final decision has not yet been adopted. They will become public when adopted or considered public according to the principles stated in the Agency policy on access to documents (EMA/127362/2006). Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2021.
    [Show full text]
  • Update on Novel Purinergic P2X3 and P2X2/3 Receptor Antagonists and Their Potential Therapeutic Applications
    Expert Opinion on Therapeutic Patents ISSN: 1354-3776 (Print) 1744-7674 (Online) Journal homepage: https://www.tandfonline.com/loi/ietp20 Update on novel purinergic P2X3 and P2X2/3 receptor antagonists and their potential therapeutic applications Gabriella Marucci, Diego Dal Ben, Michela Buccioni, Aleix Martí Navia, Andrea Spinaci, Rosaria Volpini & Catia Lambertucci To cite this article: Gabriella Marucci, Diego Dal Ben, Michela Buccioni, Aleix Martí Navia, Andrea Spinaci, Rosaria Volpini & Catia Lambertucci (2019): Update on novel purinergic P2X3 and P2X2/3 receptor antagonists and their potential therapeutic applications, Expert Opinion on Therapeutic Patents, DOI: 10.1080/13543776.2019.1693542 To link to this article: https://doi.org/10.1080/13543776.2019.1693542 Accepted author version posted online: 14 Nov 2019. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ietp20 Publisher: Taylor & Francis & Informa UK Limited, trading as Taylor & Francis Group Journal: Expert Opinion on Therapeutic Patents DOI: 10.1080/13543776.2019.1693542 Update on novel purinergic P2X3 and P2X2/3 receptor antagonists and their potential therapeutic applications Gabriella Marucci1, Diego Dal Ben1, Michela Buccioni1, Aleix Martí Navia1, Andrea Spinaci1, Rosaria Volpini1 and Catia Lambertucci1 1School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy Corresponding author: Rosaria Volpini, School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy Tel.: (+39) 0737402278 Email: [email protected] Accepted Manuscript Information Classification: General Abstract Introduction: Purinergic P2X3-P2X2/3 receptors are placed in nociceptive neurons’ strategic location and show unique desensitization properties, hence they represent an attractive target for many pain related diseases.
    [Show full text]
  • P2 Purinergic Signaling in the Distal Lung in Health and Disease
    International Journal of Molecular Sciences Review P2 Purinergic Signaling in the Distal Lung in Health and Disease Eva Wirsching, Michael Fauler, Giorgio Fois and Manfred Frick * Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; [email protected] (E.W.); [email protected] (M.F.); [email protected] (G.F.) * Correspondence: [email protected]; Tel.: 49-731-500-23115; Fax: 49-731-500-23242 Received: 9 June 2020; Accepted: 10 July 2020; Published: 14 July 2020 Abstract: The distal lung provides an intricate structure for gas exchange in mammalian lungs. Efficient gas exchange depends on the functional integrity of lung alveoli. The cells in the alveolar tissue serve various functions to maintain alveolar structure, integrity and homeostasis. Alveolar epithelial cells secrete pulmonary surfactant, regulate the alveolar surface liquid (ASL) volume and, together with resident and infiltrating immune cells, provide a powerful host-defense system against a multitude of particles, microbes and toxicants. It is well established that all of these cells express purinergic P2 receptors and that purinergic signaling plays important roles in maintaining alveolar homeostasis. Therefore, it is not surprising that purinergic signaling also contributes to development and progression of severe pathological conditions like pulmonary inflammation, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) and pulmonary fibrosis. Within this review we focus on the role of P2 purinergic signaling in the distal lung in health and disease. We recapitulate the expression of P2 receptors within the cells in the alveoli, the possible sources of ATP (adenosine triphosphate) within alveoli and the contribution of purinergic signaling to regulation of surfactant secretion, ASL volume and composition, as well as immune homeostasis.
    [Show full text]
  • Treatment of Chronic Neuropathic Pain
    Narrative Review Treatment of chronic neuropathic pain: purine receptor modulation Kenneth A. Jacobsona, Luigino Antonio Giancottib, Filomena Laurob, Fatma Muftib, Daniela Salveminib,* 06/11/2020 on 3U6Qur4PG8Cp3fhvloi8qBpY7fujG3dPKasYMD+lWJpib/J9/jG1M3P5/SdPwJzQZopI9kkCkONW3pMktyxp4tovfFowndLubZk7zJkoatOlb7XXAf6/mu3JhfuJ6/VZKl/sopHhTqbQ4RCp2fMF2A== by https://journals.lww.com/pain from Downloaded Downloaded Abstract from https://journals.lww.com/pain Extracellular nucleosides and nucleotides have widespread functions in responding to physiological stress. The “purinome” encompasses 4 G-protein-coupled receptors (GPCRs) for adenosine, 8 GPCRs activated by nucleotides, 7 adenosine 59-triphosphate-gated P2X ion channels, as well as the associated enzymes and transporters that regulate native agonist levels. Purinergic signaling modulators, such as receptor agonists and antagonists, have potential for treating chronic pain. Adenosine and its analogues potently suppress nociception in preclinical models by activating A1 and/or A3 adenosine receptors (ARs), but safely harnessing this pathway to clinically treat pain has not by 3U6Qur4PG8Cp3fhvloi8qBpY7fujG3dPKasYMD+lWJpib/J9/jG1M3P5/SdPwJzQZopI9kkCkONW3pMktyxp4tovfFowndLubZk7zJkoatOlb7XXAf6/mu3JhfuJ6/VZKl/sopHhTqbQ4RCp2fMF2A== been achieved. Both A2AAR agonists and antagonists are efficacious in pain models. Highly selective A3AR agonists offer a novel approach to treat chronic pain. We have explored the structure activity relationship of nucleoside derivatives at this subtype using a computational structure-based approach. Novel A3AR agonists for pain control containing a bicyclic ring system (bicyclo [3.1.0] hexane) in place of ribose were designed and screened using an in vivo phenotypic model, which reflected both pharmacokinetic and pharmacodynamic parameters. High specificity (.10,000-fold selective for A3AR) was achieved with the aid of receptor homology models based on related GPCR structures. These A3AR agonists are well tolerated in vivo and highly efficacious in models of chronic neuropathic pain.
    [Show full text]
  • 001 Penicillin Allergy Evaluation in Pregnancy
    J ALLERGY CLIN IMMUNOL Abstracts AB1 VOLUME 147, NUMBER 2 Penicillin Allergy Evaluation in Pregnancy poly(I:C) challenged mice with acute and chronic nebulization. No 001 Impacts Antibiotic Utilization and Neonatal respiratory or CNS toxicities were demonstrated at 50x the therapeutic Clinical Outcomes nebulized dose. CONCLUSIONS: MIDD0301 is a promising NCE that, following Jamie Waldron, MD1, Nerlyne Desravines, MD2, Kim Boggess, MD3, nebulized administration, safely reduces AHR and inflammation in allergic Mildred Kwan, MD PhD FAAAAI4; 1University of North Carolina Chapel murine asthma models and is further efficacious in reducing inflammatory Hill, 2University of North Carolina at Chapel Hill, 3UNC, 4University of sequelae of bacterial and viral lung infections. North Carolina. RATIONALE: Penicillin (PCN) allergy is commonly reported, but many Significant Hypogammaglobulinemia in Patients are erroneously labeled. Pregnancy is associated with high antibiotic 003 Receiving CAR T-cell therapy usage, with indications including prophylaxis for surgical Caesarean 1 1 1 section delivery and group B streptococcus (GBS) colonization, a leading Sara Barmettler, MD , Nancy Yang , Jocelyn Farmer, MD PhD , Aidan 2 1 cause of neonatal sepsis. PCN allergy evaluation has the potential to Long, MD FAAAAI , Marcela Maus, MD/PhD , Carlos Camargo, MD 1 1 2 significantly impact both maternal and neonatal clinical outcomes, how- DrPH ; Massachusetts General Hospital, Mass General Hospital. ever, proactive drug allergy evaluations during pregnancy remain RATIONALE: Chimeric antigen receptor T- (CAR T) cell therapy has underutilized. revolutionized the treatment of relapsed and refractory hematologic METHODS: Pregnant women with listed PCN allergy underwent PCN malignancies. The two first FDA-approved CAR T-cell therapies, skin testing and graded Amoxicillin challenge in outpatient Allergy clinic tisagenlecleucel and axicabtagene ciloleucel, target the CD19+ receptor between 13-38 weeks gestation (n546).
    [Show full text]
  • Lääkeaineiden Yleisnimet (INN-Nimet) 31.12.2019
    Lääkealan turvallisuus- ja kehittämiskeskus Säkerhets- och utvecklingscentret för läkemedelsområdet Finnish Medicines Agency Lääkeaineiden yleisnimet (INN-nimet) 31.12.
    [Show full text]
  • (CHMP) Agenda for the Meeting on 21-24 June 2021
    21 June 2021 EMA/CHMP/347670/2021 Human Medicines Division Committee for medicinal products for human use (CHMP) Draft agenda for the meeting on 21-24 June 2021 Chair: Harald Enzmann – Vice-Chair: Bruno Sepodes 21 June 2021, 09:00 – 19:30, virtual meeting/ room 1C 22 June 2021, 08:30 – 19:30, virtual meeting/ room 1C 23 June 2021, 08:30 – 19:30, virtual meeting/ room 1C 24 June 2021, 08:30 – 15:00, virtual meeting/ room 1C Disclaimers Some of the information contained in this agenda is considered commercially confidential or sensitive and therefore not disclosed. With regard to intended therapeutic indications or procedure scopes listed against products, it must be noted that these may not reflect the full wording proposed by applicants and may also vary during the course of the review. Additional details on some of these procedures will be published in the CHMP meeting highlights once the procedures are finalised and start of referrals will also be available. Of note, this agenda is a working document primarily designed for CHMP members and the work the Committee undertakes. Note on access to documents Some documents mentioned in the agenda cannot be released at present following a request for access to documents within the framework of Regulation (EC) No 1049/2001 as they are subject to on- going procedures for which a final decision has not yet been adopted. They will become public when adopted or considered public according to the principles stated in the Agency policy on access to documents (EMA/127362/2006). Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2021.
    [Show full text]
  • Rxoutlook® 3Rd Quarter 2021
    ® RxOutlook 3rd Quarter 2021 optum.com/optumrx a RxOutlook 3rd Quarter 2021 In this edition of RxOutlook, we highlight 12 key pipeline drugs with an expected FDA decision by the end of 2021. Of the products discussed below, one has already been approved by the FDA – AstraZeneca’s Saphnelo® (anifrolumab) for the treatment of systemic lupus erythematosus (SLE). Saphnelo is one of the few novel therapies approved for SLE over the last several decades and it would provide an additional treatment option in patients that have failed standard therapy (eg, hydroxychloroquine). Bimekizumab, an injectable interleukin (IL)-17 monoclonal antibody, is the first of a series of novel drugs that could potentially be approved in the next 18 months for plaque psoriasis. While this is already a highly competitive therapeutic category, bimekizumab demonstrated superiority in head-to-head trials vs. several biologic treatment options for the condition. Plinabulin is a first-in-class treatment for chemotherapy-induced neutropenia (CIN) and would potentially be the first change in the treatment paradigm for management of CIN since the development of granulocyte colony stimulating factors (eg, Neulasta®, Neupogen®). Consistent with recent pipeline trends, a significant proportion of drugs remaining this year have been granted orphan drug designation and would be used for rare conditions. Of the 12 drugs discussed below, 7 have an orphan drug designation. In some cases, these treatments will represent the first FDA approved therapies for their conditions. This includes narsoplimab for transplant-associated thrombotic microangiopathy and vosoritide for achondroplasia. Other orphan drugs included will be entering more competitive landscapes where alternative treatment options are available, but they may provide advantages in certain subsets of patients (pacritinib in patients with myelofibrosis and severe thrombocytopenia).
    [Show full text]
  • A View Into Upcoming Specialty & Traditional Drugs
    January 2020 MRx PIPELINE A VIEW INTO UPCOMING SPECIALTY & TRADITIONAL DRUGS TABLE OF CONTENTS EDITORIAL STAFF Introduction Maryam Tabatabai, PharmD Editor in Chief Senior Director, Drug Information Pipeline Deep Dive Carole Kerzic, RPh Executive Editor Drug Information Pharmacist Keep on Your Radar Consultant Panel Michelle Booth, PharmD Director, Medical Pharmacy Strategy Becky Borgert, PharmD, BCOP Pipeline Drug List Director, Clinical Oncology Product Development Lara Frick, PharmD, BCPS, BCPP Drug Information Pharmacist Glossary Robert Greer, RPh, BCOP Senior Director, Clinical Strategy and Programs Sam Leo, PharmD Director, Clinical Strategy and Innovation, Specialty Troy Phelps Senior Director, COAR - Analytics Nothing herein is or shall be construed as a promise or representation regarding past or future events and Magellan Rx Management expressly disclaims any and all liability relating to the use of or reliance on the information contained in this presentation. The information contained in this publication is intended for educational purposes only and should not be considered clinical, financial, or legal advice. By receipt of this publication, each recipient agrees that the information contained herein will be kept confidential and that the information will not be photocopied, reproduced, distributed to, or disclosed to others at any time without the prior written consent of Magellan Rx Management. 1 | magellanrx.com INTRODUCTION Welcome to the MRx Pipeline. In its fourth year of publication, this quarterly report offers clinical insights and competitive intelligence on anticipated drugs in development. Our universal forecast addresses trends applicable across market segments. Traditional and specialty drugs, agents under the pharmacy and medical benefits, new molecular entities, pertinent new and expanded indications for existing medications, and biosimilars are profiled in the report.
    [Show full text]
  • Purinergic Receptors of the Central Nervous
    Review Article Molecular Imaging Volume 19: 1-26 ª The Author(s) 2020 Purinergic Receptors of the Central Article reuse guidelines: sagepub.com/journals-permissions Nervous System: Biology, PET Ligands, DOI: 10.1177/1536012120927609 and Their Applications journals.sagepub.com/home/mix Hamideh Zarrinmayeh, PhD1 and Paul R. Territo, PhD1 Abstract Purinergic receptors play important roles in central nervous system (CNS). These receptors are involved in cellular neuroin- flammatory responses that regulate functions of neurons, microglial and astrocytes. Based on their endogenous ligands, purinergic receptors are classified into P1 or adenosine, P2X and P2Y receptors. During brain injury or under pathological conditions, rapid diffusion of extracellular adenosine triphosphate (ATP) or uridine triphosphate (UTP) from the damaged cells, promote microglial activation that result in the changes in expression of several of these receptors in the brain. Imaging of the purinergic receptors with selective Positron Emission Tomography (PET) radioligands has advanced our understanding of the functional roles of some of these receptors in healthy and diseased brains. In this review, we have accu- mulated a list of currently available PET radioligands of the purinergic receptors that are used to elucidate the receptor functions and participations in CNS disorders. We have also reviewed receptors lacking radiotracer, laying the foundation for future discoveries of novel PET radioligands to reveal these receptors roles in CNS disorders. Keywords purinergic
    [Show full text]