On Gender and Artificial Intelligence
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Oliver Knill: March 2000 Literature: Peter Norvig, Paradigns of Artificial Intelligence Programming Daniel Juravsky and James Martin, Speech and Language Processing
ENTRY ARTIFICIAL INTELLIGENCE [ENTRY ARTIFICIAL INTELLIGENCE] Authors: Oliver Knill: March 2000 Literature: Peter Norvig, Paradigns of Artificial Intelligence Programming Daniel Juravsky and James Martin, Speech and Language Processing Adaptive Simulated Annealing [Adaptive Simulated Annealing] A language interface to a neural net simulator. artificial intelligence [artificial intelligence] (AI) is a field of computer science concerned with the concepts and methods of symbolic knowledge representation. AI attempts to model aspects of human thought on computers. Aspectrs of AI: computer vision • language processing • pattern recognition • expert systems • problem solving • roboting • optical character recognition • artificial life • grammars • game theory • Babelfish [Babelfish] Online translation system from Systran. Chomsky [Chomsky] Noam Chomsky is a pioneer in formal language theory. He is MIT Professor of Linguistics, Linguistic Theory, Syntax, Semantics and Philosophy of Language. Eliza [Eliza] One of the first programs to feature English output as well as input. It was developed by Joseph Weizenbaum at MIT. The paper appears in the January 1966 issue of the "Communications of the Association of Computing Machinery". Google [Google] A search engine emerging at the end of the 20'th century. It has AI features, allows not only to answer questions by pointing to relevant webpages but can also do simple tasks like doing arithmetic computations, convert units, read the news or find pictures with some content. GPS [GPS] General Problem Solver. A program developed in 1957 by Alan Newell and Herbert Simon. The aim was to write a single computer program which could solve any problem. One reason why GPS was destined to fail is now at the core of computer science. -
The Points of Viewing Theory for Engaged Learning with Digital Media
The Points of Viewing Theory for Engaged Learning with Digital Media Ricki Goldman New York University John Black Columbia University John W. Maxwell Simon Fraser University Jan J. L. Plass New York University Mark J. Keitges University of Illinois, Urbana Champaign - 1 - Introduction Theories are dangerous things. All the same we must risk making one this afternoon since we are going to discuss modern tendencies. Directly we speak of tendencies or movements we commit to, the belief that there is some force, influence, outer pressure that is strong enough to stamp itself upon a whole group of different writers so that all their writing has a certain common likeness. — Virginia Woolff, The Leaning Tower, lecture delivered to the Workers' Educational Association, Brighton (May 1940). With full acknowledgement of the warning from the 1940 lecture by Virginia Woolf, this chapter begins by presenting a theory of mind, knowing only too well, that “a whole group of different” learning theorists cannot find adequate coverage under one umbrella. Nor should they. However, there is a movement occurring, a form of social activism created by the affordances of social media, an infrastructure that was built incrementally during two to three decades of hard scholarly research that brought us to this historic time and place. To honor the convergence of theories and technologies, this paper proposes the Points of Viewing Theory to provide researchers, teachers, and the public with an opportunity to discuss and perhaps change the epistemology of education from its formal structures to more do-it-yourself learning environments that dig deeper and better into content knowledge. -
An Overview of Artificial Intelligence and Robotics
AN OVERVIEW OF ARTIFICIAL INTELLIGENCE AND ROBOTICS VOLUME1—ARTIFICIAL INTELLIGENCE PART A—THE CORE INGREDIENTS January 1984 Prepared for National Aeronautics and Space Administration Headquarters Washington, D.C. 20546 NATIONAL E'j • OF STA. IDALL L LIBRARY qc ~iy?f NBSIR 83-2687 AN OVERVIEW OF ARTIFICIAL INTELLIGENCE AND ROBOTICS VOLUME1 —ARTIFICIAL INTELLIGENCE PART A—THE CORE INGREDIENTS William B. Gevarter* U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Manufacturing Engineering Industrial Systems Division Metrology Building, Room A127 Washington, DC 20234 January 1984 Prepared for: National Aeronautics and Space Administration Headquarters Washington, DC 20546 U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS. Ernest Ambler, Director •Research Associate at the National Bureau of Standards Sponsored by NASA Headquarters PREFACE Artificial Intelligence (AI) is a field with over a quarter of a century of history. However, it wasn’t until the dawn of the decade of the 80’s that AI really burst forth—finding economic and popular acclaim. Intelligent computer programs are now emerging from the laboratory into prac- tical applications. This report endeavors to indicate what AI is, the foundations on which it rests, the techniques utilized, the applications, the participants and finally its state-of-the-art and future trends. Due to the scope of AI, this volume is issued in three parts: Part A: The Core Ingredients I. Artificial Intelligence—What It Is II. The Rise, Fall and Rebirth of AI III. Basic Elements of AI IV. Applications V. The Principal Participants VI. State-of-the-Art VII. -
Social Interaction with Computers: a Sociotechnical Interpretation Of
Social Interaction with Computers: an Interpretation of Weizenbaum’s ELIZA and Her Heritage. Hans Pruijt Erasmus University Rotterdam Submitted for publication in Social Science Computer Review (Pruijt, H., 2006, “Social Interaction with Computers: An Interpretation of Weizenbaum’s ELIZA and Her Heritage”, Social Science Computer Review, Volume 24, Number 4, 516-523) Abstract Social interaction with computers is a key part of the frontier of automation. Weizenbaum's ELIZA continues to be relevant as the focus of the debate shifts from artificial intelligence to the future of narrative and emotional design. A version of ELIZA was implemented in Excel/Visual Basic for Applications that combines adherence to the original specification with easy experimentation. Keyword list: human computer interaction, automation, ELIZA, artificial intelligence, narrative It is a truism that automation is perpetually on the rise. But where are the limits? This has been the subject of debate for decades. One of the most lasting and highly cited contributions to the debate is ELIZA, the pioneering conversation or chatterbot program originally developed by Weizenbaum (1966). It played a role in the debate on Artificial Intelligence in the 1970s, especially as an example to show that Artificial Intelligence can hardly be more than simulated rather than emulated intelligence (Raggett and Bains 1992: 204). However, interest in ELIZA survived the AI hype. It surfaced in recent discussions on identity and on-line interaction (Turkle 1995), the future of narrative (Murray 1997) and emotional design (Norman 2004). ELIZA did not become a classic because of her technical sophistication. Kurzweil (1990: 36), for example, described her as a “simple minded program unrepresentative of the state of the art”. -
From Chatbot to Personal Assistant
6e conférence conjointe Journées d'Études sur la Parole (JEP, 31e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition) Nancy, France, 08-19 juin 2020 From chatbot to personal assistant. Emma JEANNETTE Sawssen HADDED Université de Paris, 5 Rue Thomas Mann, 75013 Paris, France [email protected], [email protected] RÉSUMÉ Les chatbots (emprunt direct de l’anglais, chat = conversation amicale et informelle; bot = un programme informatique avec un fonctionnement automatique) sont des logiciels informatiques créés pour simuler des conversations à ressemblance presque humanoïde. Ces logiciels analysent les textes ou commandes vocales pour adapter leurs réponses. Eliza est un des tout premiers chatbots crée par Weizenbaum entre 1964 et 1966. Le but initial d’Eliza était de démontrer que la communication entre les humains et les machines n’était pas nécessaire. Seulement le programme a engendré de nouvelles recherches sur les machines et le langage est devenu l’ancêtre de nos chatbots actuels. Notre expérience se concentre sur les différents chatbots de renommée au fil des années de 1964 à 2018, leurs améliorations mais aussi leurs limitations. Nous avons testés chaque chatbot (ELIZA,A.L.I.C.E. 1995,Cleverbot 1997, Mitusku 2005) sur des phrases tests. Phrases de protocole 1 Tout d’abord, nous nous sommes présentées sous un faux nom et nous leur avons demandé de répéter ce nom plus tard dans la conversation pour voir s'ils enregistraient les informations sur l’utilisateur. Puis une question basique (a) pour voir s'ils pouvaient répondre à des questions simples. -
Riddle Machines: the History and Nature of Interactive Fiction
Riddle Machines: The History and Nature of Interactive Fiction The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Montfort, Nick. "Riddle Machines: The History and Nature of Interactive Fiction." A Companion to Digital Literary Studies, edited by Ray Siemens and Susan Schreibman, John Wiley & Sons Ltd, 2013, 267-282. © 2013 Ray Siemens and Susan Schreibman As Published http://dx.doi.org/10.1002/9781405177504.ch14 Publisher John Wiley & Sons, Ltd Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/129076 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ Nick Montfort Riddle Machines: The History and Nature of Interactive Fiction 14. Riddle Machines: The History and Nature of Interactive Fiction Nick Montfort Introduction The genre that has also been labeled "text adventure" and "text game" is stereotypically thought to offer dungeons, dragons, and the ability for readers to choose their own adventure. While there may be dragons here, interactive fiction (abbreviated "IF") also offers utopias, revenge plays, horrors, parables, intrigues, and codework, and pieces in this form resound with and rework Gilgamesh, Shakespeare, and Eliot as well as Tolkien. The reader types in phrases to participate in a dialogue with the system, commanding a character with writing. Beneath this surface conversation, and determining what the computer narrates, there is the machinery of a simulated world, capable of drawing the reader into imagining new perspectives and understanding strange systems. Interactive fiction works can be challenging for literary readers, even those interested in other sorts of electronic literature, because of the text-based interface and because of the way in which these works require detailed exploration, mapping, and solution. -
From Eliza to Xiaoice: Challenges and Opportunities with Social Chatbots
From Eliza to XiaoIce: Challenges and Opportunities with Social Chatbots Heung-Yeung Shum, Xiaodong He, Di Li Microsoft Corporation Abstract: Conversational systems have come a long way since their inception in the 1960s. After decades of research and development, we’ve seen progress from Eliza and Parry in the 60’s and 70’s, to task-completion systems as in the DARPA Communicator program in the 2000s, to intelligent personal assistants such as Siri in the 2010s, to today’s social chatbots like XiaoIce. Social chatbots’ appeal lies not only in their ability to respond to users’ diverse requests, but also in being able to establish an emotional connection with users. The latter is done by satisfying users’ need for communication, affection, as well as social belonging. To further the advancement and adoption of social chatbots, their design must focus on user engagement and take both intellectual quotient (IQ) and emotional quotient (EQ) into account. Users should want to engage with a social chatbot; as such, we define the success metric for social chatbots as conversation-turns per session (CPS). Using XiaoIce as an illustrative example, we discuss key technologies in building social chatbots from core chat to visual awareness to skills. We also show how XiaoIce can dynamically recognize emotion and engage the user throughout long conversations with appropriate interpersonal responses. As we become the first generation of humans ever living with AI, we have a responsibility to design social chatbots to be both useful and empathetic, so they will become ubiquitous and help society as a whole. 1. -
Chatbots: History, Technology, and a Case Analysis Jay 1
Chatbots: history, technology, and a case analysis Item Type Honor's Project Authors Jay, Benjamin Rights Attribution-NonCommercial-NoDerivatives 4.0 International Download date 27/09/2021 10:16:35 Item License http://creativecommons.org/licenses/by-nc-nd/4.0/ Link to Item http://hdl.handle.net/20.500.12648/1624 Running head: Chatbots: History, Technology, and a Case Analysis Jay 1 Chatbots: History, Technology, and a Case Analysis Benjamin Jay State University of New York at New Paltz Chatbots: History, Technology, and a Case Analysis Jay 2 Abstract This thesis examines the more than 50 year history of chatbots that led to the development of Amazon’s Alexa, Google’s Assistant, and Apple’s Siri. A chatbot, commonly known as a conversational agent, is a computer framework that can have a normal conversation with a user by using a natural language processor (Reshmi and Balakrishnan, 2018). The goal is to understand the psychological and mathematical theories that worked well throughout history, as well as those that did not, and the impact they had on the evolution of modern chatbots. This thesis incorporates these theories into a new chatbot created using Google’s chatbot AI platform called Dialogflow. By following a Coursera course titled Building Conversational Experiences with Dialogflow, this thesis creates a chatbot that can schedule tours of a school and can answer questions about the SUNY New Paltz 2020 Commencement ceremony. Creating even the most basic chatbot requires a comprehensive understanding of the underlying theories and extensive coding experience (Abdul-Kader & Woods, 2015). This thesis assumes a foundation knowledge of computer coding. -
Chatbots' Greetings to Human-Computer Communication
Chatbots’ Greetings to Human-Computer Communication Maria Joao˜ Pereira1, Lu´ısa Coheur1;2, Pedro Fialho1, Ricardo Ribeiro1;3 1INESC-ID Lisboa, 2IST, Universidade de Lisboa, 3Instituto Universitario´ de Lisboa (ISCTE-IUL) Rua Alvez Redol, 9, 1000-029 Lisboa, Portugal [email protected], [email protected], peter.fi[email protected], [email protected] Abstract In the last years, chatbots have gained new attention, due to the interest showed by widely known personalities and companies. The concept is broad, and, in this paper we target the work developed by the (old) community that is typically associated with chatbot’s competitions. In our opinion, they contribute with very interesting know-how, but specially with large-scale corpora, gathered by interactions with real people, an invaluable resource considering the renewed interest in Deep Nets. Keywords: natural language interfaces, agent-based interaction, intelligent agents, interaction design 1. Introduction of references to web pages in this paper) makes it difficult Chatbots are currently a hot-topic, both for industry and to uncover the technology and the real possibilities behind academia (Dale, 2016; Følstad and Brandtzæg, 2017). them. In this paper, we unveil the main contributions of There are many platforms to help developing such systems, this community, as we believe that this line of work can and the number of new chatbots continues to increase at bring important insights to the human-machine communi- a dizzying pace. Pandorabots hosting service1 declares to cation field, as some of them contribute with large amounts have more than 225,000 botmasters (people in charge of of data gathered during their interactions with the crowd, creating/maintaining a chatbot), which have built more than which could be used by current data-driven chatbots (e.g., 280,000 chatbots, resulting in more than 3 billion interac- (Li et al., 2016; Vinyals and Le, 2015)). -
Living with Harmony: a Personal Companion System by Realbotix™
Living with Harmony: A Personal Companion System by Realbotix™ Kino Coursey, Susan Pirzchalski, Matt McMullen, Guile Lindroth, and Yuri Furuushi Abstract Existing personal assistants and agents are by design limited in their abil- ity to form or encourage close personal bonds. The Harmony system is designed to be a customizable personal companion agent capable of close personal interaction via the user's phone, virtual reality headset, as well as through a physical interactive android body. In this chapter, we will describe the history that led to Harmony’s creation, the unique challenges and the overall system design. We will also look at user reactions to the system and anticipated future developments. Keywords Androids · Personal assistant · Virtual reality · Realbotix · Embodied agent · Companion agent K. Coursey (*) AI Research, Realbotix, Inc., Dallas, TX, USA e-mail: [email protected] S. Pirzchalski Hardware and System Engineering, Realbotix, Inc., Dallas, TX, USA e-mail: [email protected] M. McMullen Realbotix, Inc., San Marcos, CA, USA e-mail: [email protected] G. Lindroth Content and AI Research, Realbotix, Inc., Curitiba, Paraná, Brazil e-mail: [email protected] Y. Furuushi Application Developement, Realbotix, Inc., Curitiba, Paraná, Brazil e-mail: [email protected] © Springer Nature Switzerland AG 2019 77 Y. Zhou, M. H. Fischer (eds.), AI Love You, https://doi.org/10.1007/978-3-030-19734-6_4 78 K. Coursey et al. 1 Introduction Androids (robots designed to resemble a human in appearance and behavior) have been a staple of both popular culture and a field of active research and development. They have been the topic of movies and television and have been used to simulate individuals both living and dead. -
Lessons from the Turing Test
The Turing Test Introduction to Cognitive Science Computing Machinery and Intelligence (Turing, 1950) I propose to consider the question, "Can machines think?" This should begin with definitions of the meaning of the terms "machine" and "think." The definitions might be framed so as to reflect so far as possible the normal use of the words, but this attitude is dangerous, If the meaning of the words "machine" and "think" are to be found by examining how they are commonly used it is difficult to escape the conclusion that the meaning and the answer to the question, "Can machines think?" is to be sought in a statistical survey such as a Gallup poll. But this is absurd. Instead of attempting such a definition I shall replace the question by another, which is closely related to it and is expressed in relatively unambiguous words. Computing Machinery and Intelligence (Turing, 1950) The new form of the problem can be described in terms of a game which we call the 'imitation game." It is played with three people, a man (A), a woman (B), and an interrogator (C) who may be of either sex. The interrogator stays in a room apart front the other two. The object of the game for the interrogator is to determine which of the other two is the man and which is the woman. He knows them by labels X and Y, and at the end of the game he says either "X is A and Y is B" or "X is B and Y is A.". The Imitation Game Man Interrogator Woman The New Imitation Game Machine Interrogator Human “I believe that in about fifty years’ time it will be possible to programme computers, with a storage capacity of about 109, to make them play the imitation game so well that an average interrogator will not have more than 70 per cent chance of making the right identification after 5 minutes of questioning” -Alan Turing (1950) The Turing Test • Today the Imitation Game is usually referred to as the Turing Test. -
Getting Personal with Interactive Art
Talk to me: getting personal with interactive art Kathy Cleland Getting computers to respond in a more human-like manner is a significant area of research in the development of AI systems and chatbots that interact with humans using natural conversational language. In this paper I will explore the ways in which artists are using simulated human personas to interact with audiences. I will be discussing four key aspects of this interaction: the ‘interactive moment’ where the audience is engaged by and taken up in interaction with the technological ‘other’; the ‘Eliza effect’ which describes the way humans attribute meaning to the content of the interaction; Masahiro Mori’s allied but counter-pointing concept of the ‘Uncanny Valley’ which describes the sense of unease that can be generated by nearly human simulations; and, drawing on actor- network theory (ANT), the way these works activate and rely on a complex socio-technical networks incorporating the artist, the ‘technology’ and the audience. Artists discussed include: Luc Courchesne, Gary Hill, Sean Kerr, Julian Opie, Mari Velonaki, Linda Erceg, Ken Feingold, Stelarc. 1. Introduction errick de Kerckhove, director of the McLuhan Program in Culture and Technology at the University Dof Toronto, sees a new relationship developing between people and machines. Today, we don’t want our machines to obey us, we want them to respond, which is a part of this inversion of man/machine. (de Kerckhove 1991) Getting computers to respond in a more human-like manner has become a major area of research in the development of AI systems and chatbots that interact with humans using natural conversational language.