Measurement and Classification of Retinal Vascular Tortuosity

Total Page:16

File Type:pdf, Size:1020Kb

Measurement and Classification of Retinal Vascular Tortuosity International Journal of Medical Informatics 53 (1999) 239–252 Measurement and classification of retinal vascular tortuosity William E. Hart a,*, Michael Goldbaum b, Brad Coˆte´ c, Paul Kube d, Mark R. Nelson e a Department of Applied and Numerical Mathematics, Sandia National Laboratories, Alburquerque, NM 87185, USA b Department of Ophthalmology, Uni6ersity of California, San Diego, CA, USA c The Registry, Inc., San Diego, CA, USA d Department of Computer Science and Engineering, Uni6ersity of California, San Diego, CA, USA e Data Vector, San Diego, CA, USA Abstract Automatic measurement of blood vessel tortuosity is a useful capability for automatic ophthalmological diagnostic tools. We describe a suite of automated tortuosity measures for blood vessel segments extracted from RGB retinal images. The tortuosity measures were evaluated in two classification tasks: (1) classifying the tortuosity of blood vessel segments and (2) classifying the tortuosity of blood vessel networks. These tortuosity measures were able to achieve a classification rate of 91% for the first problem and 95% on the second problem, which confirms that they capture much of the ophthalmologists’ notion of tortuosity. Finally, we discuss how the accuracy of these measures can be influence by the method used to extract the blood vessel segments. © 1999 Elsevier Science Ireland Ltd. All rights reserved. Keywords: Tortuosity; Retina; Blood vessel; Automated measurement 1. Introduction because of longitudinal stretching. The tortu- osity may be focal, occurring only in a small Normal retinal blood vessels are straight or region of retinal blood vessels, or it may gently curved. In some diseases, the blood involve the entire retinal vascular tree. Fig. 1 vessels become tortuous, i.e. they become di- shows images with tortuous and non-tortu- lated and take on a serpentine path. The ous blood vessels. dilation is caused by radial stretching of the Many disease classes produce tortuosity, blood vessel and the serpentine path occurs including high blood flow, angiogenesis and blood vessel congestion. High blood flow * Corresponding author. E-mail: [email protected]. may occur locally in arteriovenous anastamo- 1386-5056/99/$ - see front matter © 1999 Elsevier Science Ireland Ltd. All rights reserved. PII: S1386-5056(98)00163-4 240 W.E. Hart et al. / International Journal of Medical Informatics 53 (1999) 239–252 Fig. 1. Images with (a) tortuous and (b) non-tortuous blood vessel segments. sis or systematically in high cardiac output between observers and with the same ob- such as accompanies anemia. In response to server at different times. Furthermore, mea- ischemia or inflammation, new blood vessels surements on such a gross scale make grow, often in a destructive manner. The changes in vascular tortuosity difficult to angiogenic process commonly causes dilation discern. and tortuosity of retinal blood vessels prior A quantitative tortuosity measurement was to the onset of the neovascularization. first described by Lotmar, Freiburghaus and Venous congestion can result from the occlu- Bracher [1] and slightly extended by Bracher sion of the central retinal vein or a branch [2]. This measurement involves the manual retinal vein. The resulting elevated intravas- selection of points on fundus photographs cular pressure results in tortuosity and dila- that subdivide the tortuous vessel into a se- tion in the blocked vein. ries of single arcs. Fig. 2 illustrates the mea- Information about disease severity or change of disease with time may be inferred by measuring the tortuosity of the blood vessel network. Consequently, there is a benefit in measuring tortuosity in a consis- tent, repeatable fashion. Vascular tortuosity measurements are commonly performed by human observers using a qualitative scale (e.g. mild, moderate, severe and extreme). Fig. 2. Illustration of the subdivision used to estimate Variability in grading can result because the blood vessel tortuosity with the relative length varia- boundaries between the grades may differ tion. W.E. Hart et al. / International Journal of Medical Informatics 53 (1999) 239–252 241 surements they use to calculate the vessel’s of tortuosity. To assess the relative utility of tortuosity. Their method decomposes the ves- these measures, they were used to classify sel into a series of circular arcs, for which the blood vessel segments and blood vessel net- chord lengths li and arrow heights hi are works. The segments used in these classifica- measured. The tortuosity is measured as the tion experiments were extracted manually relati6e length 6ariation and automatically and we discuss how the tortuosity measures can be influenced by L−l 8 h 2 : % i , properties of the method used to extract the l 3 i li vessel segments. The classification rate was as where L is the length of the blood vessel and high as 91.5% for blood vessel segments and l is the chord length. The approximation is 95% for blood vessel networks. While no derived using a sinusoidal model of a blood single tortuosity measure was clearly supe- vessel. This method was used by Kylstra et rior, the experiments recommend a total al. [3] to measure the effects of transmural squared curvature measure. pressure on the tortuosity of latex tubing. Given the increased availability of digitized fundus photographs, automated tortuosity 2. Tortuosity measures measurements are now feasible. Kaupp et al. [4] have reported unpublished results of an 2.1. Abstract properties automated tortuosity measurement that uses a Fourier analysis of the perpendicular along We begin by discussing several properties the blood vessel. Smedby et al. [5] describe of tortuosity measures that are motivated by five tortuosity measures used to measure tor- the ophthalmologist’s notion of tortuosity. A tuosity in femoral arteries. Included are sev- tortuosity measure that has many of the eral measures of the integral curvature along properties described below should provide the blood vessel, the number of inflection good predictive performance in our classifica- points of the vessel and the fraction of the tion tasks, thereby matching an ophthalmolo- vessel that has high curvature. Their experi- gist’s measure of tortuosity. We will discuss ments examine properties of these measures the following properties of tortuosity mea- like reproducibility and scalability. Ca- sures: invariance to translation and rotation, powski, Kylstra and Freedmen [6] describe a response to scaling and compositionality of measure of blood vessel tortuosity based on vessels and vessel networks. These properties spatial frequencies. Zhou et al. [7] have also are defined for parametrized differentiable described a method for distinguishing tortu- curves C=(x(t), y(t)), with t in an interval ous and nontortuous blood vessels in an- [t0, t1]. We model retinal blood vessels with giograms. In a preliminary abstract, we have such curves. A tortuosity measure t takes a proposed a tortuosity measure based on the curve C as its argument and returns a real integral curvature along a blood vessel [8]. number. In this paper we describe tortuosity mea- sures that are used to measure the tortuosity 2.1.1. In6ariance to translation and rotation of retinal blood vessels as well as the retinal Suppose a vessel with tortuosity t were blood vessel network. We motivate our tortu- moved on the retina without changing its osity measures by analyzing abstract proper- shape or size. What should be the tortuosity ties of measures based on medical intuitions of the resulting vessel? 242 W.E. Hart et al. / International Journal of Medical Informatics 53 (1999) 239–252 While ophthalmologists’ judgments of ves- appears that if a vessel segment with a given sel tortuosity do seem to incorporate the tortuosity were extended with a segment of relative curvature of other vessels on the fun- the same tortuosity, the resulting vessel dus, we believe their judgment is largely inde- would have the same tortuosity as either of pendent of the location or orientation of the its segments. That is, a vessel doesn’t increase vessels. Our measures assume that vessel tor- (or decrease) its tortuosity by having the tuosity is not dependent on the location of same serpentine pattern extended at greater orientation of the vessel. length. We formalize these intuitions as follows. 2.1.2. Response to scaling We write C=C1 C2 and say curve C has Suppose a vessel with tortuosity t was constituent segments C1 and C2. Whenever enlarged uniformly by some scale factor g\ C=(x(t), y(t)) with t [t0, t1], C1 =(x(t), 1. What should be the tortuosity of the scaled y(t)) with t [t0, t2] and C2 =(x(t), y(t)) with vessel? t [t2, t1], for some t2 [t0, t1]. Now suppose t 5t Ophthalmologists do not seem to have un- that (C1) (C2). We say that a tortuosity equivocal intuitions about this question, measure has the property of compositionality though they believe that a vessel’s tortuosity when, for any such C1, C2, C3, should be roughly invariant to scaling. How- t(C )5t(C)5t(C ) (1) ever, it is clear that if scale does affect the 1 2 tortuosity then it does so in a multiplicative with the equality holding if and only if t t manner. That is, if curve C=(x(t), y(t)) has (C1)= (C2). tortuosity t(C), curve C%=(gx(t), gy(t)) has The property of compositionality provides tortuosity b(g)·t(C) for some function b. constraints on how to compute the tortuosity If tortuosity is invariant to scaling, b(g) 1; of a vessel, given the tortuosities of its con- and if tortuosity is inversely related to scale, stituent segments. This computation will be b(g)B1 when g\1. We examine tortuosity necessary in an automated system that ex- measures that exhibit various tortuosity scale tracts vessel segments and not whole vessels factors b(g) and investigate their effect on from fundus images.
Recommended publications
  • Pressure Drop and Forced Convective Heat Transfer in Porous Media
    Pressure Drop and Forced Convective Heat Transfer in Porous Media Ahmed Faraj Abuserwal Supervisor: Dr Robert Woolley Co-Supervisor: Professor Shuisheng He Dissertation Submitted to the Department of Mechanical Engineering, University of Sheffield in partial fulfilment of the requirements for the Degree of Doctor of Philosophy May 2017 Acknowledgments First and foremost, I would like to express my gratitude to my supervisor and tutor, Dr Robert Woolley, for his expert guidance which has been invaluable. The continual encouragement I have received from him has allowed me to persevere even when difficulties arose. His excellent comments and suggestions have improved my research capabilities and supported my efforts to publish a number of papers, including this dissertation. I owe a similar debt of gratitude to a lab technician, Mr Malcolm Nettleship, for his continuous support in the lab. His willingness to share his time, experience and knowledge for the construction the test rigs has been a tremendous help. Without this support, I frankly could not have achieved the aims and objectives of this thesis. In addition, acknowledgment and gratitude for Dr Russell Goodall is due for his enormous level of support and encouragement in giving me permission to use equipment and the required materials to produce the metal sponges. During various meetings, his comments and suggestions were invaluable to the success of my work and publications. Furthermore, I would like to offer thanks to Dr. Farzad Barari and Dr. Erardo Elizondo Luna for their support and help, and a special thank you to Mr. Wameedh Al-Tameemi, who supported me by sharing his instruments.
    [Show full text]
  • Improving Blood Vessel Tortuosity Measurements Via Highly Sampled Numerical Integration of the Frenet-Serret Equations Alexander Brummer, David Hunt, Van Savage
    1 Improving blood vessel tortuosity measurements via highly sampled numerical integration of the Frenet-Serret equations Alexander Brummer, David Hunt, Van Savage Abstract—Measures of vascular tortuosity—how curved and vessels can be linked to local pressures and stresses that act twisted a vessel is—are associated with a variety of vascular on vessels, connecting physical mechanisms to morphological diseases. Consequently, measurements of vessel tortuosity that features [17–19]. are accurate and comparable across modality, resolution, and size are greatly needed. Yet in practice, precise and consistent measurements are problematic—mismeasurements, inability to calculate, or contradictory and inconsistent measurements occur within and across studies. Here, we present a new method As part of the measurement process, researchers have used of measuring vessel tortuosity that ensures improved accuracy. sampling rates—the number of points constituting a ves- Our method relies on numerical integration of the Frenet- sel—nearly equal to the voxel dimensions, or resolution limits, Serret equations. By reconstructing the three-dimensional vessel for their images. This practice has proven sufficient for binary coordinates from tortuosity measurements, we explain how to differentiation between diseased and healthy vessels as long identify and use a minimally-sufficient sampling rate based on vessel radius while avoiding errors associated with oversampling as there is no significant variation in modality, resolution, and and overfitting. Our work identifies a key failing in current vessel size [6, 8, 20]. However, we show that measurements practices of filtering asymptotic measurements and highlights made at voxel-level sampling rates generally underestimate inconsistencies and redundancies between existing tortuosity common tortuosity metrics and obscure existing equivalen- metrics.
    [Show full text]
  • Quantification and Classification of Retinal Vessel Tortuosity
    R ESEARCH ARTICLE ScienceAsia 39 (2013): 265–277 doi: 10.2306/scienceasia1513-1874.2013.39.265 Quantification and classification of retinal vessel tortuosity Rashmi Turior∗, Danu Onkaew, Bunyarit Uyyanonvara, Pornthep Chutinantvarodom Sirindhorn International Institute of Technology, Thammasat University, 131 Moo 5, Tiwanont Road, Bangkadi, Muang, Pathumthani 12000 Thailand ∗Corresponding author, e-mail: [email protected] Received 18 Jul 2012 Accepted 25 Mar 2013 ABSTRACT: The clinical recognition of abnormal retinal tortuosity enables the diagnosis of many diseases. Tortuosity is often interpreted as points of high curvature of the blood vessel along certain segments. Quantitative measures proposed so far depend on or are functions of the curvature of the vessel axis. In this paper, we propose a parallel algorithm to quantify retinal vessel tortuosity using a robust metric based on the curvature calculated from an improved chain code algorithm. We suggest that the tortuosity evaluation depends not only on the accuracy of curvature determination, but primarily on the precise determination of the region of support. The region of support, and hence the corresponding scale, was optimally selected from a quantitative experiment where it was varied from a vessel contour of two to ten pixels, before computing the curvature for each proposed metric. Scale factor optimization was based on the classification accuracy of the classifiers used, which was calculated by comparing the estimated results with ground truths from expert ophthalmologists for the integrated proposed index. We demonstrate the authenticity of the proposed metric as an indicator of changes in morphology using both simulated curves and actual vessels. The performance of each classifier is evaluated based on sensitivity, specificity, accuracy, positive predictive value, negative predictive value, and positive likelihood ratio.
    [Show full text]
  • Vapor-Chamber Fin Studies
    NASA CONTRACTOR REPORT VAPOR-CHAMBER FIN STUDIES TRANSPORT PROPERTIES AND BOILING CHARACTERISTICS OF WICKS by H. R. Kmz, L. S. Lmgston, B. H. Hilton, S. S. Hyde, and G. H. Nashick , / I ” I.1 Prepared by i . I : !. ‘r-./ PRATT & WHITNEY AIRCRAFT ’ i West Hartford, Corm. _ ., ,.ii’,,.,: ‘; for Lewis Research Center NATIONAL AERONAUTICSAND SPACEADMINISTRATION . WASHINGTON, D. C. l JUNE 1967 TECH LIBRARY KAFB, NM NASA CR-812 VAPOR-CHAMBER FIN STUDIES TRANSPORT PROPERTIES AND BOILING CHARACTERISTICS OF WICKS By H. R. Kunz, L. S. Langston, B. H. Hilton, S. S. Wyde, and G. H. Nashick Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it. Prepared under Contract No. NAS 3-7622 by PRATT & WHITNEY AIRCRAFT Division of United Aircraft Corporation West Hartford, Conn. for Lewis Research Center NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - CFSTI price $3.00 . FOREWORD This report describes the work conducted by Pratt & Whitney Aircraft Division of United Aircraft Corporation under NASA Contract 3-7622 and was originally issued as Pratt & Whitney Report PWA-2953, November 1966. The experimental work was performed by J. F. Barnes and the authors. Martin Gutstein of the Space Power Systems Division, NASA-Lewis Research Center, was the Technical Manager. 111 ABSTRACT The purpose of this paper is to define and present the wicking material properties that are considered to be important to the operation of a vapor-chamber fin or a heat pipe.
    [Show full text]
  • Evaluating Retinal Blood Vessels' Abnormal Tortuosity In
    Evaluating Retinal Blood Vessels' Abnormal Tortuosity in Digital Image Fundus Submitted in fulfilment of the requirements for the Degree of MSc by research School of Computer Science University Of Lincoln Mowda Abdalla June 30, 2016 Acknowledgements This project would not have been possible without the help and support of many people. My greatest gratitude goes to my supervisors Dr. Bashir Al-Diri, and Prof. Andrew Hunter who were abundantly helpful and provided invaluable support, help and guidance. I am grateful to Dr. Majed Habeeb, Dr. Michelle Teoailing, Dr. Bakhit Digry, Dr. Toke Bek and Dr. Areti Triantafyllou for their valuable help with the new tortuosity datasets and the manual grading. I would also like to thank my colleagues in the group of retinal images computing and understanding for the great help and support throughout the project. A special gratitude goes to Mr. Adrian Turner for his invaluable help and support. Deepest gratitude are also for my parents, Ali Shammar and Hawa Suliman, and to my husband who believed in me and supported me all the way. Special thanks also go to my lovely daughters Aya and Dania. Finally, I would like to convey warm thanks to all the staff and lecturers of University of Lincoln and especially the group of postgraduate students of the School of Computer Science. 2 Abstract Abnormal tortuosity of retinal blood vessels is one of the early indicators of a number of vascular diseases. Therefore early detection and evaluation of this phenomenon can provide a window for early diagnosis and treatment. Currently clinicians rely on a qualitative gross scale to estimate the degree of vessel tortuosity.
    [Show full text]
  • Chapter 3 Rock Properties
    Chapter 3 Rock Properties Rock properties are the measurable properties of rocks that are a measure of its ability to store and transport fluids, ionic species, and heat. Rock properties also include other measurable properties that aid in exploration or development of a reservoir. Grain Size Distribution Sieve Analysis An easily measurable property of unconsolidated sand is the grain size distribution. The classical method for measuring grain size distribution is to use a set of sieve trays of graded mesh size as illustrated in Fig. 3.1. The results of a sieve analysis are Fig. 3.1 Sieve analysis for tabulated to show the mass fraction of each measuring grain size distribution screen increment as a function of the mesh (Bjorlykke 1989) size of the increment. Since the particles on any one screen are Table 3.1 Sieve analysis (McCabe, Smith, and passed by the screen immediately Harriott, 1993) Mesh Screen ϕ Mass Avg. Cum. ahead of it, two numbers are opening fraction particle mass needed to specify the size range of retained diameter fraction an increment, one for the screen di, mm xi di å xi through which the fraction passes i and the other on which it is 4 4.699 -2.23 retained. Thus, the notation 14/20 6 3.327 -1.73 4.013 means "through 14 mesh and on 8 2.362 -1.24 2.845 10 1.651 -0.72 2.007 20 mesh." 14 1.168 -0.22 1.409 20 0.833 +0.26 1.001 A typical sieve analysis is 28 0.589 +0.76 0.711 shown in Table 3.1.
    [Show full text]
  • Study of the Diffusion and Solubility for a Polyethylene-Cyclohexane System Using Gravimetric Sorption Analysis
    The Pennsylvania State University The Graduate School College of Engineering STUDY OF THE DIFFUSION AND SOLUBILITY FOR A POLYETHYLENE-CYCLOHEXANE SYSTEM USING GRAVIMETRIC SORPTION ANALYSIS A Thesis in Chemical Engineering by Justin Lee Rausch © 2009 Justin Lee Rausch Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science May 2009 The thesis of Justin Lee Rausch was reviewed and approved* by the following: Ronald P. Danner Professor of Chemical Engineering Thesis Advisor Seong H. Kim Professor of Chemical Engineering Janna K. Maranas Professor of Chemical Engineering Andrew L. Zydney Professor of Chemical Engineering Department Head of Chemical Engineering * Signatures are on file in the Graduate School ii Abstract Crystallinity is an important factor in the diffusivity and solubility of a polymer-solvent system. The melt temperature acts as the transition point between a semi-crystalline and completely amorphous polymer. The purpose of this work was to examine the diffusivity and solubility of cyclohexane in high density polyethylene across a range of temperatures that cover both the semi-crystalline state of the polymer and the completely amorphous state reached above the melt temperature. At each of these temperatures, a range of concentrations was analyzed. Gravimetric sorption analysis was used to evaluate the HDPE-cyclohexane system using Crank’s model for diffusion calculations. Experiments are conducted at temperatures of 90, 100, and 105°C below the melt using polymer pellets as well as 140, 150, and 160°C above the melt using polymer sheets. The transition to sheets is necessary because of flow that occurs above the melt.
    [Show full text]
  • Review of Fluid Flow and Heat Transfer Through Porous Media Heat Exchangers
    International Journal of New Innovations in Engineering and Technology Review of Fluid Flow and Heat Transfer through Porous Media Heat Exchangers Brijendra Singh Bhaskar Department of Mechanical Engineering, St. Vincent Pallotti College of Engineering & Technology, Gavsi manapur, Wardha Road, Nagpur, India Dr. S.K.Chaudhary Department of Mechanical Engineering, Karmveer Dadasaheb Kannamwar College of Engineering, Great Nag Road, Nandanwan, Nagpur, India Abstract- Latest developments in the manufacturing technology have led to development of advance lightweight materials for thermal applications. Investigation of thermal properties for such materials is desirable. On the other hand, it is recognized that there are different thermal management issues. Heat transfer through porous materials has gained significance in industrial applications based research. In this paper the research on heat transfer through porous material, mostly metal foam heat exchanger, has been reviewed. This paper aims to acquire state of the art knowledge and information in the field of porous materials as well as various research carried out on heat transfer and fluid flow through porous materials. The forced convection has been reviewed extensively. At the end, aspects which require further research have been identified. Keywords: Forced Convection, Porous Media, Porosity, Permeability, Heat Transfer. 1. INTRODUCTION The use of porous materials as efficient and compact heat exchangers for heat dissipation is under extensive research. Amongst these, high porosity, open cell metal foams shown in Fig.1 has emerged as one of the most promising materials for thermal management applications where a large amount of heat needs to be transferred over a small volume. This is attributed to the high surface area to volume ratio as well as enhanced flow mixing (convection) due to the tortuosity of metal foams Fig.
    [Show full text]
  • How to Reliably Estimate the Tortuosity of an Animal's Path
    ARTICLE IN PRESS Journal of Theoretical Biology 229 (2004) 209–220 How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity, or fractal dimension? Simon Benhamou Behavioural Ecology Group, Centre d’Ecologie Fonctionelle et Evolutive, CNRS, 1919 Route de Mende, F-34293, Montpellier Cedex 5, France Received 14 November 2003; received in revised form 19 March 2004; accepted 26 March 2004 Abstract The tortuosity of an animal’s path is a key parameter in orientation and searching behaviours. The tortuosity of an oriented path is inversely related to the efficiency of the orientation mechanism involved, the best mechanism being assumed to allow the animal to reach its goal along a straight line movement. The tortuosity of a random search path controls the local searching intensity, allowing the animal to adjust its search effort to the local profitability of the environment. This paper shows that (1) the efficiency of an oriented path can be reliably estimated by a straightness index computed as the ratio between the distance from the starting point to the goal and the path length travelled to reach the goal, but such a simple index, ranging between 0 and 1, cannot be applied to random search paths; (2) the tortuosity of a random search path, ranging between straight line movement and Brownian motion, can be reliably estimated by a sinuosity index which combines the mean cosine of changes of direction with the mean step length; and (3) in the current state of the art, the fractal analysis of animals’ paths, which may appear as an alternative and promising way to measure the tortuosity of a random search path as a fractal dimension ranging between 1 (straight line movement) and 2 (Brownian motion), is only liable to generate artifactual results.
    [Show full text]
  • Oscillatory Compressible Flow and Heat Transfer in Porous Media
    OSCILLATORY COMPRESSIBLE FLOW AND HEAT TRANSFER IN POROUS MEDIA – APPLICATION TO CRYOCOOLER REGENERATORS A Dissertation Presented to The Academic Faculty by Jeremy Paul Harvey In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in Mechanical Engineering Georgia Institute of Technology December 2003 OSCILLATORY COMPRESSIBLE FLOW AND HEAT TRANSFER IN POROUS MEDIA – APPLICATION TO CRYOCOOLER REGENERATORS APPROVAL Prateen V. Desai, Chairman, Mechanical Engineering S. Mostafa Ghiaasiaan, Mechanical Engineering Minami Yoda, Mechanical Engineering Carl S. Kirkconnell, Raytheon Space and Airborne Systems Jeffrey F. Morris, Chemical Engineering Date Submitted: November 25, 2003 ACKNOWLEDGEMENTS I have been blessed to have been involved in this research with so fine a group. And it is indeed the group of individuals whom have assisted me that have made this research so enjoyable and productive. Beginning with those most directly involved in the research, I would like to thank my committee. Dr. Prateen Desai, my thesis advisor, fortunately thought of me when Dr. Carl Kirkconnell was searching out an undergraduate student to perform this research for, at the time, Hughes Aircraft Company. The Woodruff School and the Georgia Tech community have been so fortunate to have Dr. Desai as a dedicated professor, and I as a friend and advisor. Dr. Mostafa Ghiaasiaan quickly took an interest in the research after conversing with me and he now will lead the cryocooler research at Georgia Tech. Drs. Minami Yoda and Jeffrey Morris completed my team of advisors by providing breadth of knowledge in their fields. Of these individuals, Dr. Kirkconnell deserves special thanks for being the catalyst for the research at Hughes Aircraft , and now Raytheon Space and Airborne Systems.
    [Show full text]
  • Automatic Retinal Vessel Tortuosity Measurement Using Curvature of Improved Chain Code
    Automatic Retinal Vessel Tortuosity Measurement using Curvature of Improved Chain Code Danu Onkaew1, Rashmi Turior1, Bunyarit Uyyanonvara1 School of Information, Computer and Communication Technology Sirindhorn International Institute of Technology, Thammasat University Pathum Thani, Thailand Email: fdanu.onkaew,rashmi.turior,[email protected] Nishihara Akinori2 The Center for Research and Development of Educational Technology W9-108, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan Email: [email protected] Chanjira Sinthanayothin3 National Electronics and Computer Technology Center 112 Thailand Science Park, Phahon Yothin Rd., Klong I, Klong Luang, Pathumthani, Thailand Email: [email protected] Abstract—Measurement of blood vessel tortuosity is a use- to quantify tortuosity. In order to evaluate the clinical sig- ful capability for automatic ophthalmological diagnostic tools. nificance of tortuosity changes with time, and to compare Screening of Retinopathy of Prematurity (ROP), a disease of eye different levels of the same retinopathy, there is a strong need that affects premature infants, for example, depends crucially on automatic tortuosity evaluation. Quite a few techniques for to devise a new approach for tortuosity evaluation that matches tortuosity measurement and classification have been proposed, the clinical perception of ophthalmologists. Several possible but they do not always match the clinical concept of tortuosity. measures of tortuosity have been proposed, but none of them In this paper, we propose the alternative method of automatic has gained universal acceptance. tortuosity measurement for retinal blood vessels that uses the Hart et al. [2] created the automated measurement using curvature calculated from improved chain code algorithm taking the number of inflection point into account.
    [Show full text]
  • A Glossary of Hydrogeological Terms
    A GLOSSARY OF HYDROGEOLOGICAL TERMS John M. Sharp, Jr. Department of Geological Sciences Jackson School of Geosciences The University of Texas Austin, Texas, USA ©2007 ©Sharp, J. M., Jr., 2007, A Glossary of Hydrogeological Terms: The University of Texas, Austin, Texas 1 This glossary is intended for any who need such definitions. Correct referencing is always appreciated. The citation information: Sharp, John M., Jr., 2007, A Glossary of Hydrogeological Terms: Department of Geological Sciences, The University of Texas, Austin, Texas, 63p. If you find any errors or significant omissions, I would be interested in learning about them. Email me at: [email protected]. If you find this glossary useful and valuable, we encourage you to support one of the endowment funds, such as the Gibbs Fund for hydrogeologic research and education or the Oliver Lectureship Fund in Texas Hydrology and Water Resources, of the Geology Foundation that helps make this glossary and other such products possible. The Foundation's web address is: www.geo.utexas.edu/foundation/ ©Sharp, J. M., Jr., 2007, A Glossary of Hydrogeological Terms: The University of Texas, Austin, Texas 2 A GLOSSARY OF HYDROGEOLOGICAL TERMS by John M. Sharp, Jr. Department of Geological Sciences The University of Texas A-horizon - the upper level of a soil which is characterized by a mixture of soil particles and organic matter; it is also the zone or layer of leaching of minerals and organic matter. absorption - see sorption. acoustic probe – water level measuring device that uses sound waves. accuracy - the agreement (or lack of) between a measured value and an accepted reference or "true" value.
    [Show full text]