Early Or Delayed Cardioversion in Recent-Onset Atrial Fibrillation

Total Page:16

File Type:pdf, Size:1020Kb

Early Or Delayed Cardioversion in Recent-Onset Atrial Fibrillation The new england journal of medicine Original Article Early or Delayed Cardioversion in Recent-Onset Atrial Fibrillation N.A.H.A. Pluymaekers, E.A.M.P. Dudink, J.G.L.M. Luermans, J.G. Meeder, T. Lenderink, J. Widdershoven, J.J.J. Bucx, M. Rienstra, O. Kamp, J.M. Van Opstal, M. Alings, A. Oomen, C.J. Kirchhof, V.F. Van Dijk, H. Ramanna, A. Liem, L.R. Dekker, B.A.B. Essers, J.G.P. Tijssen, I.C. Van Gelder, and H.J.G.M. Crijns, for the RACE 7 ACWAS Investigators*​​ ABSTRACT BACKGROUND Patients with recent-onset atrial fibrillation commonly undergo immediate restora- The authors’ full names, academic degrees, tion of sinus rhythm by pharmacologic or electrical cardioversion. However, whether and affiliations are listed in the Appen- dix. Address reprint requests to Dr. Crijns immediate restoration of sinus rhythm is necessary is not known, since atrial fibril- at the Department of Cardiology, Maas- lation often terminates spontaneously. tricht University Medical Center, P. Debye- laan 25, 6229 HX Maastricht, the Nether- METHODS lands, or at hjgm . crijns@ mumc . nl. In a multicenter, randomized, open-label, noninferiority trial, we randomly assigned *A complete list of investigators in the patients with hemodynamically stable, recent-onset (<36 hours), symptomatic atrial RACE 7 ACWAS trial is provided in the fibrillation in the emergency department to be treated with a wait-and-see approach Supplementary Appendix, available at (delayed-cardioversion group) or early cardioversion. The wait-and-see approach in- NEJM.org. volved initial treatment with rate-control medication only and delayed cardioversion Drs. Pluymaekers and Dudink contributed if the atrial fibrillation did not resolve within 48 hours. The primary end point was equally to this article. the presence of sinus rhythm at 4 weeks. Noninferiority would be shown if the lower This article was published on March 18, limit of the 95% confidence interval for the between-group difference in the primary 2019, at NEJM.org. end point in percentage points was more than −10. DOI: 10.1056/NEJMoa1900353 Copyright © 2019 Massachusetts Medical Society. RESULTS The presence of sinus rhythm at 4 weeks occurred in 193 of 212 patients (91%) in the delayed-cardioversion group and in 202 of 215 (94%) in the early-cardioversion group (between-group difference, −2.9 percentage points; 95% confidence interval [CI], −8.2 to 2.2; P = 0.005 for noninferiority). In the delayed-cardioversion group, conversion to sinus rhythm within 48 hours occurred spontaneously in 150 of 218 patients (69%) and after delayed cardioversion in 61 patients (28%). In the early- cardioversion group, conversion to sinus rhythm occurred spontaneously before the initiation of cardioversion in 36 of 219 patients (16%) and after cardioversion in 171 patients (78%). Among the patients who completed remote monitoring during 4 weeks of follow-up, a recurrence of atrial fibrillation occurred in 49 of 164 pa- tients (30%) in the delayed-cardioversion group and in 50 of 171 (29%) in the early- cardioversion group. Within 4 weeks after randomization, cardiovascular compli- cations occurred in 10 patients and 8 patients, respectively. CONCLUSIONS In patients presenting to the emergency department with recent-onset, symptomatic atrial fibrillation, a wait-and-see approach was noninferior to early cardioversion in achieving a return to sinus rhythm at 4 weeks. (Funded by the Netherlands Organization for Health Research and Development and others; RACE 7 ACWAS ClinicalTrials.gov number, NCT02248753.) n engl j med nejm.org 1 The New England Journal of Medicine Downloaded from nejm.org by JESUS DE JUAN MONTIEL on March 18, 2019. For personal use only. No other uses without permission. Copyright © 2019 Massachusetts Medical Society. All rights reserved. The new england journal of medicine atients with recent-onset, symptom- to submit it for publication. The authors had un- atic atrial fibrillation commonly undergo restricted access to the data and vouch for the Pimmediate restoration of sinus rhythm by accuracy and completeness of the data and analy- means of pharmacologic or electrical cardiover- ses and for the fidelity of the trial to the protocol. sion.1-3 However, it is questionable whether im- mediate restoration of sinus rhythm is necessary, Patients since atrial fibrillation often terminates sponta- From October 2014 through September 2018, we neously.4-9 Alternatively, a wait-and-see approach enrolled adults (≥18 years of age) who had pre- that includes the administration of rate-control sented to the emergency department with hemo- medication and delayed cardioversion only if nec- dynamically stable, symptomatic, recent-onset essary may avoid hospitalization and overtreat- (<36 hours), first-detected or recurrent atrial fi- ment. Therefore, we conducted a multicenter, brillation, without signs of myocardial ischemia randomized trial, RACE 7 ACWAS (Rate Control or a history of persistent atrial fibrillation (for the versus Electrical Cardioversion Trial 7–Acute Car- purpose of this trial defined as lasting for >48 dioversion versus Wait and See), to find out wheth- hours). All the patients qualified as being candi- er a wait-and-see approach would be noninferior dates for either a wait-and-see approach or early to early cardioversion for obtaining sinus rhythm. cardioversion. Previous cardioversion did not ex- clude a patient from the trial. Details regarding Methods the inclusion and exclusion criteria are provided in Table S1 in the Supplementary Appendix, avail- Trial Oversight able at NEJM.org. We conducted this noninferiority trial in the car- diology departments of 15 hospitals in the Neth- Randomization and Treatment erlands, including 3 academic hospitals, 8 non- Patients were randomly assigned in a 1:1 ratio to academic teaching hospitals, and 4 nonteaching the wait-and-see approach (delayed-cardioversion hospitals. The trial was initiated by the investiga- group) or to standard care of early cardioversion tors and coordinated by the Maastricht University (early-cardioversion group). Randomization was Medical Center. The trial was approved by the performed with the use of a centralized Web-based institutional review board at the medical center; system. Patients and attending physicians were the review board at each of the participating sites aware of the trial-group assignments. approved the protocol (available with the full text The wait-and-see approach consisted of the of this article at NEJM.org). A detailed overview administration of rate-control medication, in- of the trial design has been reported previously.10 cluding intravenous or oral β-adrenergic–recep- All the patients provided written informed consent. tor blocking agents, nondihydropyridine calcium- Staff members of the independent Clinical channel blockers, or digoxin. These medications Trial Center Maastricht performed the trial moni- were given in increasing doses to obtain relief of toring and data management. The trial was sup- symptoms and a heart rate of 110 beats per min- ported by the Netherlands Organization for Health ute or less.11 Patients were discharged when their Research and Development–Health Care Efficiency condition was determined to be clinically stable. Research Program and Maastricht University Med- An outpatient clinic visit was planned for the next ical Center. Boehringer Ingelheim provided some day, as close as possible to 48 hours after the devices for remote monitoring of patients by onset of symptoms. At this visit, the heart rhythm electrocardiography (ECG) but had no role in the was reassessed on a 12-lead ECG. If atrial fibril- design or execution of the trial; company represen- lation was still present, patients were referred to tatives did not review the protocol or the manu- the emergency department for delayed cardio- script. Investigators from the Department of Cardi- version. ology affiliated with the Heart and Vascular Center Early cardioversion consisted of pharmacolog- at the Maastricht University Medical Center de- ic cardioversion, preferably with flecainide. Elec- signed the trial, collected and managed the data, trical cardioversion was performed in patients with and performed the statistical analyses. The writ- contraindications to pharmacologic cardioversion ing committee wrote the manuscript, and all the and in patients with previous or current unsuc- steering committee members made the decision cessful pharmacologic cardioversion. Patients were 2 n engl j med nejm.org The New England Journal of Medicine Downloaded from nejm.org by JESUS DE JUAN MONTIEL on March 18, 2019. For personal use only. No other uses without permission. Copyright © 2019 Massachusetts Medical Society. All rights reserved. Early or Delayed Cardioversion in Atrial Fibrillation discharged when their condition was determined of atrial fibrillation. Cardiovascular complications to be clinically stable. were defined as events leading to an emergency In patients with a high risk of stroke who had department visit or hospital admission and in- not received previous anticoagulation, such treat- cluded heart failure, ischemic stroke, transient ment was initiated before or immediately after ischemic attack, unstable angina or acute coronary cardioversion.1,12 Transesophageal echocardiogra- syndrome, symptomatic bradycardia or tachycar- phy was not performed in any patient. Long-term dia, or hypotension. At the 4-week follow-up visit, oral anticoagulation was continued in accordance we assessed the patients’ quality of life using the with
Recommended publications
  • Left Ventricular Wall Findings in Non-Electrocardiography-Gated CE-CT After ECPR Might Be Useful for Diagnosis and Prognostic Prediction
    Sugiyama et al. Critical Care (2019) 23:357 https://doi.org/10.1186/s13054-019-2624-1 RESEARCH Open Access Left ventricular wall findings in non- electrocardiography-gated contrast- enhanced computed tomography after extracorporeal cardiopulmonary resuscitation Kazuhiro Sugiyama1* , Masamichi Takahashi2, Kazuki Miyazaki1, Takuto Ishida1, Mioko Kobayashi1 and Yuichi Hamabe1 Abstract Background: Few studies have reported left ventricular wall findings in contrast-enhanced computed tomography (CE-CT) after extracorporeal cardiopulmonary resuscitation (ECPR). This study examined left ventricular wall CE-CT findings after ECPR and evaluated the association between these findings and the results of coronary angiography and prognosis. Methods: We evaluated out-of-hospital cardiac arrest patients who were treated with ECPR and subsequently underwent both non-electrocardiography-gated CE-CT and coronary angiography at our center between January 2011 and April 2018. Left ventricular wall CE-CT findings were classified as follows: (1) homogeneously enhanced (HE; the left ventricular wall was homogeneously enhanced), (2) segmental defect (SD; the left ventricular wall was not segmentally enhanced according to the coronary artery territory), (3) total defect (TD; the entire left ventricular wall was not enhanced), and (4) others. Successful weaning from extracorporeal membrane oxygenation, survival to hospital discharge, and predictive ability of significant stenosis on coronary angiography were compared among patients with HE, SD, and TD patterns. Results: A total of 74 patients (median age, 59 years) were eligible, 50 (68%) of whom had initial shockable rhythm. Twenty-three (31%) patients survived to hospital discharge. HE, SD, TD, and other patterns were observed in 19, 33, 11, and 11 patients, respectively. The rates of successful weaning from extracorporeal membrane oxygenation (84% vs.
    [Show full text]
  • Sparse-Input Detection Algorithm with Applications in Electrocardiography and Ballistocardiography
    Sparse-input Detection Algorithm with Applications in Electrocardiography and Ballistocardiography ;1 ;1 2 1 1 F. Wadehn∗ , L. Bruderer∗ , D. Waltisberg , T. Keresztfalvi and H.-A. Loeliger 1 Signal and Information Processing Laboratory, ETH Zurich, Gloriastrasse 35, Zurich, Switzerland 2 Institut fuer Elektronik, ETH Zurich, Gloriastrasse 35, Zurich, Switzerland Keywords: Ballistocardiography, Heart Rate Estimation, Hypothesis Test, Factor Graphs, System identification, State- space Models, Maximum likelihood, Maximum a posteriori. Abstract: Sparse-input learning, especially of inputs with some form of periodicity, is of major importance in bio- signal processing, including electrocardiography and ballistocardiography. Ballistocardiography (BCG), the measurement of forces on the body, exerted by heart contraction and subsequent blood ejection, allows non- invasive and non-obstructive monitoring of several key biomarkers such as the respiration rate, the heart rate and the cardiac output. In the following we present an efficient online multi-channel algorithm for estimating single heart beat positions and their approximate strength using a statistical hypothesis test. The algorithm was validated with 10 minutes long ballistocardiographic recordings of 12 healthy subjects, comparing it to synchronized surface ECG measurements. The achieved mean error rate for the heart beat detection excluding movement artifacts was 4:7%. 1 INTRODUCTION Early signal-processing methods for BCG signals (Watanabe et al., 2005; Mack et al., 2009) concerned Cardiovascular diseases are among the leading causes estimation of heart rates averaged over a few sec- of death and severe health impairments both in high- onds using frequency-based methods. These meth- income countries with an aging population, as well ods do not provide beat-to-beat resolution or infor- as in developing countries, which are increasingly mation on irregular arrhythmias.
    [Show full text]
  • 2Nd Quarter 2001 Medicare Part a Bulletin
    In This Issue... From the Intermediary Medical Director Medical Review Progressive Corrective Action ......................................................................... 3 General Information Medical Review Process Revision to Medical Record Requests ................................................ 5 General Coverage New CLIA Waived Tests ............................................................................................................. 8 Outpatient Hospital Services Correction to the Outpatient Services Fee Schedule ................................................................. 9 Skilled Nursing Facility Services Fee Schedule and Consolidated Billing for Skilled Nursing Facility (SNF) Services ............. 12 Fraud and Abuse Justice Recovers Record $1.5 Billion in Fraud Payments - Highest Ever for One Year Period ........................................................................................... 20 Bulletin Medical Policies Use of the American Medical Association’s (AMA’s) Current Procedural Terminology (CPT) Codes on Contractors’ Web Sites ................................................................................. 21 Outpatient Prospective Payment System January 2001 Update: Coding Information for Hospital Outpatient Prospective Payment System (OPPS) ......................................................................................................................... 93 he Medicare A Bulletin Providers Will Be Asked to Register Tshould be shared with all to Receive Medicare Bulletins and health care
    [Show full text]
  • Electrocardiography: a Technologist's Guide to Interpretation
    CONTINUING EDUCATION Electrocardiography: A Technologist’s Guide to Interpretation Colin Tso, MBBS, PhD, FRACP, FCSANZ1,2, Geoffrey M. Currie, BPharm, MMedRadSc(NucMed), MAppMngt(Hlth), MBA, PhD, CNMT1,3, David Gilmore, ABD, CNMT, RT(R)(N)3,4, and Hosen Kiat, MBBS, FRACP, FACP, FACC, FCCP, FCSANZ, FASNC, DDU1,2,3,5 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia; 2Cardiac Health Institute, Sydney, New South Wales, Australia; 3Faculty of Science, Charles Sturt University, Wagga Wagga, New South Wales, Australia; 4Faculty of Medical Imaging, Regis College, Boston, Massachusetts; and 5Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia CE credit: For CE credit, you can access the test for this article, as well as additional JNMT CE tests, online at https://www.snmmilearningcenter.org. Complete the test online no later than December 2018. Your online test will be scored immediately. You may make 3 attempts to pass the test and must answer 80% of the questions correctly to receive 1.0 CEH (Continuing Education Hour) credit. SNMMI members will have their CEH credit added to their VOICE transcript automatically; nonmembers will be able to print out a CE certificate upon successfully completing the test. The online test is free to SNMMI members; nonmembers must pay $15.00 by credit card when logging onto the website to take the test. foundation for understanding the science of electrocardiog- The nuclear medicine technologist works with electrocardio- raphy and its interpretation. graphy when performing cardiac stress testing and gated cardiac imaging and when monitoring critical patients.
    [Show full text]
  • Guide to Exercise Electrocardiogram
    Guide to the Exercise Electrocardiogram (The Treadmill Stress Test) An exercise stress test is performed to evaluate heart rate, heart rhythm, blood pressure and electrocardiographic (ECG) responses to progressive exercise. You do not need to be an athlete or to be trained to have this test for evaluation of your cardiovascular system, but you do need to be able to walk without support. The exercise ECG is used to evaluate the adequacy of blood supply to the heart during exercise that may be symptomatic or asymptomatic and to assess the extent of limitation of blood supply to the heart in people with known coronary artery disease. The test is also used to quantify effort capacity, to evaluate the effect of medications on symptoms and effort tolerance, to assess general health and prognosis, and to evaluate the heart rate and blood pressure responses to exercise before surgical procedures and before entry into programs of cardiac rehabilitation. Imaging of the heart with echocardiography or with radionuclide agents is not performed during basic exercise ECG unless prearranged by the referring physician. Pre-Registration and Testing Location Please call 2 days before the date your test is scheduled to confirm your appointment. At this time we can also answer questions you may have. Please have your referring physician complete the order form. Plan to arrive 20 minutes before the scheduled time of your test. Bring your hospital and insurance cards with you. Go directly to the test location. NewYork-Presbyterian Hospital/Weill Cornell Medical Center 212-746-4670 Exercise ECG Laboratory Starr Pavilion 520 East 70th Street, east of York Avenue New York, NY 10021 Take the Starr elevators to the 4th floor, follow the signs to room K-425.
    [Show full text]
  • Echocardiography to Supplement Stress Electrocardiography in Emergency Department Chest Pain Patients
    Original research Echocardiography to Supplement Stress Electrocardiography in Emergency Department Chest Pain Patients Mark I. Langdorf, MD, MHPE* * University of California, Irvine, Department of Emergency Medicine, Irvine, CA Eric Wei, MD† † University of Michigan, Ann Arbor, MI Ali Ghobadi, MD* Scott E. Rudkin, MD, MBA* Shahram Lotfipour, MD, MPH* Supervising Section Editor: David E. Slattery, MD Submission history: Submitted July 18, 2009; Revision Received February 21, 2010; Accepted March 24, 2010 Reprints available through open access at http://escholarship.org/uc/uciem_westjem Introduction: Chest pain (CP) patients in the Emergency Department (ED) present a diagnostic dilemma, with a low prevalence of coronary disease but grave consequences with misdiagnosis. A common diagnostic strategy involves ED cardiac monitoring while excluding myocardial necrosis, followed by stress testing. We sought to describe the use of stress echocardiography (echo) at our institution, to identify cardiac pathology compared with stress electrocardiography (ECG) alone. Methods: Retrospective cohort study of 57 urban ED Chest Pain Unit (CPU) patients from 2002- 2005 with stress testing suggesting ischemia. Our main descriptive outcome was proportion and type of discordant findings between stress ECG testing and stress echo.The secondary outcome was whether stress echo results appeared to change management. Results: Thirty-four of 57 patients [59.7%, 95% confidence interval (CI) 46.9-72.4%] had stress echo results discordant with stress ECG results. The most common discordance was an abnormal stress ECG with a normal stress echo (n=17/57, 29.8%, CI 17.9-41.7%), followed by normal stress ECG but with reversible regional wall-motion abnormality on stress echo (n = 10/57, 17.5%, CI 7.7- 27.4%).
    [Show full text]
  • Computer Processing of the Orthogonal Electrocardiogram and Vectorcardiogram
    Physiol. Res. 43: 95-98, 1993 Computer Processing of the Orthogonal Electrocardiogram and Vectorcardiogram L. BACHÂROVÀ Research Institute of Medical Informatics, Bratislava Summary The aim of this contribution was to review the possibilities of presentation of orthogonal ECG signals and to evaluate the progress in computerized electrocardiography achieved in Czechoslovakia. The information about the cardiac electric field in orthogonal electrocardiography is defined and consequently displayed as a fixed single dipole (vector). The spatial trajectory of vector end-point (spatial vectorcardiographic loop) can be presented in different ways — as orthogonal electrocardiogram, polarcardiogram, planar vectorcardiogram and decartogram, respectively. The advantages of particular methods of presentation, as well as their limitations are discussed. Computer-assisted electrocardiography was introduced in Czechoslovakia in 1974. The original AVA program has been further developed in the Research Institute of Medical Informatics (formerly Research Institute of Medical Bionics). The currently developed system CardioSys allows the utilization of all the possibilities of orthogonal ECG and vectorcardiographic presentation for clinical and epidemiological cardiology as well as for the research. Key words Orthogonal Electrocardiography - Vectorcardiography - Computer analysis The electrographic signal provides are the physiological source of electrocardiographic irreplaceable information about the status and activity potentials. The front of myocardial depolarization is in of the heart. In current clinical practice, it is mostly fact an electrical double-layer and, as such, may be registered by means of a standard 12-lead ECG system. represented by a set of regularly spaced unit vectors. However, the information obtained in this way is The vectorial sum of these unit vectors gives the characterized by a considerable redundancy.
    [Show full text]
  • June-July 2000 Part a Bulletin
    In This Issue... Disclosure of Itemized Statement Providers Must Furnish an Itemmized Statement when Requested in Writing by the Beneficiary .................................................................................................... 6 Prospective Payment System The Outpatient Code Editor Software Has Been Modified in Preparation for the Implementation of Outpatient Prospective Payment System ........................... 8 Reclassification of Certain Urban Hospitals Certain Urban Hospitals in the State of Florida May Be Permitted to Be Reclassified as Rural Hospitals................................................................................ 13 ulletin Final Medical Review Policies 33216, 53850, 70541, 82108, 83735, 87621, 93303, 94010, 95004, A0320, J0207, J2430, J2792, J3240, J7190, and J9999 .......................................... 15 B Payment of Skilled Nursing Facility Claims Involving a Terminating Medicare+Choice Plan Payment of Skilled Nursing Facility Care for Beneficiaries Involuntarily Disenrolling from M+C plans Who Have Not Met the 3-Day Stay Requirement ........................................................................................... 67 Features From the Medical Director 3 Administrative 4 lease share the Medicare A roviders PBulletin with appropriate General Information 5 members of your organization. Outpatient Prospective Payment System 7 Routing Suggestions: General Coverage 12 o Medicare Manager Hospital Services 13 o Reimbursement Director Local and Focused Medical Policies 15 o Chief Financial
    [Show full text]
  • Quantitative Electrocardiography for Prediction Of
    QUANTITATIVE ELECTROCARDIOGRAPHY FOR PREDICTION OF POSTOPERATIVE ATRIAL FIBRILLATION AFTER CARDIAC SURGERY by FLORIAN RADER, M.D. Submitted in partial fulfillment of the requirements For the degree of Master of Science Clinical Research Scholars Program CASE WESTERN RESERVE UNIVERSITY January 2010 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Florian Rader, M.D. candidate for the Master of Science degree*. (signed) Regis E. McFadden (chair of the committee) Eugene H. Blackstone, M.D. Ottorino Costantini, M.D. Neal Dawson, M.D. (date) 10-28-2009 *We also certify that written approval has been obtained for any proprietary material contained therein. 2 Table of Contents List of Tables 4 List of Figures 5 Acknowledgments 6 List of Abbreviations 7 Abstract 9 Text Background and Significance 10 Specific aims 12 Methods 13 Results 21 Discussion 46 Limitations 54 Conclusions 54 References 55 3 List of Tables: Table 1: Patient characteristics 24 Table 2: Clinical predictors of postoperative atrial fibrillation 37 Table 3: ECG predictors of postoperative atrial fibrillation 38 4 List of Figures: Figure 1: Relationship of anatomic and ECG changes with POAF 11 Figure 2: Patient flow chart 22 Figure 3: Occurrence of POAF by days after surgery 33 Figure 4: Occurrence of POAF by surgery type 34 Figure 5: ROC curve of final prediction model 35 Figure 6: Calibration curve of final prediction model 36 Figure 7: Adjusted Co-plots of ECG predictors 39 Figure 8: Unadjusted and adjusted co-plot of P wave amplitude 41 Figure 9: Nomogram of final prediction model 42 Figure 10: Nomogram of prediction model with pre-op variables 43 Figure 11: Calibration curve of model without ECG predictors 45 Figure 12: Left atrial sizes by P wave amplitude in aVR 48 Figure 13: Correlation matrix (P wave amplitude, aVR, and left atrial volume) 49 5 Acknowledgments: I thank Dr.
    [Show full text]
  • NC Medicaid: 1R-4, Electrocardiography
    NC Medicaid Medicaid and Health Choice Electrocardiography, Clinical Coverage Policy No.: 1R-4 Echocardiography, and Amended Date: March 15, 2019 Intravascular Ultrasound To all beneficiaries enrolled in a Prepaid Health Plan (PHP): for questions about benefits and services available on or after November 1, 2019, please contact your PHP. Table of Contents 1.0 Description of the Procedure, Product, or Service ........................................................................... 1 1.1 Electrocardiography ............................................................................................................ 1 1.1.1 Electrocardiogram .................................................................................................. 1 1.1.2 Cardiovascular Stress Test ..................................................................................... 1 1.1.3 Microvolt T-wave Alternans .................................................................................. 1 1.1.4 Holter Monitor ....................................................................................................... 1 1.1.5 Cardiac (Ambulatory) Event Monitors .................................................................. 1 1.2 Echocardiography ............................................................................................................... 2 1.2.1 Transthoracic Echocardiography (TTE) ................................................................ 2 1.2.2 Transesophageal Echocardiography (TEE) ..........................................................
    [Show full text]
  • Chapter 2 the Electrocardiogram
    THE ESC TEXTBOOK OF CARDIOVASCULAR MEDICINE 2nd edition 17 Spodick DH. Differential characteristics of the C h a p t e r 2 The Electrocardiogram electrocardiogram in early repolarization and acute pericarditis. N Engl J Med 1976; 295 : 523–6. Francisco G. Cosío, José Palacios, 18 Watanabe Y. Purkinje repolarization as a possible cause of the Agustín Pastor, and Ambrosio Núñez U wave in the electrocardiogram. Circulation 1975; 51 : 1030–7. 19 Voukydis PC. Effect of intracardiac blood on the electrocardiogram. N Engl J Med 1974; 291 : 612–16. 20 Thomas P, Dejong D. The P wave in the electrocardiogram in the diagnosis of heart disease. Br Heart J 1954; 16 : 241–54. References 21 Kaplan JD, Evans T Jr, Foster E, et al . Evaluation of electrocardiographic criteria for right atrial enlargement by 1 Grant RP. Clinical Electrocardiography: The Spatial Vector quantitative two-dimensional echocardiography. J Am Coll Approach , 1957. New York: McGraw Hill. Cardiol 1994; 23 : 747–52. 2 Sodi D, Bisteni A, Medrano G. Electrocardiografi a y 22 Reeves WC, Hallahan W, Schwitter EJ, et al . Two-dimensional Vectorcardiografi a Deductivas , Vol. I, 1964. México DF: La echocardiographic assessment of ECG criteria for right atrial Prensa Médica Mexicana. enlargement. Circulation 1981; 64 : 387–91. 3 Rosenbaum MB, Elizari MV, Lazzari JO. The Hemiblocks , 1970. 23 Sgarbossa EB, Wagner G. Electrocardiography. In Topol EJ Oldsmar, FL: Tampa Tracings. (ed) Textbook of Cardiovascular Medicine , 2007. Philadelphia, 4 Cranefi eld PF. The Conduction of the Cardiac Impulse , 1975. PA: Lippincott Williams & Wilkins, pp.977–1011. Mount Kisko. NY: Futura. 24 Hazen MS, Marwick TH, Underwood DA.
    [Show full text]
  • The History of Vectorcardiography*
    Medical History, Supplement No. 5, 1985: 103-131 THE HISTORY OF VECTORCARDIOGRAPHY* by GEORGE E. BURCH** Vectorcardiography (VCG) is a part of electrocardiography (ECG). The vectorcardiogram displays the various complexes of the electrocardiogram, i.e. QRS, P and T complexes, in the form of "loops" which are determined from vectors representing successive instantaneous mean electric forces from the heart throughout an entire cardiac cycle. Since the heart is a three-dimensional structure, the electric forces from the heart during each heartbeat are oriented three-dimensionally and, therefore, can be represented by a time sequence ofvectors which display the magnitude and direction of these mean electric forces. Anyone who knows the fundamental and theoretical aspects of electrocardiography and knows clinical cardiology and employs electrocardiographs with high frequency response and good fidelity can visualize the detailed configuration of the vectorcardiogram from the electrocardiogram. The electrocardiogram displays the same information as the vectorcardiogram and even provides other information not readily available from the vectorcardiogram, especially temporal phenomena and disorders in cardiac rhythm. Nevertheless, vectorcardiography has developed as a result of the efforts of many investigators who were interested in the use of vector analysis of the cardiac electric potentials recorded from the surface of the body. Such investigations have contributed a great deal to a better understanding of electrocardiography and aspects of electrophysiology. Since the time sequence, magnitude, and spatial direction of the instantaneous mean vectors are determined by the order of depolarization and repolarization of the atria and ventricles which, in turn, are affected by the clinical state of the myocardium, it was considered that the spatial vectorcardiogram could be useful in learning more about the electrophysiology of the heart in normal and diseased states.
    [Show full text]