Constrictive Pericarditis

Total Page:16

File Type:pdf, Size:1020Kb

Constrictive Pericarditis Central Journal of Cardiology & Clinical Research Research Article *Corresponding author Prof. Sushil K Singh, Professor and Head, Department of Cardiovascular and Thoracic surgery, King George’s Constrictive Pericarditis - A Medical University, Lucknow, 226003, India, Tel and Fax: 91-522-2258830; Email: [email protected] Submitted: 30 July 2020 Long Term Surgical Experience Accepted: 14 August 2020 Published: 18 August 2020 Sarvesh Kumar, Vivek Tewarson, Mohammad Zeeshan Hakim, Copyright Shobhit Kumar, and Sushil K Singh* © 2020 Kumar S, et al. OPEN ACCESS Department of Cardiovascular and Thoracic Surgery, King George’s Medical University, India Keywords • Constrictive Pericarditis; Tuberculosis; Pericardiectomy; Surgical technique Abstract Introduction: Chronic constrictive pericarditis is a significant cause for diastolic dysfunction of the heart. Tuberculosis is considered a significant etiology in developing countries, whereas idiopathic cases are most common world-wide. Although pericardiectomy is an established procedure for chronic constrictive pericarditis, the extent of resection and utility of cardiopulmonary bypass is still debatable. The aim of this study was to study the feasibility and surgical outcomes of pericardiectomy for this disease in a large patient group in today’s scenario. Materials & methods: We retrospectively analyzed data of all patients who underwent pericardiectomy at our center between 2005 to 2019. We collected data of precise etiopathology of constrictive pericarditis. Analysis of surgical approach and outcomes was done. Inclusion criteria involved all consecutive patients with a diagnosis of constrictive pericarditis. Results: A total of 311 patients underwent pericardiectomy. Good surgical outcomes were demonstrated. There was a significant improvement in the functional status after surgery. Tuberculosis was the predominant etiology as seen in 48.23% cases, while idiopathic cases constituted 42.12%. Adequate removal of pericardium in all cases was possible without resorting to cardiopulmonary bypass and 23.15% patients could be operated through left antero- lateral thoracotomy. In-hospital mortality was 1.6%. Conclusion: Tubercular pericarditis is still a common etiology of pericardial disease in our set-up and pericardiectomy carried out without use cardiopulmonary bypass can achieve excellent results for such cases. ABBREVIATIONS etiology in the developing countries and in immunosuppressed CCP: Chronic Constrictive Pericarditis; ECG: Electrocardiography; TTE: Trans-Thoracic Echocardiography; individuals [2-7]. AF: Atrial Fibrillation; CT: Computed Tomography; CMR: and diminished cardiac output, and include dyspnea, increased Clinical signs and symptoms arise as a result of fluid overload Cardiac Magnetic Resonance; 2D Echo: Two-Dimensional jugular venous pressure, hypotension, pulsus paradoxus, Echocardiography; CPB: Cardiopulmonary Bypass; LV: Left ascites, pleural effusion or cachexia. Diagnostic modalities Ventricle; RV: Right Ventricle; CVP: Central Venous Pressure; formuffled the heartinitial sounds, diagnosis Kussmaul’s include sign, Electrocardiography pericardial knock, edema,(ECG), ICU: Intensive Care Unit; NYHA: New York Heart Association; SD: chest radiograph and trans-thoracic echocardiography (TTE). Standard Deviation; IVC: Inferior Vena Cava While chest radiograph may show only effusion, pericardial INTRODUCTION calcification may also be present. Low voltage complexes are associated with a variety of causes. Chronic Constrictive pericarditis.noted on ECG Other and atrial modalities fibrillation such (AF) as iscomputed also seen intomographic 30% cases. PericarditisInflammation (CCP), of is the the pericardium end result orof pericarditischronic scarring has beenand (CT),TTE isor the cardiac first linemagnetic investigation resonance for diagnosis(CMR) imaging of constrictive provide additional information when needed such as the extent of inflammation of the pericardium, that leads to eventual pericardiectomy is an established procedure for CCP, the extent whichthickening, leads fibrosisto progressive and calcification diastolic dysfunction of the pericardial and eventually, sac [1]. ofpericardial resection thickening, and utility ofcalcification cardiopulmonary and scarring bypass [8-10]. often Althoughbecomes This inelastic pericardium prevents adequate diastolic filling, debatable. The aim of this study was to study the feasibility and as one of the most common aetiologies of constrictive pericarditis surgical outcomes of pericardiectomy for this disease in a large heart failure [2,3]. Idiopathic or viral pericarditis has been cited world-wide. Tuberculosis is considered to be a significant patient group in today’s scenario. Cite this article: Kumar S, Tewarson V, Hakim MZ, Kumar S, Singh SK (2020) Constrictive Pericarditis - A Long Term Surgical Experience. J Cardiol Clin Res 8(2): 1153. Kumar S, et al. (2020) Central MATERIALS AND METHODS Post-operative management- The patients were shifted un-reversed from general anesthesia to the cardiac surgical This was a retrospective study of patients and their surgical Intensive Care Unit (ICU), where invasive monitoring was continued, and ionotropic and ventilator support was carried on. our institution. Weaning off ventilatory support and subsequent extubation was outcome for pericardiectomy from 2004 to 2019 (15 years), at Inclusion criteria involved all consecutive patients with a done according to protocol. Routine histopathology and tissue / diagnosis of constrictive pericarditis. Preoperative Evaluation-All patients underwent preoperative fluidIn cultures known werecases sent. of tubercular pericarditis, if the patient had evaluation with two-dimensional echocardiography (2D Echo), already completed a course of anti-tubercular therapy, new course was not started. In others, anti-tubercular therapy was and chest X-ray. Routine pre-operative blood work-up, evaluation started only when the pericardial biopsy was positive or there for tuberculosis and electrocardiography (ECG), was done. was strong clinical evidence of active tuberculosis. These patients Surgical technique -A full informed consent was taken from received 6 months of antitubercular therapy as per Revised each patient prior to surgery. Part preparation and draping National Tuberculosis Programme guidelines. Follow up was was done in the standard manner for cardiac surgery, with the groins available if emergency cardiopulmonary bypass scheduled for 10 days and 1, 6 and 12-months and then yearly for 5 yearsStatistical respectively Analysis- to assess The statistical the outcomes analysis of patients. was done using of our case. Pericardiectomy was performed through either statistical software -Statistical Product and Service Solutions (CPB), should become necessary, which wasn’t required in any a median sternotomy or a left anterolateral thoracotomy. (IBM SPSS®) for Windows® Median sternotomy provided good access to the right ventricle, right atrium, and great vessels, including the caval–right atrial Version 19.0. Paired t-test and Chi junctions and thus enabled a good clearance of the diseased patients.square Test There were was used no controlto assess group data in(p this value study of less as thisthan was 0.05 a pericardium from phrenic nerve to phrenic nerve. The left retrospectivehas been considered observational significant) study. for our sample size of 311 anterolateral thoracotomy was employed for infected-purulent cases as in effusive constrictive pericarditis, in order to avoid RESULTS sternal infections postoperatively. The conventional approach was to decorticate the Left As depicted in Table 1, a total of 311 patients underwent Ventricle (LV), before the Right Ventricle (RV), to avoid andpericardiectomy the majority at wereour centermale. overProgressive 15 years. dyspnea The mean was agethe pulmonary edema but this was not always easy to perform on commonestof patients undergoingpresentation. the Almost procedure all patientswas 26.53 had ± 18.23raised yearsCVP, a beating heart. After freeing the mid-anterior part using sharp and blunt dissection techniques, dissection proceeded laterally on both right and left sides. During this stage, the aim was to while pulsus paradoxus was present in 32.15% cases. Chest X-ray offindings cases respectively.included congestion 2D-Echo in revealed 21.86% pericardialcases, while thickening presence inof calcification (Figure 1), and effusion were seen in 4.5% and 3.54% attentioncautiously to find the acoronary dissection arteries plane whose between visibility the epicardiumduring the procedureand the fibrotic-constricted was ensured throughout parietal by pericardiumensuring correct by paying depth 95% cases while 23.15% cases had pericardial effusion. Septal of the dissection plane. When access to the correct dissection bounce was noted in 95.18% cases and 88.10% had ventricular plane was attained, better diastolic relaxation of the heart was septal shift. A large number of patients (96.46%), had diastolic reversalPerioperative in hepatic data vein isflow. depicted in Table 2 where it is seen there was hemodynamic relief. The lateral extent of dissection observed after removal of the fibrotic parietal pericardium & thoracotomy approach, while the rest were operated through conventionalthat 23.15% patients median were sternotomy operated for through pericardiectomy. a left antero-lateral While dissection lateral to the main pulmonary artery was avoided. This was aboutdone to1 cmprevent anterior
Recommended publications
  • Guidelines on the Diagnosis and Management of Pericardial
    European Heart Journal (2004) Ã, 1–28 ESC Guidelines Guidelines on the Diagnosis and Management of Pericardial Diseases Full Text The Task Force on the Diagnosis and Management of Pericardial Diseases of the European Society of Cardiology Task Force members, Bernhard Maisch, Chairperson* (Germany), Petar M. Seferovic (Serbia and Montenegro), Arsen D. Ristic (Serbia and Montenegro), Raimund Erbel (Germany), Reiner Rienmuller€ (Austria), Yehuda Adler (Israel), Witold Z. Tomkowski (Poland), Gaetano Thiene (Italy), Magdi H. Yacoub (UK) ESC Committee for Practice Guidelines (CPG), Silvia G. Priori (Chairperson) (Italy), Maria Angeles Alonso Garcia (Spain), Jean-Jacques Blanc (France), Andrzej Budaj (Poland), Martin Cowie (UK), Veronica Dean (France), Jaap Deckers (The Netherlands), Enrique Fernandez Burgos (Spain), John Lekakis (Greece), Bertil Lindahl (Sweden), Gianfranco Mazzotta (Italy), Joa~o Morais (Portugal), Ali Oto (Turkey), Otto A. Smiseth (Norway) Document Reviewers, Gianfranco Mazzotta, CPG Review Coordinator (Italy), Jean Acar (France), Eloisa Arbustini (Italy), Anton E. Becker (The Netherlands), Giacomo Chiaranda (Italy), Yonathan Hasin (Israel), Rolf Jenni (Switzerland), Werner Klein (Austria), Irene Lang (Austria), Thomas F. Luscher€ (Switzerland), Fausto J. Pinto (Portugal), Ralph Shabetai (USA), Maarten L. Simoons (The Netherlands), Jordi Soler Soler (Spain), David H. Spodick (USA) Table of contents Constrictive pericarditis . 9 Pericardial cysts . 13 Preamble . 2 Specific forms of pericarditis . 13 Introduction. 2 Viral pericarditis . 13 Aetiology and classification of pericardial disease. 2 Bacterial pericarditis . 14 Pericardial syndromes . ..................... 2 Tuberculous pericarditis . 14 Congenital defects of the pericardium . 2 Pericarditis in renal failure . 16 Acute pericarditis . 2 Autoreactive pericarditis and pericardial Chronic pericarditis . 6 involvement in systemic autoimmune Recurrent pericarditis . 6 diseases . 16 Pericardial effusion and cardiac tamponade .
    [Show full text]
  • Left Ventricular Wall Findings in Non-Electrocardiography-Gated CE-CT After ECPR Might Be Useful for Diagnosis and Prognostic Prediction
    Sugiyama et al. Critical Care (2019) 23:357 https://doi.org/10.1186/s13054-019-2624-1 RESEARCH Open Access Left ventricular wall findings in non- electrocardiography-gated contrast- enhanced computed tomography after extracorporeal cardiopulmonary resuscitation Kazuhiro Sugiyama1* , Masamichi Takahashi2, Kazuki Miyazaki1, Takuto Ishida1, Mioko Kobayashi1 and Yuichi Hamabe1 Abstract Background: Few studies have reported left ventricular wall findings in contrast-enhanced computed tomography (CE-CT) after extracorporeal cardiopulmonary resuscitation (ECPR). This study examined left ventricular wall CE-CT findings after ECPR and evaluated the association between these findings and the results of coronary angiography and prognosis. Methods: We evaluated out-of-hospital cardiac arrest patients who were treated with ECPR and subsequently underwent both non-electrocardiography-gated CE-CT and coronary angiography at our center between January 2011 and April 2018. Left ventricular wall CE-CT findings were classified as follows: (1) homogeneously enhanced (HE; the left ventricular wall was homogeneously enhanced), (2) segmental defect (SD; the left ventricular wall was not segmentally enhanced according to the coronary artery territory), (3) total defect (TD; the entire left ventricular wall was not enhanced), and (4) others. Successful weaning from extracorporeal membrane oxygenation, survival to hospital discharge, and predictive ability of significant stenosis on coronary angiography were compared among patients with HE, SD, and TD patterns. Results: A total of 74 patients (median age, 59 years) were eligible, 50 (68%) of whom had initial shockable rhythm. Twenty-three (31%) patients survived to hospital discharge. HE, SD, TD, and other patterns were observed in 19, 33, 11, and 11 patients, respectively. The rates of successful weaning from extracorporeal membrane oxygenation (84% vs.
    [Show full text]
  • Surgeries by STAT Category
    STAT SURGICAL PROCEDURE CATEGORY ASD repair, Patch 1 AVC (AVSD) repair, Partial (Incomplete) (PAVSD) 1 PFO, Primary closure 1 ASD repair, Primary closure 1 VSD repair, Patch 1 DCRV repair 1 Aortic stenosis, Subvalvar, Repair 1 Coarctation repair, End to end 1 Vascular ring repair 1 ICD (AICD) implantation 1 ICD (AICD) ([automatic] implantable cardioverter deFibrillator) procedure 1 ASD Repair, Patch + PAPCV Repair 1 VSD repair, Primary closure 1 AVC (AVSD) repair, Intermediate (Transitional) 1 PAPVC repair 1 TOF repair, No ventriculotomy 1 TOF repair, Ventriculotomy, Nontransanular patch 1 Conduit reoperation 1 Valve replacement, Pulmonic (PVR) 1 Valve replacement, Aortic (AVR), Mechanical 1 Valve replacement, Aortic (AVR), Bioprosthetic 1 Sinus oF Valsalva, Aneurysm repair 1 Fontan, TCPC, Lateral tunnel, Fenestrated 1 Coarctation repair, Interposition graFt 1 Pacemaker procedure 1 Glenn (Unidirectional cavopulmonary anastomosis) (Unidirectional Glenn) 1 PAPVC Repair, BaFFle redirection to leFt atrium with systemic vein translocation (Warden) (SVC 1 sewn to right atrial appendage) 1 1/2 ventricular repair 2 PA, Reconstruction (Plasty), Main (Trunk) 2 Valvuloplasty, Aortic 2 Ross procedure 2 LV to aorta tunnel repair 2 Valvuloplasty, Mitral 2 Fontan, Atrio-pulmonary connection 2 PDA closure, Surgical 2 Aortopexy 2 Pacemaker implantation, Permanent 2 Arrhythmia surgery - ventricular, Surgical Ablation 2 Bilateral bidirectional cavopulmonary anastomosis (BBDCPA) (Bilateral bidirectional Glenn) 2 Superior Cavopulmonary anastomosis(es) + PA
    [Show full text]
  • Severe Low Cardiac Output Following Pericardiectomy- Bird in Cage Phenomenon
    r Me ula dic sc in a e V & f o S l u a Journal of Vascular r Nath et al., J Vasc Med Surg 2014, 2:2 g n r e u r y o DOI: 10.4172/2329-6925.1000135 J ISSN: 2329-6925 Medicine & Surgery Short Communication Open Access Severe Low Cardiac Output Following Pericardiectomy- Bird in Cage Phenomenon Mridu Paban Nath1*, Malavika Barman2 and Rajib Kr Bhattacharrya3 1Assistant Professor, Department of Anesthesiology & Critical Care, Gauhati Medical College Hospital, Assam, India 2Assistant Professor, Department of Biochemistry, Tezpur Medical College Hospital, Assam, India 3Professor & Head, Department of Anesthesiology & Critical Care, FAA Medical College Hospital, Assam, India A 28 year old boy was referred from a private hospital for evaluation long periods of myocardial compression contributing to remodelling of constrictive pericarditis. He was diagnosed for the same about 4 of the ventricles and to greater involvement of the myocardium in years back with history of worsening shortness of breath and fatigue. patients who have undergone long periods of symptomatic pericardial At the time of presentation, patient required supplemental Oxygen constriction, as in our patient with a history of 4 years of symptoms. and was New York Heart Association Class-IV heart failure. Physical MacCaughan et al. [4] have described haemodynamic abnormalities examination revealed distension of jugular veins with significant after pericardiectomy in the largest series available (231 patients). The ascites & hepatomegaly. Bilateral pedal edema was absent; however investigators noted a 28% incidence of LCOS postoperatively in their patient was on long term therapy with loop diuretics. About 1 litre of patients, with many of the perioperative deaths occurring in this low abdominal paracentesis was done to relieve tense ascites.
    [Show full text]
  • Sparse-Input Detection Algorithm with Applications in Electrocardiography and Ballistocardiography
    Sparse-input Detection Algorithm with Applications in Electrocardiography and Ballistocardiography ;1 ;1 2 1 1 F. Wadehn∗ , L. Bruderer∗ , D. Waltisberg , T. Keresztfalvi and H.-A. Loeliger 1 Signal and Information Processing Laboratory, ETH Zurich, Gloriastrasse 35, Zurich, Switzerland 2 Institut fuer Elektronik, ETH Zurich, Gloriastrasse 35, Zurich, Switzerland Keywords: Ballistocardiography, Heart Rate Estimation, Hypothesis Test, Factor Graphs, System identification, State- space Models, Maximum likelihood, Maximum a posteriori. Abstract: Sparse-input learning, especially of inputs with some form of periodicity, is of major importance in bio- signal processing, including electrocardiography and ballistocardiography. Ballistocardiography (BCG), the measurement of forces on the body, exerted by heart contraction and subsequent blood ejection, allows non- invasive and non-obstructive monitoring of several key biomarkers such as the respiration rate, the heart rate and the cardiac output. In the following we present an efficient online multi-channel algorithm for estimating single heart beat positions and their approximate strength using a statistical hypothesis test. The algorithm was validated with 10 minutes long ballistocardiographic recordings of 12 healthy subjects, comparing it to synchronized surface ECG measurements. The achieved mean error rate for the heart beat detection excluding movement artifacts was 4:7%. 1 INTRODUCTION Early signal-processing methods for BCG signals (Watanabe et al., 2005; Mack et al., 2009) concerned Cardiovascular diseases are among the leading causes estimation of heart rates averaged over a few sec- of death and severe health impairments both in high- onds using frequency-based methods. These meth- income countries with an aging population, as well ods do not provide beat-to-beat resolution or infor- as in developing countries, which are increasingly mation on irregular arrhythmias.
    [Show full text]
  • 2Nd Quarter 2001 Medicare Part a Bulletin
    In This Issue... From the Intermediary Medical Director Medical Review Progressive Corrective Action ......................................................................... 3 General Information Medical Review Process Revision to Medical Record Requests ................................................ 5 General Coverage New CLIA Waived Tests ............................................................................................................. 8 Outpatient Hospital Services Correction to the Outpatient Services Fee Schedule ................................................................. 9 Skilled Nursing Facility Services Fee Schedule and Consolidated Billing for Skilled Nursing Facility (SNF) Services ............. 12 Fraud and Abuse Justice Recovers Record $1.5 Billion in Fraud Payments - Highest Ever for One Year Period ........................................................................................... 20 Bulletin Medical Policies Use of the American Medical Association’s (AMA’s) Current Procedural Terminology (CPT) Codes on Contractors’ Web Sites ................................................................................. 21 Outpatient Prospective Payment System January 2001 Update: Coding Information for Hospital Outpatient Prospective Payment System (OPPS) ......................................................................................................................... 93 he Medicare A Bulletin Providers Will Be Asked to Register Tshould be shared with all to Receive Medicare Bulletins and health care
    [Show full text]
  • Electrocardiography: a Technologist's Guide to Interpretation
    CONTINUING EDUCATION Electrocardiography: A Technologist’s Guide to Interpretation Colin Tso, MBBS, PhD, FRACP, FCSANZ1,2, Geoffrey M. Currie, BPharm, MMedRadSc(NucMed), MAppMngt(Hlth), MBA, PhD, CNMT1,3, David Gilmore, ABD, CNMT, RT(R)(N)3,4, and Hosen Kiat, MBBS, FRACP, FACP, FACC, FCCP, FCSANZ, FASNC, DDU1,2,3,5 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia; 2Cardiac Health Institute, Sydney, New South Wales, Australia; 3Faculty of Science, Charles Sturt University, Wagga Wagga, New South Wales, Australia; 4Faculty of Medical Imaging, Regis College, Boston, Massachusetts; and 5Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia CE credit: For CE credit, you can access the test for this article, as well as additional JNMT CE tests, online at https://www.snmmilearningcenter.org. Complete the test online no later than December 2018. Your online test will be scored immediately. You may make 3 attempts to pass the test and must answer 80% of the questions correctly to receive 1.0 CEH (Continuing Education Hour) credit. SNMMI members will have their CEH credit added to their VOICE transcript automatically; nonmembers will be able to print out a CE certificate upon successfully completing the test. The online test is free to SNMMI members; nonmembers must pay $15.00 by credit card when logging onto the website to take the test. foundation for understanding the science of electrocardiog- The nuclear medicine technologist works with electrocardio- raphy and its interpretation. graphy when performing cardiac stress testing and gated cardiac imaging and when monitoring critical patients.
    [Show full text]
  • Early Or Delayed Cardioversion in Recent-Onset Atrial Fibrillation
    The new england journal of medicine Original Article Early or Delayed Cardioversion in Recent-Onset Atrial Fibrillation N.A.H.A. Pluymaekers, E.A.M.P. Dudink, J.G.L.M. Luermans, J.G. Meeder, T. Lenderink, J. Widdershoven, J.J.J. Bucx, M. Rienstra, O. Kamp, J.M. Van Opstal, M. Alings, A. Oomen, C.J. Kirchhof, V.F. Van Dijk, H. Ramanna, A. Liem, L.R. Dekker, B.A.B. Essers, J.G.P. Tijssen, I.C. Van Gelder, and H.J.G.M. Crijns, for the RACE 7 ACWAS Investigators*​​ ABSTRACT BACKGROUND Patients with recent-onset atrial fibrillation commonly undergo immediate restora- The authors’ full names, academic degrees, tion of sinus rhythm by pharmacologic or electrical cardioversion. However, whether and affiliations are listed in the Appen- dix. Address reprint requests to Dr. Crijns immediate restoration of sinus rhythm is necessary is not known, since atrial fibril- at the Department of Cardiology, Maas- lation often terminates spontaneously. tricht University Medical Center, P. Debye- laan 25, 6229 HX Maastricht, the Nether- METHODS lands, or at hjgm . crijns@ mumc . nl. In a multicenter, randomized, open-label, noninferiority trial, we randomly assigned *A complete list of investigators in the patients with hemodynamically stable, recent-onset (<36 hours), symptomatic atrial RACE 7 ACWAS trial is provided in the fibrillation in the emergency department to be treated with a wait-and-see approach Supplementary Appendix, available at (delayed-cardioversion group) or early cardioversion. The wait-and-see approach in- NEJM.org. volved initial treatment with rate-control medication only and delayed cardioversion Drs.
    [Show full text]
  • Guide to Exercise Electrocardiogram
    Guide to the Exercise Electrocardiogram (The Treadmill Stress Test) An exercise stress test is performed to evaluate heart rate, heart rhythm, blood pressure and electrocardiographic (ECG) responses to progressive exercise. You do not need to be an athlete or to be trained to have this test for evaluation of your cardiovascular system, but you do need to be able to walk without support. The exercise ECG is used to evaluate the adequacy of blood supply to the heart during exercise that may be symptomatic or asymptomatic and to assess the extent of limitation of blood supply to the heart in people with known coronary artery disease. The test is also used to quantify effort capacity, to evaluate the effect of medications on symptoms and effort tolerance, to assess general health and prognosis, and to evaluate the heart rate and blood pressure responses to exercise before surgical procedures and before entry into programs of cardiac rehabilitation. Imaging of the heart with echocardiography or with radionuclide agents is not performed during basic exercise ECG unless prearranged by the referring physician. Pre-Registration and Testing Location Please call 2 days before the date your test is scheduled to confirm your appointment. At this time we can also answer questions you may have. Please have your referring physician complete the order form. Plan to arrive 20 minutes before the scheduled time of your test. Bring your hospital and insurance cards with you. Go directly to the test location. NewYork-Presbyterian Hospital/Weill Cornell Medical Center 212-746-4670 Exercise ECG Laboratory Starr Pavilion 520 East 70th Street, east of York Avenue New York, NY 10021 Take the Starr elevators to the 4th floor, follow the signs to room K-425.
    [Show full text]
  • Echocardiography to Supplement Stress Electrocardiography in Emergency Department Chest Pain Patients
    Original research Echocardiography to Supplement Stress Electrocardiography in Emergency Department Chest Pain Patients Mark I. Langdorf, MD, MHPE* * University of California, Irvine, Department of Emergency Medicine, Irvine, CA Eric Wei, MD† † University of Michigan, Ann Arbor, MI Ali Ghobadi, MD* Scott E. Rudkin, MD, MBA* Shahram Lotfipour, MD, MPH* Supervising Section Editor: David E. Slattery, MD Submission history: Submitted July 18, 2009; Revision Received February 21, 2010; Accepted March 24, 2010 Reprints available through open access at http://escholarship.org/uc/uciem_westjem Introduction: Chest pain (CP) patients in the Emergency Department (ED) present a diagnostic dilemma, with a low prevalence of coronary disease but grave consequences with misdiagnosis. A common diagnostic strategy involves ED cardiac monitoring while excluding myocardial necrosis, followed by stress testing. We sought to describe the use of stress echocardiography (echo) at our institution, to identify cardiac pathology compared with stress electrocardiography (ECG) alone. Methods: Retrospective cohort study of 57 urban ED Chest Pain Unit (CPU) patients from 2002- 2005 with stress testing suggesting ischemia. Our main descriptive outcome was proportion and type of discordant findings between stress ECG testing and stress echo.The secondary outcome was whether stress echo results appeared to change management. Results: Thirty-four of 57 patients [59.7%, 95% confidence interval (CI) 46.9-72.4%] had stress echo results discordant with stress ECG results. The most common discordance was an abnormal stress ECG with a normal stress echo (n=17/57, 29.8%, CI 17.9-41.7%), followed by normal stress ECG but with reversible regional wall-motion abnormality on stress echo (n = 10/57, 17.5%, CI 7.7- 27.4%).
    [Show full text]
  • Appendix A: Surgical Procedure Terms and Definitions
    Appendix A: Surgical Procedure Terms and Definitions Anomalous Systemic Venous Connection Anomalous Systemic Venous Connection Repair Repair includes a range of surgical approaches, including, among others: ligation of anomalous vessels, reimplantation of anomalous vessels (with or without use of a conduit), or redirection of anomalous systemic venous flow through directly to the pulmonary circulation (bidirectional Glenn to redirect LSVC or RSVC to left or right pulmonary artery, respectively). Aortic Aneurysm Aortic aneurysm repair Aortic aneurysm repair by any technique. Aortic Dissection Aortic Dissection repair Aortic dissection repair by any technique. Aortic Root Replacement Aortic Root Replacement, Bioprosthetic Replacement of the aortic root (that portion of the aorta attached to the heart; it gives rise to the coronary arteries) with a bioprosthesis (e.g., porcine) in a conduit, often composite. Aortic Root Replacement, Mechanical Replacement of the aortic root (that portion of the aorta attached to the heart; it gives rise to the coronary arteries) with a mechanical prosthesis in a composite conduit. Aortic Root Replacement, Homograft Replacement of the aortic root (that portion of the aorta attached to the heart; it gives rise to the coronary arteries) with a homograft Aortic Root Replacement, Valve sparing Replacement of the aortic root (that portion of the aorta attached to the heart; it gives rise to the coronary arteries) without replacing the aortic valve (using a tube graft). Aortic Valve Disease Ross Procedure Replacement of the aortic valve with a pulmonary autograft and replacement of the pulmonary valve with a homograft conduit. Konno Procedure (with and without aortic valve replacement) Relief of left ventricular outflow tract obstruction associated with aortic annular hypoplasia, aortic valvar stenosis and/or aortic valvar insufficiency via Konno aortoventriculoplasty.
    [Show full text]
  • Computer Processing of the Orthogonal Electrocardiogram and Vectorcardiogram
    Physiol. Res. 43: 95-98, 1993 Computer Processing of the Orthogonal Electrocardiogram and Vectorcardiogram L. BACHÂROVÀ Research Institute of Medical Informatics, Bratislava Summary The aim of this contribution was to review the possibilities of presentation of orthogonal ECG signals and to evaluate the progress in computerized electrocardiography achieved in Czechoslovakia. The information about the cardiac electric field in orthogonal electrocardiography is defined and consequently displayed as a fixed single dipole (vector). The spatial trajectory of vector end-point (spatial vectorcardiographic loop) can be presented in different ways — as orthogonal electrocardiogram, polarcardiogram, planar vectorcardiogram and decartogram, respectively. The advantages of particular methods of presentation, as well as their limitations are discussed. Computer-assisted electrocardiography was introduced in Czechoslovakia in 1974. The original AVA program has been further developed in the Research Institute of Medical Informatics (formerly Research Institute of Medical Bionics). The currently developed system CardioSys allows the utilization of all the possibilities of orthogonal ECG and vectorcardiographic presentation for clinical and epidemiological cardiology as well as for the research. Key words Orthogonal Electrocardiography - Vectorcardiography - Computer analysis The electrographic signal provides are the physiological source of electrocardiographic irreplaceable information about the status and activity potentials. The front of myocardial depolarization is in of the heart. In current clinical practice, it is mostly fact an electrical double-layer and, as such, may be registered by means of a standard 12-lead ECG system. represented by a set of regularly spaced unit vectors. However, the information obtained in this way is The vectorial sum of these unit vectors gives the characterized by a considerable redundancy.
    [Show full text]