Reference Manual for PAST Paleontological Statistics

Total Page:16

File Type:pdf, Size:1020Kb

Reference Manual for PAST Paleontological Statistics PAST PAleontological STatistics Version 4.07 Reference manual Øyvind Hammer Natural History Museum University of Oslo [email protected] 1999-2021 1 Contents Welcome to the PAST! ............................................................................................................................ 7 Installation ............................................................................................................................................... 8 Quick start ............................................................................................................................................... 9 The spreadsheet and the Edit menu ..................................................................................................... 10 Entering data ..................................................................................................................................... 10 Selecting areas ................................................................................................................................... 10 Moving a row or a column ................................................................................................................ 10 Renaming rows and columns ............................................................................................................ 11 Increasing the size of the array ......................................................................................................... 11 Cut, copy, paste ................................................................................................................................. 11 Remove .............................................................................................................................................. 11 Row colors and symbols .................................................................................................................... 11 Selecting data types for columns, and specifying groups ................................................................. 11 Remove uninformative rows/columns .............................................................................................. 12 Transpose .......................................................................................................................................... 12 Grouped columns to multivar ........................................................................................................... 12 Grouped rows to multivar ................................................................................................................. 12 Stack grouped rows into columns ..................................................................................................... 13 Rows, cols, values to table ................................................................................................................ 13 Value pairs to matrix ......................................................................................................................... 13 Samples to events (UA to RASC) ........................................................................................................ 13 Events to samples (RASC to UA) ........................................................................................................ 13 Loading and saving data .................................................................................................................... 14 Importing data from Excel ................................................................................................................. 14 Reading and writing Nexus files ........................................................................................................ 15 Counter .............................................................................................................................................. 15 Transform menu .................................................................................................................................... 16 Logarithm .......................................................................................................................................... 16 Subtract mean ................................................................................................................................... 16 Remove trend .................................................................................................................................... 16 Row percentage................................................................................................................................. 16 Row normalize length ........................................................................................................................ 16 Box-Cox .............................................................................................................................................. 17 Compositional data transforms ......................................................................................................... 17 Remove size from distances .............................................................................................................. 19 Landmarks, Procrustes fitting ............................................................................................................ 20 Landmarks, Bookstein fitting ............................................................................................................. 20 Project to tangent space NOT YET IN PAST 3 .................................................................................... 21 Remove size from landmarks NOT YET IN PAST 3 ............................................................................. 21 Transform landmarks ........................................................................................................................ 21 Regular interpolation ........................................................................................................................ 21 Evaluate expression ........................................................................................................................... 22 Plot menu .............................................................................................................................................. 23 2 Graph ................................................................................................................................................. 23 XY graph ............................................................................................................................................. 24 XY graph with error bars ................................................................................................................... 25 Histogram .......................................................................................................................................... 26 Bar chart/box plot ............................................................................................................................. 27 Pie chart ............................................................................................................................................. 29 Stacked chart ..................................................................................................................................... 30 Percentiles ......................................................................................................................................... 31 Normal probability plot ..................................................................................................................... 32 Ternary .............................................................................................................................................. 33 Bubble plot ........................................................................................................................................ 34 Matrix plot ......................................................................................................................................... 35 Mosaic plot ........................................................................................................................................ 36 Venn diagram .................................................................................................................................... 37 Radar chart ........................................................................................................................................ 39 Polar plot ........................................................................................................................................... 40 Network plot ..................................................................................................................................... 41 3D scatter/bubble/line plot ............................................................................................................... 42 3D surface plot .................................................................................................................................. 43 3D parametric surface plot ................................................................................................................ 44 Univariate menu .................................................................................................................................... 45 Summary statistics ...........................................................................................................................
Recommended publications
  • Topics in Module Theory
    Chapter 7 Topics in Module Theory This chapter will be concerned with collecting a number of results and construc- tions concerning modules over (primarily) noncommutative rings that will be needed to study group representation theory in Chapter 8. 7.1 Simple and Semisimple Rings and Modules In this section we investigate the question of decomposing modules into \simpler" modules. (1.1) De¯nition. If R is a ring (not necessarily commutative) and M 6= h0i is a nonzero R-module, then we say that M is a simple or irreducible R- module if h0i and M are the only submodules of M. (1.2) Proposition. If an R-module M is simple, then it is cyclic. Proof. Let x be a nonzero element of M and let N = hxi be the cyclic submodule generated by x. Since M is simple and N 6= h0i, it follows that M = N. ut (1.3) Proposition. If R is a ring, then a cyclic R-module M = hmi is simple if and only if Ann(m) is a maximal left ideal. Proof. By Proposition 3.2.15, M =» R= Ann(m), so the correspondence the- orem (Theorem 3.2.7) shows that M has no submodules other than M and h0i if and only if R has no submodules (i.e., left ideals) containing Ann(m) other than R and Ann(m). But this is precisely the condition for Ann(m) to be a maximal left ideal. ut (1.4) Examples. (1) An abelian group A is a simple Z-module if and only if A is a cyclic group of prime order.
    [Show full text]
  • Modular Representation Theory of Finite Groups Jun.-Prof. Dr
    Modular Representation Theory of Finite Groups Jun.-Prof. Dr. Caroline Lassueur TU Kaiserslautern Skript zur Vorlesung, WS 2020/21 (Vorlesung: 4SWS // Übungen: 2SWS) Version: 23. August 2021 Contents Foreword iii Conventions iv Chapter 1. Foundations of Representation Theory6 1 (Ir)Reducibility and (in)decomposability.............................6 2 Schur’s Lemma...........................................7 3 Composition series and the Jordan-Hölder Theorem......................8 4 The Jacobson radical and Nakayama’s Lemma......................... 10 Chapter5 2.Indecomposability The Structure of and Semisimple the Krull-Schmidt Algebras Theorem ...................... 1115 6 Semisimplicity of rings and modules............................... 15 7 The Artin-Wedderburn structure theorem............................ 18 Chapter8 3.Semisimple Representation algebras Theory and their of Finite simple Groups modules ........................ 2226 9 Linear representations of finite groups............................. 26 10 The group algebra and its modules............................... 29 11 Semisimplicity and Maschke’s Theorem............................. 33 Chapter12 4.Simple Operations modules on over Groups splitting and fields Modules............................... 3436 13 Tensors, Hom’s and duality.................................... 36 14 Fixed and cofixed points...................................... 39 Chapter15 5.Inflation, The Mackey restriction Formula and induction and Clifford................................ Theory 3945 16 Double cosets...........................................
    [Show full text]
  • Master Thesis
    Structural Complexity of Manufacturing Systems Layout by Valeria Betzabe Espinoza Vega A Thesis Submitted to the Faculty of Graduate Studies through Industrial and Manufacturing Systems Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science at the University of Windsor Windsor, Ontario, Canada © 2012 Valeria Espinoza Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l'édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-76377-3 Our file Notre référence ISBN: 978-0-494-76377-3 NOTICE: AVIS: The author has granted a non- L'auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l'Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distrbute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriété du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Multivariate Process Control with Radar Charts
    SEMATECH 1996 Statistical Methods Symposium, San Antonio Multivariate Process Control with Radar Charts Dave Trindade, Ph.D. Senior Fellow, Applied Statistics AMD, Sunnyvale, CA Introduction ! Multivariate statistical process control ! Monitoring with separate X control charts ! Hotelling T2 statistic ! Radar or web plots ! Microsoft EXCEL capabilities – Matrix manipulation – Graphical Outline of Presentation ! Example of process with two quality characteristics per sample ! Univariate and multivariate considerations ! Calculations and graphical analysis in EXCEL ! Implications Vocabulary ! Multivariate ! Matrix representation ! Hotelling T2 statistic ! Radar or web plots ! Subgroups Vs. individual observations Multivariate SPC ! Consider a process in which two quality characteristics (p = 2) are measured on each of four samples (n = 4) within a subgroup. ! Data on twenty subgroups are available (k = 20) ! Data is from Thomas P. Ryan, Statistical Methods for Quality Improvement Sample Data for Each Subgroup Subgroup Number First Variable X Second Variable X 1 7284794923302810 2 5687334214318 9 3 5573226013226 16 4 44 80 54 74 9 28 15 25 5 9726485836101415 6 8389916230353618 7 4766535812181416 8 8850846931113019 9 5747414614108 10 10 26 39 52 48 7 11 35 30 11 46 27 63 34 10 8 19 9 12 49 62 78 87 11 20 27 31 13 71 63 82 55 22 16 31 15 14 71 58 69 70 21 19 17 20 15 67 69 70 94 18 19 18 35 16 55 63 72 49 15 16 20 12 17 49 51 55 76 13 14 16 26 18 72 80 61 59 22 28 18 17 19 61 74 62 57 19 20 16 14 20 35 38 41 46 10 11 13 16 Multivariate observations are (72,23), (84,30), …, (46, 16).
    [Show full text]
  • Characterization of Δ-Small Submodule
    Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.5, No.7, 2015 Characterization of δ-small submodule R. S. Wadbude, M.R.Aloney & Shubhanka Tiwari 1.Mahatma Fule Arts, Commerce and Sitaramji Chaudhari Science Mahavidyalaya, Warud. SGB Amaravati University Amravati [M.S.] 2.Technocrats Institute of Technology (excellence) Barkttulla University Bhopal. [M.P.] Abstract Pseudo Projectivity and M- Pseudo Projectivity is a generalization of Projevtevity. [2], [8] studied M-Pseudo Projective module and small M-Pseudo Projective module. In this paper we consider some generalization of small M-Pseudo Projective module, that is δ-small M-Pseudo Projective module with the help of δ-small and δ- cover. Key words: Singular module, S.F. small M-Pseudo Projective module, δ-small and projective δ- cover. Introduction: Throughout this paper R is an associative ring with unity module and all modules are unitary left R- modules. A sub module K of a module M. K ≤ M. Let M be a module, K ≤ M is said to be small in M if for every L ≤ M, the equality K + L = M implies L = M, ( denoted by 퐾 ≪ 푀 ). The concept of δ-small sub modules was introduced by Zhon [10]. A sub module K of M is said to be δ-small sub module of M (denoted by 퐾 ≪훿 푀 ) if whenever M = K+ L, with M/K is singular, then M = L. The sum of all δ-small sub module of M is denoted by δ(M). δ(M) is the reject in M of class of all singular simple modules.
    [Show full text]
  • Economic Indicators and Social Networks: New Approaches to Measuring Poverty, Prices, and Impacts of Technology
    Economic Indicators and Social Networks: New approaches to measuring poverty, prices, and impacts of technology by Niall Carrigan Keleher A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Information Management and Systems in the Graduate Division of the University of California, Berkeley Committee in charge: Dr. Joshua Evan Blumenstock, Chair Dr. John Chuang Dr. Jeremy Magruder Fall 2019 1 Abstract Economic Indicators and Social Networks: New approaches to measuring poverty, prices, and impacts of technology by Niall Carrigan Keleher Doctor of Philosophy in Information Management and Systems University of California, Berkeley Dr. Joshua Evan Blumenstock, Chair Collecting data to inform policy decisions is an ongoing global challenge. While some data collection has become routine, certain populations remain dicult to reach. From targeting social protection programs in densely-populated urban areas to reaching the “last mile” of infrastructure coverage, data collection and service delivery go hand-in-hand. Understanding the populations that live in urban communities as well as remote villages can help to tailor the design, targeting, and implementation of development programs. New sources of information have the potential to improve awareness of the needs and preferences of individuals, households, and communities. The goal of this dissertation is to provide multiple vantage points on the role that data, commu- nity input, and individual preferences can play in informing development policy. The empirical investigation presented in this dissertation covers two studies in Liberia and one in the Philippines. The unifying theme of the three chapters is the exploration of new sources of information about hard-to-reach populations.
    [Show full text]
  • Statistical Analysis Plan Revisions Version 1.0 – 16 October 2017
    Risankizumab (ABBV-066) M16-002 (BI 1311.5) – Statistical Analysis Plan Revisions Version 1.0 – 16 October 2017 3.0 Introduction This document is an explanation of differences between the analysis performed after final database lock and those detailed in the SAP. The changes include: ● Section 6.4: Updates to the visit window for mTSS. Rationale: Updated window more accurately encompasses observations appropriate to label as baseline. ● Section 6.5: mTSS and PsAMRIS removed from 6.5 Missing Data Handling. Rationale: No subject level imputation will be performed for continuous imaging data. ● Section 7.1: Removed statistical testing between placebo arm and the mixed two arms at baseline. Rationale: No statistical testing for baseline characteristics. ● Section 9.0: Planned number of visits when injection planned has been capped at 5. Rationale: No subject should have more than 5 planned visits. ● Section 10.1: Table 12 has been updated. Rationale: Some efficacy endpoints have been added and some analyses have changed. ● Section 10.6 List of further efficacy endpoints has been updated. Rationale: Some efficacy endpoints have been added and some analyses have changed ● Section 10.9.10: The addition of a PASI LOCF sensitivity analysis. Rationale: Sensitivity analysis added due to the presence of PASI missing data. ● Section 10.9.12: Updates to what defines a dactylic digit. Rationale: Added a missing component of the definition of dactylitis. ● Section 10.9.20: Updates to the scoring and missing data rules for mTSS. Rationale: Two separate methods of analysis will be performed for mTSS. 2 Risankizumab (ABBV-066) M16-002 (BI 1311.5) – Statistical Analysis Plan Revisions Version 1.0 – 16 October 2017 ● Section 10.9.21: Updated PsAMRIS analysis to be descriptive statistics only.
    [Show full text]
  • Jeong HJ, Kim M, an EA, Et Al. a Strategy to Develop Tailored Patient Safety Culture Improvement Programs with Latent Class Analysis Method
    Biometrics & Biostatistics International Journal Research Article Open Access A strategy to develop tailored patient safety culture improvement programs with latent class analysis method Abstract Volume 2 Issue 2 - 2015 As patient safety can be built only on the bedrock of safety culture, many hospitals Heon-Jae Jeong,1 Minji Kim,2 EunAe An,3 So have designed and implemented their own safety culture improvement programs. 4 4 Although carefully tailored clinical area specific programs would be most effective, Yeon Kim, ByungJoo Song 1Department of Health Policy and Management, Johns Hopkins lack of resources precludes this. This study applied a latent class analysis method Bloomberg School of Public Health, Johns Hopkins University, and classified 72 clinical areas in a large tertiary hospital into four classes according Baltimore, USA to their score patterns in the six domains of the Korean version of Safety Attitudes 2Annenberg School for Communication, University of Questionnaire (SAQ-K). Bayesian information criterion (BIC) and bootstrapped Pennsylvania, USA likelihood ratio test (BLRT) were used in deciding the number of classes. We named 3Leadership Development Division, The Catholic Education the best class estimate in each of the SAQ-K domains the ‘current maxima,’ the goals Foundation, Korea of which other classes aim to improve. Because the job satisfaction domain cannot be 4Performance Improvement Team, Seoul St. Mary’s Hospital, The directly improved, we excluded it from the goal setting process. One class dominated Catholic University of Korea, Korea the other three in most domains. The difference between the best class and others, the ‘room for change,’ can be used in deciding which clinical areas should be focused first Correspondence: Heon-Jae Jeong, Department of Health and how much resources should be invested in developing safety culture improvement Policy and Management, Johns Hopkins Bloomberg School of programs.
    [Show full text]
  • Creating Charts and Graphs Presenting Information Visually Copyright
    Calc Guide Chapter 3 Creating Charts and Graphs Presenting information visually Copyright This document is Copyright © 2005–2013 by its contributors as listed below. You may distribute it and/or modify it under the terms of either the GNU General Public License (http://www.gnu.org/licenses/gpl.html), version 3 or later, or the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), version 3.0 or later. All trademarks within this guide belong to their legitimate owners. Contributors Barbara Duprey Christian Chenal Pierre-Yves Samyn Jean Hollis Weber Laurent Balland-Poirier Shelagh Manton John A Smith Philippe Clément Peter Schofield Feedback Please direct any comments or suggestions about this document to: [email protected] Acknowledgments This chapter is based on Chapter 3 of the OpenOffice.org 3.3 Calc Guide. The contributors to that chapter are: Richard Barnes John Kane Peter Kupfer Shelagh Manton Alexandre Martins Anthony Petrillo Sowbhagya Sundaresan Jean Hollis Weber Linda Worthington Ingrid Halama Publication date and software version Published 8 December 2013. Based on LibreOffice 4.1. Note for Mac users Some keystrokes and menu items are different on a Mac from those used in Windows and Linux. The table below gives some common substitutions for the instructions in this chapter. For a more detailed list, see the application Help. Windows or Linux Mac equivalent Effect Tools > Options LibreOffice > Preferences Access setup options menu selection Right-click Control+click or right-click
    [Show full text]
  • Algebraic Modules for Finite Groups
    Algebraic Modules for Finite Groups David A. Craven January 2007 For the purposes of this talk, G is a finite group, K is an algebraically closed field of characteristic p, where p | |G|, and all modules are finite-dimensional. 1 Algebraic Modules The Green ring of KG-modules is defined to be the free abelian group on the basis set of all indecomposable KG-modules, with M + N defined to be equal to M ⊕ N, and the product of two modules defined as M ⊗ N. Notice that not all elements of the Green ring can be thought of as modules, since they could have negative multiplicities attached; they are virtual modules. The structure of the Green ring, while a commutative ring with a 1, is far from that of traditional commutative rings. For example, it is not an integral domain: in general, it has nilpotent elements. It is also in general infinite-dimensional. We can still, however, carry over some notions from algebraic number theory. One of those is algebraic modules. A module is said to be algebraic if it satisfies some polynomial equation in the Green ring, with co-efficients in Z. Proposition 1.1 Let M be a KG-module. Then the following are equivalent: (i) M is algebraic; (ii) M satisfies a monic polynomial equation in the Green ring with co-efficients in Z; and (iii) there are only finitely many different indecomposable summands of the (infinite-dimensional) module T (M) = M ⊕ M ⊗2 ⊕ M ⊗3 ⊕ · · · . The third equivalent condition is often the easiest to use in actually deciding if modules are algebraic or not.
    [Show full text]
  • Regular and Semisimple Modules
    Pacific Journal of Mathematics REGULAR AND SEMISIMPLE MODULES T. J. CHEATHAM AND J. R. SMITH Vol. 65, No. 2 October 1976 PACIFIC JOURNAL OF MATHEMATICS Vol. 65, No. 2, 1976 REGULAR AND SEMISIMPLE MODULES T. J. GHEATHAM AND J. R. SMITH A module is regular if all its submodules are (Cohn) pure. The family of all regular modules is closed under products if and only if RjJ{R) is a von Neumann regular ring. If each regular ϋJ-module is semisimple then R is a Γ-ring. An extra condition is needed for the converse* Character modules and extensions of regular and semisimple modules are investigated. 1* Introduction* Rings will be associative with identity and modules will be (left) unitary. R will denote a ring which is not assumed commutative unless specifically stated and J{R) will denote the Jacobson radical of R. Fieldhouse [5] calls a module B regular if each submodule A of B is pure in B, i.e., the inclusion 0—• A—>B remains exact upon tensor ing by any (right) iϋ-module. Regular modules have been studied under different definitions by Ware [12], Zelmanowitz [14], and Ramamurthi and Rangaswamy [9]. A module is semisimple if it is a sum of simple modules. For a subset A of a module J5, (0: A) will denote the left ideal {r eR\rx — 0 for all x e A}. 2* Products. The class of all semisimple modules is closed under products if and only if R/J(R) is a semisimple (Artinian) ring. This follows from the canonical embedding R/J(R) <=-+ ΠR/M, where the product is taken over the set of maximal left ideals M of R.
    [Show full text]
  • Li, Yiyang the Principal Indecomposable Modules of Sl3(K). J
    Li, Yiyang The principal indecomposable modules of sl3(k). J. Algebra Number Theory Appl. 25, No. 1, 45-58 (2012). Mathematics Subject Classification 2010: *17B10, 17B45, 17B50, 17B56 Keywords: Lie algebra of a reductive algebraic group; simple module; p-character; reduced universal enveloping algebra; standard Levi form; subregular nilpotent; baby Verma module; principal indecomposable module; self-extension Reviewer: J¨orgFeldvoss (8086) Let g be a finite dimensional restricted Lie algebra over an algebraically closed field k of prime characteristic p. Then for every simple g-module S there exists a linear form χ on g, the so-called p-character of S, such that S is a simple module for a certain finite dimensional quotient Uχ(g) of the universal enveloping algebra U(g) of g. In case g is the Lie algebra of a reductive algebraic group G, the linear dual g∗ and g are G-isomorphic and so the Jordan decomposition of elements in g transfers to g∗. Hence χ can be decomposed into a sum of its semisimple and nilpotent parts. It is well known that it is enough to consider only simple Uχ(g)-modules for nilpotent χ, but, in general, the structure of these simple modules is still unkown. If g = sln(k), then one can even assume that χ is in standard Levi form. In particular χ vanishes on the standard Borel subalgebra of g. The easiest case is when χ is regular, that is, when the dimension of the G- stabilizer of χ is equal to the rank of G. In this case every simple Uχ(g)-module is isomorphic to a baby Verma module, that is, a module induced from a one-dimensional (restricted) module for the standard Borel subalgebra of g (if χ is in standard Levi form).
    [Show full text]