Trace Contaminant Control During the International Space Station's On-Orbit Assembly and Outfitting

Total Page:16

File Type:pdf, Size:1020Kb

Trace Contaminant Control During the International Space Station's On-Orbit Assembly and Outfitting National Aeronautics and NASA/TP—2017–219689 Space Administration IS02 George C. Marshall Space Flight Center Huntsville, Alabama 35812 Trace Contaminant Control During the International Space Station’s On-Orbit Assembly and Outfitting J.L. Perry Marshall Space Flight Center, Huntsville, Alabama October 2017 The NASA STI Program…in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientific and technical conferences, NASA Scientific and Technical Information (STI) symposia, seminars, or other meetings sponsored Program Office plays a key part in helping NASA or cosponsored by NASA. maintain this important role. • SPECIAL PUBLICATION. Scientific, technical, The NASA STI Program Office is operated by or historical information from NASA programs, Langley Research Center, the lead center for projects, and mission, often concerned with NASA’s scientific and technical information. The subjects having substantial public interest. NASA STI Program Office provides access to the NASA STI Database, the largest collection of • TECHNICAL TRANSLATION. aeronautical and space science STI in the world. English-language translations of foreign The Program Office is also NASA’s institutional scientific and technical material pertinent to mechanism for disseminating the results of its NASA’s mission. research and development activities. These results are published by NASA in the NASA STI Report Specialized services that complement the STI Series, which includes the following report types: Program Office’s diverse offerings include creating custom thesauri, building customized databases, • TECHNICAL PUBLICATION. Reports of organizing and publishing research results…even completed research or a major significant providing videos. phase of research that present the results of NASA programs and include extensive data For more information about the NASA STI Program or theoretical analysis. Includes compilations Office, see the following: of significant scientific and technical data and information deemed to be of continuing • Access the NASA STI program home page at reference value. NASA’s counterpart of peer- <http://www.sti.nasa.gov> reviewed formal professional papers but has less stringent limitations on manuscript length and • E-mail your question via the Internet to extent of graphic presentations. <[email protected]> • TECHNICAL MEMORANDUM. Scientific • Phone the NASA STI Help Desk at and technical findings that are preliminary or of 757 –864–9658 specialized interest, e.g., quick release reports, working papers, and bibliographies that contain • Write to: minimal annotation. Does not contain extensive NASA STI Information Desk analysis. Mail Stop 148 NASA Langley Research Center • CONTRACTOR REPORT. Scientific and Hampton, VA 23681–2199, USA technical findings by NASA-sponsored contractors and grantees. NASA/TP—2017–219689 Trace Contaminant Control During the International Space Station’s On-Orbit Assembly and Outfitting J.L. Perry Marshall Space Flight Center, Huntsville, Alabama National Aeronautics and Space Administration Marshall Space Flight Center • Huntsville, Alabama 35812 October 2017 i Available from: NASA STI Information Desk Mail Stop 148 NASA Langley Research Center Hampton, VA 23681–2199, USA 757–864–9658 This report is also available in electronic form at <http://www.sti.nasa.gov> ii TABLE OF CONTENTS 1. INTRODUCTION ............................................................................................................. 1 1.1 The Role of Spacecraft Offgassing Tests for Ensuring Cabin Air Quality ..................... 2 2. GENERAL REQUIREMENTS AND GUIDELINES ..................................................... 4 2.1 Requirements for Node 1 ............................................................................................ 5 2.2 Requirements for Russian Modules—Assembly Mission 2R ....................................... 5 2.3 Requirements for the Lab Module—Assembly Mission 5A ........................................ 5 2.4 Requirements for the Columbus Laboratory Module .................................................. 6 2.5 Requirements for the Kibo Japanese Experiment Module ........................................... 6 2.6 Requirements for Harmony Node 2 ............................................................................ 6 2.7 Requirements for Tranquility Node 3 .......................................................................... 7 2.8 Requirements for the Leonardo Permanent Multipurpose Model ............................... 7 2.9 Requirements for Cargo Vehicles—Multipurpose Logistics Module ........................... 7 2.10 Module Offgassing Rate Calculation .......................................................................... 7 2.11 Cabin Material Balance ............................................................................................... 9 2.12 Adjacent Well-Mixed Cabin Volumes .......................................................................... 10 3. CABIN AIR QUALITY CONTROL FOR NODE 1 ASSEMBLY MISSION 2A ............. 11 3.1 Background ................................................................................................................ 11 3.2 Purpose ....................................................................................................................... 11 3.3 Objectives .................................................................................................................... 11 3.4 Assumptions ............................................................................................................... 11 3.5 Approach .................................................................................................................... 13 3.6 Results ........................................................................................................................ 14 3.7 Discussion ................................................................................................................... 20 3.8 Ability to Meet Russian Air Quality Standards ........................................................... 20 3.9 Conclusions ................................................................................................................ 21 3.10 Recommendations ....................................................................................................... 21 4. POSTFLIGHT EVALUATION OF MSSION 2A AND PREFLIGHT PREDICTIONS FOR MISSION 2A.1 ............................................................................... 22 4.1 Background .................................................................................................................. 22 4.2 Purpose ......................................................................................................................... 22 4.3 Objectives ..................................................................................................................... 22 4.4 Assumptions ................................................................................................................. 23 4.5 Approach ...................................................................................................................... 26 iii TABLE OF CONTENTS (Continued) 4.6 Results .......................................................................................................................... 26 4.7 Discussion .................................................................................................................... 32 4.8 Conclusions .................................................................................................................. 33 4.9 Recommendations ........................................................................................................ 33 5. MANAGEMENT OF TRACE CONTAMINANT CONTROL RESOURCES ON BOARD ZARYA ......................................................................................................... 34 5.1 Background .................................................................................................................. 34 5.2 Offgassing Characteristics of Zarya .............................................................................. 35 5.3 Analytical Approach ..................................................................................................... 36 5.4 Results .......................................................................................................................... 36 5.5 Conclusion .................................................................................................................... 38 5.6 Recommendations ........................................................................................................ 39 6. POSTFLIGHT EVALUATION OF MISSIONS 2A AND 2A.1 WITH PREFLIGHT PREDICTIONS FOR MISSION 2A.2 .............................................................................. 40 6.1 Background ................................................................................................................ 40 6.2 Purpose ....................................................................................................................... 41 6.3 Ojectives ..................................................................................................................... 41 6.4 Assumptions ............................................................................................................... 41 6.5 Approach ...................................................................................................................
Recommended publications
  • Artemis Sustained Translational Acceleration Limits: Human Tolerance Evidence from Apollo to International Space Station
    NASA/TM-20205008196 Artemis Sustained Translational Acceleration Limits: Human Tolerance Evidence from Apollo to International Space Station James M. Pattarini, NASA Jeffrey T. Somers, KBR Jacquelyn Charvat, KBR Devan Petersen, KBR Nathaniel Newby, KBR Preston C. Greenhalgh, KBR Michael B. Stenger, NASA Stuart M. C. Lee, KBR National Aeronautics and Space Administration Johnson Space Center Houston, Texas 77058 November 2020 NASA STI Program Office ... in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. advancement of aeronautics and space science. The Collected papers from scientific and NASA scientific and technical information (STI) technical conferences, symposia, seminars, program plays a key part in helping NASA or other meetings sponsored or maintain this important role. co-sponsored by NASA. The NASA STI program operates under the • SPECIAL PUBLICATION. Scientific, auspices of the Agency Chief Information Officer. technical, or historical information from It collects, organizes, provides for archiving, and NASA programs, projects, and missions, disseminates NASA’s STI. The NASA STI often concerned with subjects having program provides access to the NTRS Registered substantial public interest. and its public interface, the NASA Technical Report Server, thus providing one of the largest • TECHNICAL TRANSLATION. collections of aeronautical and space science STI in English-language translations of foreign the world. Results are published in both non-NASA scientific and technical material pertinent to channels and by NASA in the NASA STI Report NASA’s mission. Series, which includes the following report types: Specialized services also include organizing • TECHNICAL PUBLICATION. Reports of and publishing research results, distributing completed research or a major significant specialized research announcements and feeds, phase of research that present the results of providing information desk and personal search NASA Programs and include extensive data or support, and enabling data exchange services.
    [Show full text]
  • Jules Verne ATV Launch Approaching 11 February 2008
    Jules Verne ATV launch approaching 11 February 2008 will carry up to 9 tonnes of cargo to the station as it orbits 400 km above the Earth. Equipped with its own propulsion and navigation systems, the ATV is a multi-functional spacecraft, combining the fully automatic capabilities of an unmanned vehicle with the safety requirements of a crewed vehicle . Its mission in space will resemble that, on the ground, of a truck (the ATV) delivering goods and services to a research establishment (the space station). A new-generation high-precision navigation system will guide the ATV on a rendezvous trajectory towards the station. In early April, Jules Verne will automatically dock with the station’s Russian Preview of the maiden launch and docking of ESA's Jules Verne ATV. Jules Verne will be lifted into space on Service Module, following a number of specific board an Ariane 5 launch vehicle. Credits: ESA - D. operations and manoeuvres (on 'Demonstration Ducros Days') to show that the vehicle is performing as planned in nominal and contingency situations. It will remain there as a pressurised and integral After the successful launch of ESA’s Columbus part of the station for up to six months until a laboratory aboard Space Shuttle Atlantis on controlled re-entry into the Earth’s atmosphere Thursday (7 February), it is now time to focus on takes place, during which it will burn up and, in the the next imminent milestone for ESA: the launch of process, dispose of 6.3 tonnes of waste material no Jules Verne, the first Automated Transfer Vehicle longer needed on the station.
    [Show full text]
  • Trace Contaminant Control During the International Space Station's On
    https://ntrs.nasa.gov/search.jsp?R=20170012333 2019-08-30T16:48:33+00:00Z National Aeronautics and NASA/TP—2017–219689 Space Administration IS02 George C. Marshall Space Flight Center Huntsville, Alabama 35812 Trace Contaminant Control During the International Space Station’s On-Orbit Assembly and Outfitting J.L. Perry Marshall Space Flight Center, Huntsville, Alabama October 2017 The NASA STI Program…in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientific and technical conferences, NASA Scientific and Technical Information (STI) symposia, seminars, or other meetings sponsored Program Office plays a key part in helping NASA or cosponsored by NASA. maintain this important role. • SPECIAL PUBLICATION. Scientific, technical, The NASA STI Program Office is operated by or historical information from NASA programs, Langley Research Center, the lead center for projects, and mission, often concerned with NASA’s scientific and technical information. The subjects having substantial public interest. NASA STI Program Office provides access to the NASA STI Database, the largest collection of • TECHNICAL TRANSLATION. aeronautical and space science STI in the world. English-language translations of foreign The Program Office is also NASA’s institutional scientific and technical material pertinent to mechanism for disseminating the results of its NASA’s mission. research and development activities. These results are published by NASA in the NASA STI Report Specialized services that complement the STI Series, which includes the following report types: Program Office’s diverse offerings include creating custom thesauri, building customized databases, • TECHNICAL PUBLICATION. Reports of organizing and publishing research results…even completed research or a major significant providing videos.
    [Show full text]
  • Protostar II Mission Overview
    THE VEHICLE THE SATELLITE PROTON HISTORY PROTON DESCRIPTION Lead designer was Vladimir Chelomei, who designed it TOTAL HEIGHT with the intention of creating both a powerful rocket for 58.2 m (191 ft) military payloads and a high-performance ICBM. The program was changed, and the rocket was developed GRoss LIFT-OFF exclusively for launching spacecraft. WEIGHT 705,000 kg First named UR-500, but adopted the name (1,554,000 lb) “Proton,” which also was the name of the first PROPELLANT three payloads launched. UDMH and NTO Proton launched Russian interplanetary mis- INITIAL LAUNCH sions to the Moon, Venus, Mars, and Hal- 16 July 1965 ley’s Comet. Proton-1 Spacecraft Proton launched the Salyut space sta- PAYLOAD FAIRINGS tions, the Mir core segment and both There are multiple payload fairing designs presently the Zarya (Dawn) and Zvezda (Star) mod- qualified for flight, including ules for today’s International Space Station. standard commercial payload fairings developed specifically to First commercial Proton launch — 9 April 1996. meet the needs of our customers. First commercial Proton M Breeze M launch BREEZE M UPPER STAGE — 30 December 2002 The Breeze M is powered by one pump-fed Mission Overview gimbaled main engine that develops thrust of 20 kN (4,500 lbf). It is composed of a central core and an auxilliary propellant tank which is jettisoned in flight SATELLITE OPERATOR following depletion. The Breeze M control system includes an SES on-board computer, a three-axis gyro stabilized platform, and a www.ses.com navigation system. The quantity of propellant carried is dependent SATELLITE MANUFACTURER on specific mission requirements and is varied to maximize mission Experience ILS: Achieve Your Mission performance.
    [Show full text]
  • Current Status of Hybrid Bearing Damage Detection
    NASA/TM—2004-212882 ARL–TR–3119 U.S. ARMY RESEARCH LABORATORY Current Status of Hybrid Bearing Damage Detection Paula J. Dempsey Glenn Research Center, Cleveland, Ohio Joseph M. Certo U.S. Army Research Laboratory, Glenn Research Center, Cleveland, Ohio Wilfredo Morales Glenn Research Center, Cleveland, Ohio June 2004 The NASA STI Program Office . in Profile Since its founding, NASA has been dedicated to • CONFERENCE PUBLICATION. Collected the advancement of aeronautics and space papers from scientific and technical science. The NASA Scientific and Technical conferences, symposia, seminars, or other Information (STI) Program Office plays a key part meetings sponsored or cosponsored by in helping NASA maintain this important role. NASA. The NASA STI Program Office is operated by • SPECIAL PUBLICATION. Scientific, Langley Research Center, the Lead Center for technical, or historical information from NASA’s scientific and technical information. The NASA programs, projects, and missions, NASA STI Program Office provides access to the often concerned with subjects having NASA STI Database, the largest collection of substantial public interest. aeronautical and space science STI in the world. The Program Office is also NASA’s institutional • TECHNICAL TRANSLATION. English- mechanism for disseminating the results of its language translations of foreign scientific research and development activities. These results and technical material pertinent to NASA’s are published by NASA in the NASA STI Report mission. Series, which includes the following report types: Specialized services that complement the STI • TECHNICAL PUBLICATION. Reports of Program Office’s diverse offerings include completed research or a major significant creating custom thesauri, building customized phase of research that present the results of databases, organizing and publishing research NASA programs and include extensive data results .
    [Show full text]
  • Pete Aldridge Well, Good Afternoon, Ladies and Gentlemen, and Welcome to the Fifth and Final Public Hearing of the President’S Commission on Moon, Mars, and Beyond
    The President’s Commission on Implementation of United States Space Exploration Policy PUBLIC HEARING Asia Society 725 Park Avenue New York, NY Monday, May 3, and Tuesday, May 4, 2004 Pete Aldridge Well, good afternoon, ladies and gentlemen, and welcome to the fifth and final public hearing of the President’s Commission on Moon, Mars, and Beyond. I think I can speak for everyone here when I say that the time period since this Commission was appointed and asked to produce a report has elapsed at the speed of light. At least it seems that way. Since February, we’ve heard testimonies from a broad range of space experts, the Mars rovers have won an expanded audience of space enthusiasts, and a renewed interest in space science has surfaced, calling for a new generation of space educators. In less than a month, we will present our findings to the White House. The Commission is here to explore ways to achieve the President’s vision of going back to the Moon and on to Mars and beyond. We have listened and talked to experts at four previous hearings—in Washington, D.C.; Dayton, Ohio; Atlanta, Georgia; and San Francisco, California—and talked among ourselves and we realize that this vision produces a focus not just for NASA but a focus that can revitalize US space capability and have a significant impact on our nation’s industrial base, and academia, and the quality of life for all Americans. As you can see from our agenda, we’re talking with those experts from many, many disciplines, including those outside the traditional aerospace arena.
    [Show full text]
  • The International Space Station and the Space Shuttle
    Order Code RL33568 The International Space Station and the Space Shuttle Updated November 9, 2007 Carl E. Behrens Specialist in Energy Policy Resources, Science, and Industry Division The International Space Station and the Space Shuttle Summary The International Space Station (ISS) program began in 1993, with Russia joining the United States, Europe, Japan, and Canada. Crews have occupied ISS on a 4-6 month rotating basis since November 2000. The U.S. Space Shuttle, which first flew in April 1981, has been the major vehicle taking crews and cargo back and forth to ISS, but the shuttle system has encountered difficulties since the Columbia disaster in 2003. Russian Soyuz spacecraft are also used to take crews to and from ISS, and Russian Progress spacecraft deliver cargo, but cannot return anything to Earth, since they are not designed to survive reentry into the Earth’s atmosphere. A Soyuz is always attached to the station as a lifeboat in case of an emergency. President Bush, prompted in part by the Columbia tragedy, made a major space policy address on January 14, 2004, directing NASA to focus its activities on returning humans to the Moon and someday sending them to Mars. Included in this “Vision for Space Exploration” is a plan to retire the space shuttle in 2010. The President said the United States would fulfill its commitments to its space station partners, but the details of how to accomplish that without the shuttle were not announced. The shuttle Discovery was launched on July 4, 2006, and returned safely to Earth on July 17.
    [Show full text]
  • Experimental Methods in Reduced-Gravity Soldering Research
    NASA/TM—2002-211993 Experimental Methods in Reduced-Gravity Soldering Research Richard D. Pettegrew National Center for Microgravity Research, Cleveland, Ohio Peter M. Struk Glenn Research Center, Cleveland, Ohio John K. Watson Johnson Space Center, Houston, Texas Daniel R. Haylett National Center for Microgravity Research, Cleveland, Ohio December 2002 The NASA STI Program Office . in Profile Since its founding, NASA has been dedicated to • CONFERENCE PUBLICATION. Collected the advancement of aeronautics and space papers from scientific and technical science. The NASA Scientific and Technical conferences, symposia, seminars, or other Information (STI) Program Office plays a key part meetings sponsored or cosponsored by in helping NASA maintain this important role. NASA. The NASA STI Program Office is operated by • SPECIAL PUBLICATION. Scientific, Langley Research Center, the Lead Center for technical, or historical information from NASA’s scientific and technical information. The NASA programs, projects, and missions, NASA STI Program Office provides access to the often concerned with subjects having NASA STI Database, the largest collection of substantial public interest. aeronautical and space science STI in the world. The Program Office is also NASA’s institutional • TECHNICAL TRANSLATION. English- mechanism for disseminating the results of its language translations of foreign scientific research and development activities. These results and technical material pertinent to NASA’s are published by NASA in the NASA STI Report mission. Series, which includes the following report types: Specialized services that complement the STI • TECHNICAL PUBLICATION. Reports of Program Office’s diverse offerings include completed research or a major significant creating custom thesauri, building customized phase of research that present the results of databases, organizing and publishing research NASA programs and include extensive data results .
    [Show full text]
  • 1998 Year in Review
    Associate Administrator for Commercial Space Transportation (AST) January 1999 COMMERCIAL SPACE TRANSPORTATION: 1998 YEAR IN REVIEW Cover Photo Credits (from left): International Launch Services (1998). Image is of the Atlas 2AS launch on June 18, 1998, from Cape Canaveral Air Station. It successfully orbited the Intelsat 805 communications satellite for Intelsat. Boeing Corporation (1998). Image is of the Delta 2 7920 launch on September 8, 1998, from Vandenberg Air Force Base. It successfully orbited five Iridium communications satellites for Iridium LLP. Lockheed Martin Corporation (1998). Image is of the Athena 2 awaiting its maiden launch on January 6, 1998, from Spaceport Florida. It successfully deployed the NASA Lunar Prospector. Orbital Sciences Corporation (1998). Image is of the Taurus 1 launch from Vandenberg Air Force Base on February 10, 1998. It successfully orbited the Geosat Follow-On 1 military remote sensing satellite for the Department of Defense, two Orbcomm satellites and the Celestis 2 funerary payload for Celestis Corporation. Orbital Sciences Corporation (1998). Image is of the Pegasus XL launch on December 5, 1998, from Vandenberg Air Force Base. It successfully orbited the Sub-millimeter Wave Astronomy Satellite for the Smithsonian Astrophysical Observatory. 1998 YEAR IN REVIEW INTRODUCTION INTRODUCTION In 1998, U.S. launch service providers conducted In addition, 1998 saw continuing demand for 22 launches licensed by the Federal Aviation launches to deploy the world’s first low Earth Administration (FAA), an increase of 29 percent orbit (LEO) communication systems. In 1998, over the 17 launches conducted in 1997. Of there were 17 commercial launches to LEO, 14 these 22, 17 were for commercial or international of which were for the Iridium, Globalstar, and customers, resulting in a 47 percent share of the Orbcomm LEO communications constellations.
    [Show full text]
  • June, 2013 Mayumi Matsuura JAXA Flight Director Space Vehicle Technology Center Japan Aerospace Exploration Agency (JAXA) Congratulations on 50Th Anniversary
    June, 2013 Mayumi Matsuura JAXA Flight Director Space Vehicle Technology Center Japan Aerospace Exploration Agency (JAXA) Congratulations on 50th Anniversary 1963.6.16 2008.3.11 The fist part of Japanese Experiment Module was launched International Space Station 1984: US President Ronald Reagan proposed developing a permanently-occupied space station 1988: Governments of Canada, ESA member countries, US and Japan signed the Intergovernmental Agreement on a cooperative framework for the space station 1993: Russia joined the program 1998: Beginning of on-orbit station assembly 2000: Beginning of continuous stay of the astronauts 2008: Beginning of assembly of Japanese Experiment Module 2011: Completion of station assembly Present: In the utilization phase International Partners ISS is truly an International space collaboration effort, with the participation of many countries. (C) NASA The First Piece of ISS ISS assembly sequence started in 1998 with the Russian module, Zarya (sunrise), launched by a Russian Proton rocket vehicle. Nov. 20, 1998 Zarya provides battery power, fuel storage and rendezvous and docking capability for Soyuz and Progress space vehicles. (C) NASA ISS Under Construction...(1998-2011) Dec. 2000 Dec. 1998 Dec. 1998 Dec. 2006 (C) NASA ISS Assembly Completion July 2011, Space shuttle Atlantis, on its final spaceflight of the Space Shuttle Program, carried the Raffaello multipurpose logistics module. 2011.7@STS-135 (C) NASA Japanese Experimental Module (JEM) - Kibo Experiment Logistic Module - Pressurized Section (2008.Mar) ・ 8 racks can be installed Pressurized Module (2008. Jun) ・ Cargo storage area ・ The largest pressurized module on ISS ・ 10 payload racks can be installed ・ Various resources provided Remote Manipulator System (power, communication, thermal control, gas supply and exhaust) (2008.
    [Show full text]
  • (NTPS): a Key Space Asset for Human Exploration and Commercial Missions to the Moon
    NASA/TM—2014-218105 AIAA–2013–5465 The Nuclear Thermal Propulsion Stage (NTPS): A Key Space Asset for Human Exploration and Commercial Missions to the Moon Stanley K. Borowski Glenn Research Center, Cleveland, Ohio David R. McCurdy Vantage Partners, LLC, Brook Park, Ohio Laura M. Burke Glenn Research Center, Cleveland, Ohio October 2014 NASA STI Program . in Profi le Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientifi c and technical NASA Scientifi c and Technical Information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or cosponsored by NASA. this important role. • SPECIAL PUBLICATION. Scientifi c, The NASA STI Program operates under the auspices technical, or historical information from of the Agency Chief Information Offi cer. It collects, NASA programs, projects, and missions, often organizes, provides for archiving, and disseminates concerned with subjects having substantial NASA’s STI. The NASA STI program provides access public interest. to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports • TECHNICAL TRANSLATION. English- Server, thus providing one of the largest collections language translations of foreign scientifi c and of aeronautical and space science STI in the world. technical material pertinent to NASA’s mission. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which Specialized services also include creating custom includes the following report types: thesauri, building customized databases, organizing and publishing research results. • TECHNICAL PUBLICATION. Reports of completed research or a major signifi cant phase For more information about the NASA STI of research that present the results of NASA program, see the following: programs and include extensive data or theoretical analysis.
    [Show full text]
  • Expedition 11 Redocks Soyuz Spacecraft 19 July 2005
    Expedition 11 redocks Soyuz Spacecraft 19 July 2005 operations. The move cleared the Pirs airlock for an August spacewalk. During the walk, Krikalev and Phillips will remove materials exposure experiments, install a television camera for the European Space Agency’s cargo-carrying Automated Transfer Vehicle and relocate a cargo boom adapter. The Soyuz will be used to bring the crew home at the end of its six-month mission and could also serve as a lifeboat in the event of a Station evacuation. Source: NASA Expedition 11 Commander Sergei Krikalev and Flight Engineer John Phillips left the Space Station today and moved their Soyuz spacecraft from one docking port to another. Image above: With Expedition 11 Commander Sergei Krikalev at the controls, the Soyuz vehicle flies toward the Zarya module's docking port. Credit: NASA The Soyuz moved away from the Pirs Docking Compartment at 6:38 a.m. EDT, while the Station flew above the Atlantic Ocean east of the southern tip of South America. Redocking to the Zarya Module's Earth-facing port occurred at 7:08 a.m. EDT, over Central Asia. Krikalev guided the Soyuz as it backed away about 82 feet from Pirs. Krikalev commanded the Soyuz to fly laterally along the Station about 45 feet and rotated it to align with the Zarya’s docking port. Hooks and latches in the two docking mechanisms established a firm connection between the Soyuz and Zarya. The crew re-entered the Station at 8:20 a.m. EDT, to reconfigure systems for normal 1 / 2 APA citation: Expedition 11 redocks Soyuz Spacecraft (2005, July 19) retrieved 29 September 2021 from https://phys.org/news/2005-07-redocks-soyuz-spacecraft.html This document is subject to copyright.
    [Show full text]