1 Investigating the Relationship of Scale And

Total Page:16

File Type:pdf, Size:1020Kb

1 Investigating the Relationship of Scale And INVESTIGATING THE RELATIONSHIP OF SCALE AND RESILIENCE IN INTEGRATED WATER RESOURCE MANAGEMENT IN THE CROCODILE RIVER, SOUTH AFRICA By NATHAN BARASA WANGUSI A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2013 1 © 2013 Nathan Barasa Wangusi 2 To my parents and family who have nurtured and believed in me through the years and to my Ph.D supervisor Dr. Greg Kiker for his unwavering support, guidance and patience. 3 ACKNOWLEDGEMENTS Funding for this research was generously provided for by the Department of Agricultural and Biological Engineering at the University of Florida and fieldwork studies by the Rotary Foundation. I am grateful to my committee members; Dr. Greg Kiker for giving me academic space to explore different problems and solutions, Dr. Rafael Muñoz-Carpena and Dr. Howard Beck for ensuring I maintained technical depth and rigor in my studies and Dr. Grenville Barnes and Dr. Mark Brown for giving valuable insights on natural resource management. I am indebted to Dr. Jeff Smithers, Dr. Mark Dent, David Clark and Mark Horan of the University of Kwa-Zulu Natal Department of Bioresources Engineering and Environmental Hydrology; Dr. Tally Palmer of the Akili Initiative; Harry Biggs, Dr. Eddie Riddell and Craig Mc Loughlin of the Kruger National Park Service Scientific Services; Steven Mallory of IWR Water Resources; Sharon Pollard of the Association for Water and Rural Development; and Brian Jackson of the Inkomati Catchment Management Agency for their contributions and support during my fieldwork in South Africa. This dissertation reflects their shared knowledge, perspectives and expertise. 4 TABLE OF CONTENTS Page ACKNOWLEDGEMENTS ............................................................................................... 4 LIST OF TABLES ............................................................................................................ 8 LIST OF FIGURES ........................................................................................................ 10 LIST OF OBJECTS ....................................................................................................... 12 LIST OF ABBREVIATIONS ........................................................................................... 13 CHAPTER 1 INTRODUCTION ................................................................................................ 18 Overview of River Modeling in South Africa........................................................ 18 Research Questions, Objectives and Hypothesis ............................................... 19 Background ........................................................................................................ 21 Study Area .................................................................................................. 21 Delineation of Water Management Areas in the Inkomati Catchment ........ 22 Population and Land Use in the Crocodile River Catchment ...................... 23 Water Governance in South Africa ............................................................. 24 2 CONCEPTUAL MODEL FOR INTEGRATING KNOWLEDGE AND INFORMATION FOR THE CROCODILE RIVER CATCHMENT, SOUTH AFRICA .............................................................................................................. 32 Introduction ......................................................................................................... 32 Methodology in the Selection of Research Tools ................................................ 33 A Review of Ecological Complexity and Resilience in the Crocodile River ...................................................................................................... 33 Interactions with Water Resource Institutions ............................................. 38 Research Outcomes ........................................................................................... 42 Development of a Conceptual Map and Integrated System Tools for Estimating Ecological Effects from Flow Regimes in the Crocodile River ...................................................................................................... 42 Akili Forum Results: A General Systems Diagram of the Crocodile River .. 43 The ACRU model as a hydrological model for generating flow regimes for the Crocodile River ........................................................................... 46 Bayesian Network Development for Crocodile River .................................. 47 Discussion .......................................................................................................... 50 5 3 EVALUATING WATERSHED MODEL PERFORMANCE AT TWO SPATIAL SCALES TO AID ADAPTIVE MANAGEMENT IN THE CROCODILE RIVER CATCHMENT, SOUTH AFRICA ........................................................................ 59 Overview of Strategic Adaptive Management in the Crocodile River Catchment ..................................................................................................... 59 Study Area .......................................................................................................... 63 Research Hypothesis and Objectives ................................................................. 65 Methods and Tools ............................................................................................. 67 The Agricultural Catchment Research Unit (ACRU) model ........................ 67 Selection of Model Evaluation Indicators and Testing Criteria .................... 69 Results ............................................................................................................... 74 Evaluation of Model Performance............................................................... 74 Comparison of Results at Quaternary and Quinary Scale .......................... 75 Effects of Uncertainty in Measurement ....................................................... 78 Implications of Model Performance on River Monitoring ............................ 81 Discussion .......................................................................................................... 82 4 MODELING WATER USE DECISIONS FOR STRATEGIC ADAPTIVE MANAGEMENT USING BAYESIAN NETWORKS IN THE CROCODILE RIVER .............................................................................................................. 94 Overview of Bayesian Networks in Adaptive Management ................................ 94 Methodology ....................................................................................................... 96 Bayesian Networks ..................................................................................... 96 Constructing a Bayesian Network............................................................... 99 Problem definition ............................................................................ 99 Model inference ............................................................................. 100 Model validation ............................................................................. 101 Case Study Area Overview .............................................................................. 102 Crocodile River Bayesian Model Development ................................................ 102 Problem Definition .................................................................................... 102 Description of management environment ...................................... 102 Identify management endpoints and zones ................................... 104 Identify management alternatives .................................................. 105 Identify actors and process variables ............................................. 105 Model Inference ........................................................................................ 106 Flow ............................................................................................... 106 Ecostatus ....................................................................................... 106 Validation of Predicted Management Endpoints ....................................... 108 Ecological status ............................................................................ 108 Sectoral economy .......................................................................... 108 Sensitivity Analysis ................................................................................... 109 Application of the Model ................................................................................... 111 Impacts of Management on Assurance of Supply .................................... 111 Cost Benefit of Management Actions ....................................................... 112 Discussion ........................................................................................................ 114 6 5 CONCLUSIONS ............................................................................................... 128 APPENDIX A ACRU DATA FILES .......................................................................................... 132 B BAYESIAN NETWORK MODEL AND CASE FILES ........................................ 133 REFERENCE LIST...................................................................................................... 134 BIOGRAPHICAL SKETCH .......................................................................................... 145 7 LIST OF TABLES Table Page 2-1 Classification of variables for the Bayesian network of the Crocodile
Recommended publications
  • Insights from the Kruger National Park, South Africa
    Morphodynamic response of a dryland river to an extreme flood Morphodynamics of bedrock-influenced dryland rivers during extreme floods: Insights from the Kruger National Park, South Africa David Milan1,†, George Heritage2, Stephen Tooth3, and Neil Entwistle4 1School of Environmental Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK 2AECOM, Exchange Court, 1 Dale Street, Liverpool, L2 2ET, UK 3 Department of Geography and Earth Sciences, Aberystwyth University, Llandinam Building, Penglais Campus, Aberystwyth, SY23 3DB, UK 4School of Environment and Life Sciences, Peel Building, University of Salford, Salford, M5 4WT, UK ABSTRACT some subreaches, remnant islands and vege- the world’s population (United Nations, 2016). tation that survived the 2000 floods were re- Drylands are characterized by net annual mois- High-magnitude flood events are among moved during the smaller 2012 floods owing ture deficits resulting from low annual precipita- the world’s most widespread and signifi- to their wider exposure to flow. These find- tion and high potential evaporation, and typically cant natural hazards and play a key role in ings were synthesized to refine and extend a by strong climatic variability. Although precipi- shaping river channel–floodplain morphol- conceptual model of bedrock-influenced dry- tation regimes vary widely, many drylands are ogy and riparian ecology. Development of land river response that incorporates flood subject to extended dry periods and occasional conceptual and quantitative models for the sequencing, channel type, and sediment sup- intense rainfall events. Consequently, dryland response of bedrock-influenced dryland ply influences. In particular, with some cli- rivers are commonly defined by long periods rivers to such floods is of growing scientific mate change projections indicating the po- with very low or no flow, interspersed with in- and practical importance, but in many in- tential for future increases in the frequency frequent, short-lived, larger flows.
    [Show full text]
  • Our Glorious AFS Itinerary Jun 17 Air Is
    Our Glorious AFS Itinerary Jun 17 Air is so easy round-trip to Jo’burg (JNB)! Full details to come on this in AFS Trip Tips with info about flights, overnight options, packing, etc. We urge you to fly in a day early to arrive Jun 18. Full details to come on all air options, overnight options and packing in AFS trips tips. Day 1: Fri, Jun 19 Chisomo Safari Camp, Kruger Private Reserves Our land tour officially begins! We gather early morning at JNB Airport and fly an hour to Kruger. We arrive in time for lunch and a short rest before heading out on your first afternoon game drive. South Africa This vast country is undoubtedly one of the most culturally and geographically diverse places on earth. Fondly known by locals as the 'Rainbow Nation', South Africa has 11 official languages and its multicultural inhabitants are influenced by a fascinating mix of cultures. Discover the gourmet restaurants, impressive art scene, vibrant nightlife and beautiful beaches of Cape Town; enjoy a local braai (barbecue) in the Soweto Township; browse the bustling Indian markets in Durban; or sample some of the world’s finest wines at the myriad wine estates dotting the Cape Winelands. Some historical attractions to explore include the Zululand battlefields of KwaZulu-Natal, the Apartheid Museum in Johannesburg and Robben Island, just off the coast of Cape Town. Above all else, its remarkably untamed wilderness with its astonishing range of wildlife roaming freely across massive unfenced game reserves such as the world-famous Kruger National Park. With all of this variety on offer, it is little wonder that South Africa has fast become Africa’s most popular tourist destination.
    [Show full text]
  • Towards Improving the Assessment and Implementation of the Reserve
    Towards improving the assessment and implementation of the Reserve: Real-time assessment and implementation of the Ecological Reserve Final report WRC project K8/881/2 March 2011 Sharon Pollard1 Stephen Mallory2 Edward Riddell3 Tendai Sawunyama2 1 Association for Water & Rural Development (AWARD) 2 Water for Africa (IWR Water Resources) 3 University of KwaZulu-Natal Water Research Commission Executive Summary When the Olifants River in north-east South Africa ceased flowing in 2005, widespread calls were made for an integrated focus on all of the easterly-flowing rivers of the lowveld of South Africa. These are the Luvuvhu, Letaba, Olifants, Sabie-Sand, Crocodile and Komati Rivers in Water Management Areas 2,4 and 5. Most of these rivers appeared to be deteriorating in terms of water quantity and quality despite the 1998 National Water Act (NWA). As most of the rivers flow through Kruger National Park (KNP) and all of them form part of international systems the implications of their degradation were profound and of international significance (Pollard and du Toit 2010). The aims of this study were to assess the state of compliance with the Ecological Reserve (ER) – as a benchmark for sustainability - in these rivers and some of their tributaries. It also explored the problems associated with an assessment of compliance. In short these include the lack of planning and integration of ER determination methods with operations and the difficulties associated with real-time predictions of ER requirements. These factors severely constrain planning, monitoring and the management action to mitigate non-compliance. In South Africa, the ER is defined as a function of the natural flow which, because the natural flow in a system is not known at any point in time, is creating problems with real-time implementation.
    [Show full text]
  • Phase 1 AIA / HIA Sabie Hydro Project, Hazyview
    SPECIALIST REPORT PHASE 1 ARCHAEOLOGICAL / HERITAGE IMPACT ASSESSMENT FOR PROPOSED SABIE HYDRO POWER (PTY Ltd) PROJECT, ON PORTION 17 OF THE FARM TEVREDE 178 JT, HAZYVIEW, MPUMALANGA PROVINCE REPORT COMPILED FOR RHENGU ENVIRONMENTAL SERVICES MR. RALF KALWA P.O. Box 1046, MALELANE, 1320 Cell: 0824147088 / Fax: 0866858003 / e-mail: [email protected] SEPTEMBER 2016 ADANSONIA HERITAGE CONSULTANTS ASSOCIATION OF SOUTHERN AFRICAN PROFESSIONAL ARCHAEOLOGISTS C. VAN WYK ROWE E-MAIL: [email protected] Tel: 0828719553 / Fax: 0867151639 P.O. BOX 75, PILGRIM'S REST, 1290 1 EXECUTIVE SUMMARY A Phase 1 Heritage Impact Assessment (HIA) regarding archaeological and other cultural heritage resources was conducted on the footprint for the proposed Sabie Hydro Power project next to the Sabie River near Hazyview. The study area is located on portion 17 of the farm TEVREDE 178JT, Hazyview. The farm is situated on topographical maps, 1:50 000, 2530 BB (SABIE) & 2531 AA (KIEPERSOL), which is in the Mpumalanga Province. The study area is situated on 2530 BB SABIE. This area falls under the jurisdiction of the Ehlanzeni District Municipality, and Thaba Chweu Local Municipality. The National Heritage Resources Act, no 25 (1999)(NHRA), protects all heritage resources, which are classified as national estate. The NHRA stipulates that any person who intends to undertake a development, is subjected to the provisions of the Act. The applicants (private landowner with some shareholders) in co-operation with Rhengu Environmental Services are requesting the establishment of a hydro facility on the Sabie River near Hazyview. There was a hydro facility on the farm approximately 40 years ago and the new one will follow more or less the same route and alignment.
    [Show full text]
  • Seasonal Metal Speciation in the Sabie River Catchment, Mpumalanga, South Africa
    18th JOHANNESBURG Int'l Conference on Science, Engineering, Technology & Waste Management (SETWM-20) Nov. 16-17, 2020 Johannesburg (SA) Seasonal Metal Speciation in the Sabie River Catchment, Mpumalanga, South Africa 1,2R. Lusunzi, 1E. Fosso-Kankeu, 1F. Waanders of water. Abstract - The present study investigated the hydrochemical Various anthropogenic sources which include mining, characteristic changes of the Sabie River catchment. Water sampling agricultural activities and industrial wastewater contribute to was done in November and December (wet season, 2019) and July pollution of surface water [1], [2]. Various factors that influence (Dry season, 2020). Physicochemical parameters and metal speciation were analyzed to assess their impact on water quality and fitness for the mobility of the likely or definite contaminants from human consumption. The hydrochemical characteristics of Sabie anthropogenic activities such as mining and mineral processing catchment showed variation of quality with seasons when compared activities had been described [3] and [4]. These factors include with drinking water guidelines. Seepage from Nestor tailings storage occurrence, abundance, reactivity and hydrology. The term facility (TSF) was also collected during wet season. In both season, species had been defined as different forms of a particular aqueous metal speciation was done using the PHREEQC geochemical 2+ 2- element or its compounds [5]. For this study, the term speciation modelling code. Higher concentrations of Ca and SO4 were found in mine water while the dominant anion and cation were Mg2+ and Cl- had been used to indicate the distribution of species in samples in surface water samples. Additionally, the seasonal variation in the from the Sabie catchment.
    [Show full text]
  • River Flow and Quality
    Setting the Thresholds of Potential Concern for River Flow and Quality Rationale All of the seven major rivers which flow in an easterly direction through the Kruger National Park (KNP) originate in the higher lying areas west of the KNP where they are highly utilised (Du Toit, Rogers and Biggs 2003). The KNP lies in a relatively arid (490 mm KNP average rainfall) area and thus the rivers are a crucially important component for the conservation of biodiversity in the KNP (Du Toit, Rogers and Biggs 2003). Population growth in the eastern Lowveld of South Africa during the past three decades has brought with it numerous environmental challenges. These include, but are not limited to, extensive planting of exotic plantations, overgrazing, erosion, over-utilisation and pollution of rivers, as well as clearing of indigenous forests from large areas in the upper catchments outside the borders of the KNP. The degradation of each river varies in character, intensity and causes with a substantial impact on downstream users. The successful management of these rivers poses one of the most serious challenges to the KNP. However, over the past 10 years South Africa has revolutionised its water legislation (National Water Act, Act number 36 of 1998). This Act substantially elevated the status of the environmental needs, through defining the ecological reserve as a priority water requirement. In other words this entails water of sufficient flow and quality to maintain the integrity of the ecological system, including the water therein, for human use. With the current levels of abstraction in the upper catchments, the KNP quite simply does not receive the water quantity and quality required to maintain the in-stream biota.
    [Show full text]
  • Observations on the Distribution of Freshwater Mollusca and Chemistry of the Natural Waters in Thesouth-Eastern Transvaal and Ad
    Bull. Org. mond. Sante' 1964, 30, 389-400 Bull. Wld Hith Org. | Observations on the Distribution of Freshwater Mollusca and Chemistry of the Natural Waters in the South-eastern Transvaal and Adjacent Northern Swaziland* C. H. J. SCHUTTE I & G. H. FRANK' An extensive survey of the molluscan fauna and of the chemistry of the freshwaters of the Eastern Transvaal Lowveld has revealed no simple correlation between the two. The watersfall into fourfairly distinct andgeographically associatedgroups chiefly characterized by their calcium and magnesium content. The frequency of the two intermediate hosts of bilharziasis was found to be roughly proportional to the hardness of the water but as the latter, in this area, is associated with altitude and this again with temperature and stream gradient it is thought highly probable that the distribution of these snails is the result of the interaction of a complex offactors. None of the individual chemical constituents in any of the waters examined is regarded as outside the tolerance range of these snails. It is also concluded that under natural conditions this area would have had few waterbodies suitable for colonization by these snails but that the expansion of irrigation schemes has created ideal conditions for their rapid establishment throughout the area. Primarily, the survey reported here was intended DESCRIPTION OF THE AREA as an attempt, not so much to correlate the presence The area (Fig. 1) is bordered by the Drakensberg of snails and the chemical composition of the waters escarpment in the west, the Lebombo range in the in which they occur, as to compile general ecological east, by the Sabie river in the north and the Komati data essential to further research work on the and Black Umbuluzi rivers in the south.
    [Show full text]
  • Ecostatus of the Crocodile River Catchment, Inkomati River System
    33FRECOSTATUS OF THE CROCODILE RIVER CATCHMENT, INKOMATI RIVER SYSTEM Submitted to: INKOMATI CATCHMENT MANAGEMENT AGENCY Compiled by: MPUMALANGA TOURISM AND PARKS AGENCY Scientific Services: Aquatic & Herpetology Contributors: CJ Kleynhans (DWA); C Thirion (DWA); F Roux (MTPA); A Hoffmann (MTPA); H Marais (MTPA); G Diedericks (Environmental Biomonitoring); Editors: Francois Roux and Marcus Selepe Date: December 2013 Eco-status of the Crocodile River Catchments, Incomati River System Acknowledgements Technical contributions: • Dr Neels Kleynhans (RQS - DWA) • Christa Thirion (RQS - DWA) • Dr Andrew Deacon (SANParks) • Hendrik Sithole (SANParks) • Gerhard Diedericks (Environmental Biomonitoring) • Dr John Simaika (University of Stellenbosch) • MTPA Scientific Services Biomonitoring Team o Francois Roux o Andre Hoffmann o Hannes Marais o Ronell Niemand o Richard Similane o Heather Aspeling o Petrus Mapopha List of Abbreviations DWA - RQS = Department Water Affairs - Resource Quality Services FRAI = Fish Response Assessment Index GPS = Global Positioning System m a.s.l. = metres above sea level KNP = Kruger National Park MIRAI = Macro-invertebrate Response Assessment Index PES = Present Ecological State RHP = River Health Programme SASS5 = South African Scoring System, Version 5 SQ = Subquatenary SQR = Subquatenary River September 2013 2 Eco-status of the Crocodile River Catchments, Incomati River System 1. INTRODUCTION The ICMA appointed the MTPA as service provider to conduct biomonitoring within the Crocodile River catchment on the 2012/2013 budget to determine the Present Ecostatus of this river system. Biomonitoring in the Crocodile River was conducted during 2012/2013, with the last formal biomonitoring on the Crocodile River last being conducted during 1998 (Hill et.al. (WRC report no.850/2/01)). During the 2012/13 survey fifty-seven sites were sampled in the Crocodile River and its tributaries, including the Elands River, Houtbosloop, Lunsklip, Alex’s se loop, Noord Kaap, Suid Kaap and Queens Rivers (Figure 1).
    [Show full text]
  • Phase 1 HIA for the Farm Boerlands, Barberton
    SPECIALIST REPORT PHASE 1 ARCHAEOLOGICAL / HERITAGE IMPACT ASSESSMENT FOR THE CLEARANCE OF VEGETATION FOR THE PURPOSE OF MACADAMIA FARMING ON PORTION 3 OF THE FARM BOERLANDS 631JT, BARBERTON CITY OF MBOMBELA, MPUMALANGA PROVINCE REPORT COMPILED FOR CORE ENVIRONMENTAL SERVICES Ms. ANNE-MARI WHITE Cell: 0608781591 / e-mail: [email protected] MAY 2020 ADANSONIA HERITAGE CONSULTANTS ASSOCIATION OF SOUTHERN AFRICAN PROFESSIONAL ARCHAEOLOGISTS C. VAN WYK ROWE E-MAIL: [email protected] Tel: 0828719553 / Fax: 0867151639 P.O. BOX 75, PILGRIM'S REST, 1290 1 EXECUTIVE SUMMARY A Phase 1 Heritage Impact Assessment (HIA) regarding archaeological and other cultural heritage resources was conducted on the footprint for the proposed agricultural development on portion 3 of the farm BOERLANDS 631JT, Barberton. The study area is located approximately 15 km west of the town of Barberton, on the R38 provincial route. Topographical images of 1968 and 1984 indicate the footprint of the proposed site (maps 1:50 000, 2530 DD). This area falls under the jurisdictions of the Ehlanzeni District Municipality, and City of Mbombela local municipality, Mpumalanga Province. The National Heritage Resources Act, no 25 (1999), (NHRA), protects all heritage resources, which are classified as national estate. The NHRA stipulates that any person who intends to undertake a development, is subjected to the provisions of the Act. The applicant, MS TECK FARMING (Pty) Ltd in co-operation with CORE Environmental Services, is proposing the development of agricultural fields (macadamia) on 19.5ha of vegetation. The proposed study area is covered with invasive vegetation which restricted visibility. The specialist biodiversity report of AFRIKA ENVIRO & BIOLOGY, is of the opinion that the dominance by alien invasive vegetation on the study area is an indicator that the land was cultivated or afforested in the distant past.
    [Show full text]
  • Bushbuckridge Mpumalanga Nodal Economic Profiling Project Business Trust & Dplg, 2007 Bushbuckridge Context
    Nodal Economic Profiling Project Bushbuckridge Mpumalanga Nodal Economic Profiling Project Business Trust & dplg, 2007 Bushbuckridge Context IInn 22000011,, SSttaattee PPrreessiiddeenntt TThhaabboo MMbbeekkii aannnnoouunncceedd aann iinniittiiaattiivvee ttoo aaddddrreessss uunnddeerrddeevveellooppmmeenntt iinn tthhee mmoosstt sseevveerreellyy iimmppoovveerriisshheedd rruurraall aanndd uurrbbaann aarreeaass ((““ppoovveerrttyy nnooddeess””)) iinn SSoouutthh AAffrriiccaa,, wwhhiicchh hhoouussee aarroouunndd tteenn mmiilllliioonn ppeeooppllee.. TThhee UUrrbbaann RReenneewwaall PPrrooggrraammmmee ((uurrpp)) aanndd tthhee IInntteeggrraatteedd SSuussttaaiinnaabbllee RRuurraall Maruleng DDeevveellooppmmeenntt PPrrooggrraammmmee (isrdp) were created in 2001 to Sekhukhune (isrdp) were created in 2001 to aaddddrreessss ddeevveellooppmmeenntt iinn tthheessee Bushbuckridge aarreeaass.. TThheessee iinniittiiaattiivveess aarree Alexandra hhoouusseedd iinn tthhee DDeeppaarrttmmeenntt ooff Kgalagadi Umkhanyakude PPrroovviinncciiaall aanndd LLooccaall GGoovveerrnnmmeenntt ((ddppllgg)).. Zululand Maluti-a-Phofung Umzinyathi Galeshewe Umzimkhulu I-N-K Alfred Nzo Ukhahlamba Ugu Central Karoo OR Tambo Chris Hani Mitchell’s Plain Mdantsane Khayelitsha Motherwell UUP-WRD-Bushbuckridge Profile-301106-IS 2 Nodal Economic Profiling Project Business Trust & dplg, 2007 Bushbuckridge Bushbuckridge poverty node Activities z Research process Documents People z Overview z Economy – Overview – Selected sector: Tourism – Selected sector: Agriculture z Investment opportunities
    [Show full text]
  • Sibiya BK 25493728.Pdf
    Geo-environmental and physical risk associated with the derelict and ownerless gold mines from Transvaal- Drakensberg and Barberton Greenstone Belt Gold Fields, Mpumalanga Province, South Africa Bonginkosi Knowlege Sibiya orcid.org 0000-0002-5547-9974 Dissertation submitted in fulfilment of the requirements for the degree Masters of Science in Environmental Sciences at the North-West University Supervisor: Dr DM van Tonder Co-supervisor: Prof TC Davies Graduation July 2019 25493728 DECLARATION I, the undersigned, hereby declare that the work contained in this dissertation is my own original work and that I have not submitted in previously in its entirety or in part to any other university or intuition. Signature: Date: ii OPSOMMING Histories het myne ‘n slegte reputasie gehad vir die aanspreek van omgewings- en veiligheidskwessies tydens en na mynbou aktiwiteit. Myngebiede is gesluit sonder dat daar enige aksie onderneem is om die gebied te herstel met gevolg dat groot oop putte, ongeseëlde skagte gevul met water, verspreide besoedeling, en verlate slikdamme. Die huidige navorsing het deel gevorm van die groter nasionale projek wat gefokus het op die beoordeling van omgewings- en fisiese risiko's wat verband hou met verlate en eienaarlose myne van alle kommoditeite. Goudmyne van twee geologiese eenhede naamlik; die Barberton Greenstone Belt en die Transvaalse Drakensberg Gold Field is gekies vir die studie as 'n streeksbenadering in risiko-gradering van verlate myne uit hierdie goudvelde vir rehabilitasie prioritisering. Die primêre doel van hierdie studie was om die potensiële omgewings, openbare veiligheids, en gesondheids gevare wat deur die verlate en eienaarlose myne van die Barberton Greenstone Belt en die Transvaalse Drakensberg-goudveld gelei het, te identifiseer en te vergelyk.
    [Show full text]
  • HOW to GET to SABI SABI on the Portia Shabangu Drive (Old Kruger Gate Road) the Turn-Off to Sabi Sabi Is Approximately 37Km from Hazyview
    HOW TO GET TO SABI SABI On the Portia Shabangu Drive (Old Kruger Gate Road) the turn-off to Sabi Sabi is approximately 37km from Hazyview. Turn left onto a gravel road and follow the signs to Sabi Sabi. Little Bush Camp To Bushbuckridge To Shaws Gate Fill in form at gate Selati Camp Entrance fee payable Bush Lodge To Sabi Town Second sign 2km to Sabi Sabi Airstrip Traffic Sabie River Lights Earth Lodge N Signboard to R536 Hazyview Portia Shabangu Drive R536 (Old Kruger Gate Road) Kruger Gate/Hek 37km 4km Shopping Centre Traffic First sign Lights to Sabi Sabi To Sabi Town 2km 47km 19km At stop turn left IGNORE Nelspruit R40 White River road signs to Sabi Town KMIA KRUGER SABI SAND NATIONAL Sand PARK WiltUIN Bosbokrand Sabi Sabi Newington Gate Private Pilgrim’s Rest Shaws Gate Game Reserve Graskop R536 R533 Sabie Sabie Paul Kruger Gate Skukuza Airport Hazyview Sabie R516 Kiepersol R40 R37 R538 Plaston KRUGER NATIONAL White River Kruger PARK Mpumalanga Airport R538 Hectorspruit N4 Elandshoek Nelspruit N4 Malalane Gate DIRECTIONS TO SABI SABI From Johannesburg OR Tambo International Airport take the R21in the direction of Boksburg / East Rand. Then take the N12 towards Emalahleni (Witbank). This road becomes the N4 toll road to Nelspruit. Just after Machadodorp Toll the N4 splits with either option getting you to Nelspruit. Once in Nelspruit follow the signs to White River. A new bypass is available or you can continue into Nelspruit and take the R40 to White River. As you enter White River proceed on the main road and turn left at the 4th traffic light into Theo Kleynhans Street towards Hazyview.
    [Show full text]