John Day Country
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Field Geology and Petrologic Investigation of the Strawberry Volcanics, Northeast Oregon
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Winter 2-24-2016 Field Geology and Petrologic Investigation of the Strawberry Volcanics, Northeast Oregon Arron Richard Steiner Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Geology Commons, and the Volcanology Commons Let us know how access to this document benefits ou.y Recommended Citation Steiner, Arron Richard, "Field Geology and Petrologic Investigation of the Strawberry Volcanics, Northeast Oregon" (2016). Dissertations and Theses. Paper 2712. https://doi.org/10.15760/etd.2708 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Field Geology and Petrologic Investigation of the Strawberry Volcanics, Northeast Oregon by Arron Richard Steiner A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Environmental Sciences and Resources: Geology Dissertation Committee: Martin J. Streck, Chair Michael L. Cummings Jonathan Fink John A.Wolff Dirk Iwata-Reuyl Portland State University 2016 © 2015 Arron Richard Steiner i ABSTRACT The Strawberry Volcanics of Northeast Oregon are a group of geochemically related lavas with a diverse chemical range (basalt to rhyolite) that erupted between 16.2 and 12.5 Ma and co-erupted with the large, (~200,000 km3) Middle Miocene tholeiitic lavas of the Columbia River Basalt Group (CRBG), which erupted near and geographically surround the Strawberry Volcanics. The rhyolitic lavas of the Strawberry Volcanics produced the oldest 40Ar/39Ar ages measured in this study with ages ranging from 16.2 Ma to 14.6 Ma, and have an estimated total erupted volume of 100 km3. -
Murderer's Creek Wildlife Area
10 Year PHILLIP W. SCHNEIDER WILDLIFE AREA MANAGEMENT PLAN July 2017 Oregon Department of Fish and Wildlife 4034 Fairview Industrial Drive SE Salem Oregon, 97302 Table of Contents Executive Summary ...................................................................................................... 1 Introduction ................................................................................................................... 1 Oregon Department of Fish and Wildlife Mission and Authority………………………...2 Purpose and Need of the Phillip W. Schneider Wildlife Area……………………………2 Phillip W. Schneider Wildlife Area Vision Statement..……………………………………2 Wildlife Area Goals and Objectives .............................................................................. 2 Wildlife Area Establishment ......................................................................................... 3 Description and Environment ...................................................................................... 4 Physical Resources ..................................................................................................... 4 Location ................................................................................................................... 4 Climate ..................................................................................................................... 4 Topography and Soils .............................................................................................. 4 Habitat Types .......................................................................................................... -
A History of Resource Use and Disturbance in Riverine Basins Of
Robert C. Wissmar,'Jeanetle E, Smith,'Bruce A. Mclntosh,,HiramW. Li,. Gordon H. Reeves.and James R. Sedell' A Historyof ResourceUse and Disturbancein RiverineBasins of Eastern Oregonand Washington(Early 1800s-1990s) Abstract Rj\( r n.rsr, rr Cds.lde u rl|alrlo|ogicso1c\|n|Slhalshrpedthepresent'dailalrlsraprlsrn l.ii\||sl'rn|e!nroddriParianecosrstctnsllllldr'li!l's|oi'L|!7jrgand anllril,rri!ndl.es.|edi1iiculttonanagebtaull]itl]cis|no{nlboU|holtheseecosrelnsfu dele|pprorrrlrrrr's|ortrl.rtingthesrInptonlsofd {ith pluns lbr resoliirg t h$itatscontinuetodeclile'Altlrrratjrrl|r.nrrrbusin\!jelnan!genentst' hoPel'orinlp|ornlgthee.os}sl.jn]h;odjl('tsi|\anrlpopuationlelelsoffshaldirj1d]jn''PrioIili(jsi|r(|ullc|hePf Nrtersheds (e.g.. roarll+: a Introduction to$,ards"natur-al conditions" that nleetLhe hislr)ri- tal requirernentsoffish and t'ildlile. Some rnajor As a resull of PresidentClirrton's ! orcst Summit qucstions that need to be ansrererl arc. "How hale in PortlandOrcgon cluring Spring 19913.consider- hisloricalccosvstcms iunctionecl and ho* nale ntr ablc attention is heing licusecl on thc inllucnccs man a( lions changcd them'/'' of hre-t .rn,l,'tlrr'r r, -urrrr. mJnlrepmpntl,f;r.ti, c- orr lhe health of l'acific No|th$'esLecosystems. This drrcumcntrcvict's the environmentalhis- l\{anagcrncnt recornmendations of an inLer-agr:ncv torr ol theinfl.r-n, '-,,f h',rrrunJ, ti\'ti, - in cJ-l tcanrol scicntistspoint to the urgenLneed frrr irn- ern O|cgon and Waslington over lhe pasl l\\o in ccosvstemm:uagement (Foresl lic- lr|1^emcnts centurie-s.The -
Timing of In-Water Work to Protect Fish and Wildlife Resources
OREGON GUIDELINES FOR TIMING OF IN-WATER WORK TO PROTECT FISH AND WILDLIFE RESOURCES June, 2008 Purpose of Guidelines - The Oregon Department of Fish and Wildlife, (ODFW), “The guidelines are to assist under its authority to manage Oregon’s fish and wildlife resources has updated the following guidelines for timing of in-water work. The guidelines are to assist the the public in minimizing public in minimizing potential impacts to important fish, wildlife and habitat potential impacts...”. resources. Developing the Guidelines - The guidelines are based on ODFW district fish “The guidelines are based biologists’ recommendations. Primary considerations were given to important fish species including anadromous and other game fish and threatened, endangered, or on ODFW district fish sensitive species (coded list of species included in the guidelines). Time periods were biologists’ established to avoid the vulnerable life stages of these fish including migration, recommendations”. spawning and rearing. The preferred work period applies to the listed streams, unlisted upstream tributaries, and associated reservoirs and lakes. Using the Guidelines - These guidelines provide the public a way of planning in-water “These guidelines provide work during periods of time that would have the least impact on important fish, wildlife, and habitat resources. ODFW will use the guidelines as a basis for the public a way of planning commenting on planning and regulatory processes. There are some circumstances where in-water work during it may be appropriate to perform in-water work outside of the preferred work period periods of time that would indicated in the guidelines. ODFW, on a project by project basis, may consider variations in climate, location, and category of work that would allow more specific have the least impact on in-water work timing recommendations. -
John Day Fossil Beds National Monument
ISSUE VIII JANUARY 2007 NARG Newsletter North America Research Group Northwest Fossil Fest Recap Last August NARG held it's first annual Northwest Fossil Fest held at INSIDE THIS ISSUE the Rice Museum in Hillsboro Oregon. The goal of the Fest was to NW Fossil Fest Recap 1 promote, educate, showcase fossils Radiocarbon Dating Fund 3 from the Pacific NW, and to have John Day Fossil Beds fun, all of which was accomplished. National Monument 3 Taxonomy Report #6 5 The tagline for the Fest is “Inspire, Inquire, Interact” and nothing What is “Fossil Search and Rescue? inspires more than displaying some of the amazing fossils specimens that Oregon Fossils have been found in the Pacific NW. Plants of the Jurassic Period 7 Tami Smith making a batch of Trilobite Cookie Many guests where surprised at the Trilobite Morphology 8 wide range of life forms that once lived where we do today. Inquiry minds want to know and we had a top-notch line up of guest speakers such as Dr. Dr. Ellen Morris Bishop, Dr. Jeffrey A. Myers, and Dr. William. N. Orr. This was a great opportunity for guest not only to learn more about the paleontology and geology of Oregon but also to meet 3 of the leading professionals in these fields. More Trilobite Cookie making There were many ways to interact, from the fossil preparation area where demonstrations took place on tools and techniques used to prepare fossils, to fossil identification, and of course all the kids activities that NARG setup. The Screen for Shark Teeth was probably the biggest hits and over 1000 Bone Valley shark teeth where given away. -
Appendix / Attachment 1A
ATTACHMENT 1A (Supplemental Documentation to the: Mogollon Rim Water Resource, Management Study Report of Findings) Geology and Structural Controls of Groundwater, Mogollon Rim Water Resources Management Study by Gaeaorama, Inc., July, 2006 GEOLOGY AND STRUCTURAL CONTROLS OF GROUNDWATER, MOGOLLON RIM WATER RESOURCES MANAGEMENT STUDY Prepared for the Bureau of Reclamation GÆAORAMA, INC. Blanding, Utah DRAFT FOR REVIEW 22 July 2006 CONTENTS page Executive Summary…………………………………………………………………………….. 1 MRWRMS ii 1/18/11 Introduction……………………………………………………………………………………... 2 GIS database……………………………………………………………………………………. 5 Faults and fault systems………………………………………………………………………… 6 Proterozoic faults…………………………………………………………………………… 6 Re-activated Proterozoic faults……………………………………………………………... 6 Post-Paleozoic faults of likely Proterozoic inheritance…………………………………….. 7 Tertiary fault systems……………………………………………………………………….. 8 Verde graben system……………………………………………………………………. 8 East- to northeast-trending system……………………………………………………… 9 North-trending system…………………………………………………………………...9 Regional disposition of Paleozoic strata………………………………………………………. 10 Mogollon Rim Formation – distribution and implications……………………………………..10 Relation of springs to faults…………………………………………………………………… 11 Fossil Springs……………………………………………………………………………… 13 Tonto Bridge Spring………………………………………………………………………..14 Webber Spring and Flowing Spring………………………………………………………..15 Cold Spring………………………………………………………………………………... 16 Fossil Canyon-Strawberry-Pine area…………………………………………………………...17 Speculations on aquifer systems………………………………………………………………. -
The Geology and Mineral Resources of the John Day Region by Arthur J
VOLUME I NUMBER 3 MARCH, 1914 THE MINERAL RESOURCES OF OREGON Published Monthly By The Oregon Bureau of Mines and Geology Small'? Ranch and Field's Mountain on John Day River. CONTENTS. The Geology and Mineral Resources of the John Day Region by Arthur J. Collier Entered aa second clam matter at Corvallis, Ore. on Feb 10, 1914, according to the Act of Aug. 24, 1912. OREGON BUREAU OF MINES AND GEOLOGY COMMISSION Omci or THE COMMISSION tit YEON BUILDING, PORTLAND, OREGON Omci or THE DlHECTOB CORVALLI8. OREGON OSWALD WEST, Governor STAFF COMMISSION HENBT M. PARES, Director ARTHUR M. SWABTLET, Mining Eng'r H. N. LAWBIE, Portland IRA A. WILLIAMS, Ceramist W. C. Fraxows, VVhitney SIDNEY W. FRENCH, Metallurgist I. ¥ RSDDT, Medford C. T. PBALL, Ontario FIELD PARTY CHIEFS T. 8. MANN, Portland P. L. CAMPBELL, Eugene A. N. WlNCHBLL W. J. KERB, Corvallis U. 8. GBAHT A J. COLLIEB SOLON SHEDD GSOBOB D. LOUDBBBACE VOLUME I NUMBER 3 MARCH, 1914 THE MINERAL RESOURCES OF OREGON A Periodical Devoted to the Development of all her Minerals PUBLISHED MONTHLY AT CORVALLIS BY THE OREGON BUREAU OF MINES AND GEOLOGY H. M. PARKS, Director *THE GEOLOGY AND MINERAL RESOURCES OF THE JOHN DAY REGION. By Arthur J. Collier. The John Day river basin in the north central part of Oregon has been for many years a favorite place for geologic exploration, on account of the occurrence there of vertebrate fossils. In recent years, however, attention has been further directed to this region from time to time by reports of the discovery of coal, oil, gas and other mineral resources. -
Irrigation and Streamflow Depletion in Columbia River Basin Above the Dalles, Oregon
Irrigation and Streamflow Depletion in Columbia River Basin above The Dalles, Oregon Bv W. D. SIMONS GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1220 An evaluation of the consumptive use of water based on the amount of irrigation UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1953 UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price 50 cents (paper cover) CONTENTS Page Abstract................................................................................................................................. 1 Introduction........................................................................................................................... 2 Purpose and scope....................................................................................................... 2 Acknowledgments......................................................................................................... 3 Irrigation in the basin......................................................................................................... 3 Historical summary...................................................................................................... 3 Legislation................................................................................................................... 6 Records and sources for data..................................................................................... 8 Stream -
4. Lower Oregon Columbia Gorge Tributaries Watershed Assessment
4. Lower Oregon Columbia Gorge Tributaries Watershed Assessment 4.1 Subbasin Overview General Description Location and Size The Lower Oregon Columbia Gorge Tributaries Watershed consists of the 19 small Columbia River tributaries located between Bonneville Dam and the Hood River. Its major streams are Herman and Eagle creeks. The watershed is located in Hood River County, except for a small part of the Eagle Creek drainage, and includes the City of Cascade Locks and part of the City of Hood River. The watershed covers a drainage area of 63,714 acres or 99.6 square miles. Geology Volcanic lava flows, glaciers, and flooding were the key forces forming the Columbia Gorge landscape of basalt cliffs, waterfalls, talus slopes and ridges. Land elevations rise rapidly from 72 feet above sea level to approximately 5,000 feet. Mt. Defiance is the highest peak at 4,960 feet. Landslides are the dominant erosional process in recent history (USFS, 1998). Debris torrents and ice and snow avalanches are not uncommon in the winter months. Alluvial fan deposits at the mouths of the steeper, more constricted creeks suggest the frequent routing of debris torrents down these channels. The lower mile or so of creeks have gradients of about 5 percent, rising steeply at middle elevations, with lower gradient channels in glaciated headwater valleys. Climate and Weather The watershed lies in the transition zone between the wet marine climate to the west and the dry continental climate to the east. Precipitation amounts vary dramatically from east to west and with elevation, ranging from 40 to 125 to inches annually. -
John Day River Proposed Management Plan, Two Rivers and John Day Resource Management Plan Amendments and Final Environmental Impact Statement
As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing tor the enjoyment of lite through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interest ot all our people. The Department also has a major responsibility tor American Indian reservation communities and for people who live in Island Territories under U.S. administration. B LM/O RJWAlPT-00/048+1792 JOHN DAY RIVER PROPOSED MANAGEMENT PLAN, TWO RIVERS AND JOHN DAY RESOURCE MANAGEMENT PLAN AMENDMENTS AND FINAL ENVIRONMENTAL IMPACT STATEMENT SUMMARY OF PUBLIC COMMENTS AND RESPONSES ON THE DRAFT JOHN DAY RIVER PLAN AND EIS Comment Period Ending 3/03/00 Table of Contents Contents INTRODUCTION ......................................................................................................................................................1 SUMMARY OF PUBLIC MEETINGS .......................................................................................................................1 Redmond, Oregon.....................................................................................................................................1 Public Questions and Comments ...............................................................................................1 -
John Day Fossil Beds NM: Geology and Paleoenvironments of the Clarno Unit
John Day Fossil Beds NM: Geology and Paleoenvironments of the Clarno Unit JOHN DAY FOSSIL BEDS Geology and Paleoenvironments of the Clarno Unit John Day Fossil Beds National Monument, Oregon GEOLOGY AND PALEOENVIRONMENTS OF THE CLARNO UNIT John Day Fossil Beds National Monument, Oregon By Erick A. Bestland, PhD Erick Bestland and Associates, 1010 Monroe St., Eugene, OR 97402 Gregory J. Retallack, PhD Department of Geological Sciences University of Oregon Eugene, OR 7403-1272 June 28, 1994 Final Report NPS Contract CX-9000-1-10009 TABLE OF CONTENTS joda/bestland-retallack1/index.htm Last Updated: 21-Aug-2007 http://www.nps.gov/history/history/online_books/joda/bestland-retallack1/index.htm[4/18/2014 12:20:25 PM] John Day Fossil Beds NM: Geology and Paleoenvironments of the Clarno Unit (Table of Contents) JOHN DAY FOSSIL BEDS Geology and Paleoenvironments of the Clarno Unit John Day Fossil Beds National Monument, Oregon TABLE OF CONTENTS COVER ABSTRACT ACKNOWLEDGEMENTS CHAPTER I: INTRODUCTION AND REGIONAL GEOLOGY INTRODUCTION PREVIOUS WORK AND REGIONAL GEOLOGY Basement rocks Clarno Formation John Day Formation CHAPTER II: GEOLOGIC FRAMEWORK INTRODUCTION Stratigraphic nomenclature Radiometric age determinations CLARNO FORMATION LITHOSTRATIGRAPHIC UNITS Lower Clarno Formation units Main section JOHN DAY FORMATION LITHOSTRATIGRAPHIC UNITS Lower Big Basin Member Middle and upper Big Basin Member Turtle Cove Member GEOCHEMISTRY OF LAVA FLOW AND TUFF UNITS Basaltic lava flows Geochemistry of andesitic units Geochemistry of tuffs STRUCTURE OF CLARNO -
Fossil Flora of the John Day Basin, Oregon, and to Request Its Publication As a Bulletin of the Survey
Bulletin No. 204 Series 0, Systematic Geology and Paleontology, 58 DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES D. WALCOTT, DIRECTOR FOSSIL FLORA JOHN DAT BASIN OREGON" BY FRANK MALL KNOWLTON WASHINGTON GOVERNMENT P 11 IN TING OFFICE 1002 CONTENTS. Page. Letter of transrnittal...................................................... 7 Introduction............................................................. 9 Geographic location and topographic features .............................. 10 History of exploration in the John Day Basin.............................. 11 Geological features of the John Day Basin ................................. 14 History of geological investigation in the region ........................ 14 Pre-Cretaceous rocks ................................................. 16 Knoxville and Chico beds ............................................ 17 Clarno formation..................................................... 17 John Day series...................................................... 18 Columbia Elver lava ................................................. 19 Mascall formation .................................................... 19 Kattlesnake formation...'............................................. 19 River terraces......................................................... 20 Localities for fossil plants in the John Day Basin........................... 20 Systematic description of species........................................... 21 Species excluded from this work .........................................