Regular and Semisimple Modules
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Single Elements
Beitr¨agezur Algebra und Geometrie Contributions to Algebra and Geometry Volume 47 (2006), No. 1, 275-288. Single Elements B. J. Gardner Gordon Mason Department of Mathematics, University of Tasmania Hobart, Tasmania, Australia Department of Mathematics & Statistics, University of New Brunswick Fredericton, N.B., Canada Abstract. In this paper we consider single elements in rings and near- rings. If R is a (near)ring, x ∈ R is called single if axb = 0 ⇒ ax = 0 or xb = 0. In seeking rings in which each element is single, we are led to consider 0-simple rings, a class which lies between division rings and simple rings. MSC 2000: 16U99 (primary), 16Y30 (secondary) Introduction If R is a (not necessarily unital) ring, an element s is called single if whenever asb = 0 then as = 0 or sb = 0. The definition was first given by J. Erdos [2] who used it to obtain results in the representation theory of normed algebras. More recently the idea has been applied by Longstaff and Panaia to certain matrix algebras (see [9] and its bibliography) and they suggest it might be worthy of further study in other contexts. In seeking rings in which every element is single we are led to consider 0-simple rings, a class which lies between division rings and simple rings. In the final section we examine the situation in nearrings and obtain information about minimal N-subgroups of some centralizer nearrings. 1. Single elements in rings We begin with a slightly more general definition. If I is a one-sided ideal in a ring R an element x ∈ R will be called I-single if axb ∈ I ⇒ ax ∈ I or xb ∈ I. -
Topics in Module Theory
Chapter 7 Topics in Module Theory This chapter will be concerned with collecting a number of results and construc- tions concerning modules over (primarily) noncommutative rings that will be needed to study group representation theory in Chapter 8. 7.1 Simple and Semisimple Rings and Modules In this section we investigate the question of decomposing modules into \simpler" modules. (1.1) De¯nition. If R is a ring (not necessarily commutative) and M 6= h0i is a nonzero R-module, then we say that M is a simple or irreducible R- module if h0i and M are the only submodules of M. (1.2) Proposition. If an R-module M is simple, then it is cyclic. Proof. Let x be a nonzero element of M and let N = hxi be the cyclic submodule generated by x. Since M is simple and N 6= h0i, it follows that M = N. ut (1.3) Proposition. If R is a ring, then a cyclic R-module M = hmi is simple if and only if Ann(m) is a maximal left ideal. Proof. By Proposition 3.2.15, M =» R= Ann(m), so the correspondence the- orem (Theorem 3.2.7) shows that M has no submodules other than M and h0i if and only if R has no submodules (i.e., left ideals) containing Ann(m) other than R and Ann(m). But this is precisely the condition for Ann(m) to be a maximal left ideal. ut (1.4) Examples. (1) An abelian group A is a simple Z-module if and only if A is a cyclic group of prime order. -
Right Ideals of a Ring and Sublanguages of Science
RIGHT IDEALS OF A RING AND SUBLANGUAGES OF SCIENCE Javier Arias Navarro Ph.D. In General Linguistics and Spanish Language http://www.javierarias.info/ Abstract Among Zellig Harris’s numerous contributions to linguistics his theory of the sublanguages of science probably ranks among the most underrated. However, not only has this theory led to some exhaustive and meaningful applications in the study of the grammar of immunology language and its changes over time, but it also illustrates the nature of mathematical relations between chunks or subsets of a grammar and the language as a whole. This becomes most clear when dealing with the connection between metalanguage and language, as well as when reflecting on operators. This paper tries to justify the claim that the sublanguages of science stand in a particular algebraic relation to the rest of the language they are embedded in, namely, that of right ideals in a ring. Keywords: Zellig Sabbetai Harris, Information Structure of Language, Sublanguages of Science, Ideal Numbers, Ernst Kummer, Ideals, Richard Dedekind, Ring Theory, Right Ideals, Emmy Noether, Order Theory, Marshall Harvey Stone. §1. Preliminary Word In recent work (Arias 2015)1 a line of research has been outlined in which the basic tenets underpinning the algebraic treatment of language are explored. The claim was there made that the concept of ideal in a ring could account for the structure of so- called sublanguages of science in a very precise way. The present text is based on that work, by exploring in some detail the consequences of such statement. §2. Introduction Zellig Harris (1909-1992) contributions to the field of linguistics were manifold and in many respects of utmost significance. -
Modular Representation Theory of Finite Groups Jun.-Prof. Dr
Modular Representation Theory of Finite Groups Jun.-Prof. Dr. Caroline Lassueur TU Kaiserslautern Skript zur Vorlesung, WS 2020/21 (Vorlesung: 4SWS // Übungen: 2SWS) Version: 23. August 2021 Contents Foreword iii Conventions iv Chapter 1. Foundations of Representation Theory6 1 (Ir)Reducibility and (in)decomposability.............................6 2 Schur’s Lemma...........................................7 3 Composition series and the Jordan-Hölder Theorem......................8 4 The Jacobson radical and Nakayama’s Lemma......................... 10 Chapter5 2.Indecomposability The Structure of and Semisimple the Krull-Schmidt Algebras Theorem ...................... 1115 6 Semisimplicity of rings and modules............................... 15 7 The Artin-Wedderburn structure theorem............................ 18 Chapter8 3.Semisimple Representation algebras Theory and their of Finite simple Groups modules ........................ 2226 9 Linear representations of finite groups............................. 26 10 The group algebra and its modules............................... 29 11 Semisimplicity and Maschke’s Theorem............................. 33 Chapter12 4.Simple Operations modules on over Groups splitting and fields Modules............................... 3436 13 Tensors, Hom’s and duality.................................... 36 14 Fixed and cofixed points...................................... 39 Chapter15 5.Inflation, The Mackey restriction Formula and induction and Clifford................................ Theory 3945 16 Double cosets........................................... -
On Various Types of Ideals of Gamma Rings and the Corresponding Operator Rings
Ranu Paul Int. Journal of Engineering Research and Applications www.ijera.com ISSN: 2248-9622, Vol. 5, Issue 8, (Part -4) August 2015, pp.95-98 RESEARCH ARTICLE OPEN ACCESS On Various Types of Ideals of Gamma Rings and the Corresponding Operator Rings Ranu Paul Department of Mathematics Pandu College, Guwahati 781012 Assam State, India Abstract The prime objective of this paper is to prove some deep results on various types of Gamma ideals. The characteristics of various types of Gamma ideals viz. prime/maximal/minimal/nilpotent/primary/semi-prime ideals of a Gamma-ring are shown to be maintained in the corresponding right (left) operator rings of the Gamma-rings. The converse problems are also investigated with some good outcomes. Further it is shown that the projective product of two Gamma-rings cannot be simple. AMS Mathematics subject classification: Primary 16A21, 16A48, 16A78 Keywords: Ideals/Simple Gamma-ring/Projective Product of Gamma-rings I. Introduction left) ideal if the only right (or left) ideal of 푋 Ideals are the backbone of the Gamma-ring contained in 퐼 are 0 and 퐼 itself. theory. Nobusawa developed the notion of a Gamma- ring which is more general than a ring [3]. He Definition 2.5: A nonzero ideal 퐼 of a gamma ring obtained the analogue of the Wedderburn theorem for (푋, ) such that 퐼 ≠ 푋 is said to be maximal ideal, simple Gamma-ring with minimum condition on one- if there exists no proper ideal of 푋 containing 퐼. sided ideals. Barnes [6] weakened slightly the defining conditions for a Gamma-ring, introduced the Definition 2.6: An ideal 퐼 of a gamma ring (푋, ) is notion of prime ideals, primary ideals and radical for said to be primary if it satisfies, a Gamma-ring, and obtained analogues of the 푎훾푏 ⊆ 퐼, 푎 ⊈ 퐼 => 푏 ⊆ 퐽 ∀ 푎, 푏 ∈ 푋 푎푛푑 훾 ∈ . -
Characterization of Δ-Small Submodule
Mathematical Theory and Modeling www.iiste.org ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.5, No.7, 2015 Characterization of δ-small submodule R. S. Wadbude, M.R.Aloney & Shubhanka Tiwari 1.Mahatma Fule Arts, Commerce and Sitaramji Chaudhari Science Mahavidyalaya, Warud. SGB Amaravati University Amravati [M.S.] 2.Technocrats Institute of Technology (excellence) Barkttulla University Bhopal. [M.P.] Abstract Pseudo Projectivity and M- Pseudo Projectivity is a generalization of Projevtevity. [2], [8] studied M-Pseudo Projective module and small M-Pseudo Projective module. In this paper we consider some generalization of small M-Pseudo Projective module, that is δ-small M-Pseudo Projective module with the help of δ-small and δ- cover. Key words: Singular module, S.F. small M-Pseudo Projective module, δ-small and projective δ- cover. Introduction: Throughout this paper R is an associative ring with unity module and all modules are unitary left R- modules. A sub module K of a module M. K ≤ M. Let M be a module, K ≤ M is said to be small in M if for every L ≤ M, the equality K + L = M implies L = M, ( denoted by 퐾 ≪ 푀 ). The concept of δ-small sub modules was introduced by Zhon [10]. A sub module K of M is said to be δ-small sub module of M (denoted by 퐾 ≪훿 푀 ) if whenever M = K+ L, with M/K is singular, then M = L. The sum of all δ-small sub module of M is denoted by δ(M). δ(M) is the reject in M of class of all singular simple modules. -
Economic Indicators and Social Networks: New Approaches to Measuring Poverty, Prices, and Impacts of Technology
Economic Indicators and Social Networks: New approaches to measuring poverty, prices, and impacts of technology by Niall Carrigan Keleher A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Information Management and Systems in the Graduate Division of the University of California, Berkeley Committee in charge: Dr. Joshua Evan Blumenstock, Chair Dr. John Chuang Dr. Jeremy Magruder Fall 2019 1 Abstract Economic Indicators and Social Networks: New approaches to measuring poverty, prices, and impacts of technology by Niall Carrigan Keleher Doctor of Philosophy in Information Management and Systems University of California, Berkeley Dr. Joshua Evan Blumenstock, Chair Collecting data to inform policy decisions is an ongoing global challenge. While some data collection has become routine, certain populations remain dicult to reach. From targeting social protection programs in densely-populated urban areas to reaching the “last mile” of infrastructure coverage, data collection and service delivery go hand-in-hand. Understanding the populations that live in urban communities as well as remote villages can help to tailor the design, targeting, and implementation of development programs. New sources of information have the potential to improve awareness of the needs and preferences of individuals, households, and communities. The goal of this dissertation is to provide multiple vantage points on the role that data, commu- nity input, and individual preferences can play in informing development policy. The empirical investigation presented in this dissertation covers two studies in Liberia and one in the Philippines. The unifying theme of the three chapters is the exploration of new sources of information about hard-to-reach populations. -
On Continuous Rings
JOURNAL OF ALGEBRA 191, 495]509Ž. 1997 ARTICLE NO. JA966936 On Continuous Rings Mohamed F. Yousif* Department of Mathematics, The Ohio State Uni¨ersity, Lima, Ohio 45804 and Centre de Recerca Matematica, Institut d'Estudis Catalans, Apartat 50, E-08193 Bellaterra, Spain View metadata, citation and similar papers at core.ac.uk brought to you by CORE Communicated by Kent R. Fuller provided by Elsevier - Publisher Connector Received March 11, 1996 We show that if R is a semiperfect ring with essential left socle and rlŽ. K s K for every small right ideal K of R, then R is right continuous. Accordingly some well-known classes of rings, such as dual rings and rings all of whose cyclic right R-modules are essentially embedded in projectives, are shown to be continuous. We also prove that a ring R has a perfect duality if and only if the dual of every simple right R-module is simple and R [ R is a left and right CS-module. In Sect. 2 of the paper we provide a characterization for semiperfect right self-injective rings in terms of the CS-condition. Q 1997 Academic Press According to S. K. Jain and S. Lopez-Permouth wx 15 , a ring R is called a right CEP-ring if every cyclic right R-module is essentially embedded in a projectiveŽ. free right R-module. In a recent and interesting article by J. L. Gomez Pardo and P. A. Guil Asensiowx 9 , right CEP-rings were shown to be right artinian. In this paper we will show that such rings are right continuous, and so R is quasi-Frobenius if and only if MR2Ž.is a right CEP-ring. -
THE STRUCTURE of RINGS of QUOTIENTS Gary F. Birkenmeier1
THE STRUCTURE OF RINGS OF QUOTIENTS Gary F. Birkenmeier1; y, Jae Keol Park2 and S. Tariq Rizvi3 1Department of Mathematics, University of Louisiana at Lafayette Lafayette, LA 70504-1010, U. S. A. [email protected] 2Department of Mathematics, Busan National University Busan 609-735, South Korea [email protected] 3Department of Mathematics, Ohio State University Lima, OH 45804-3576, U. S. A. [email protected] Abstract. For an arbitrary ring R we completely characterize when Q(R), the maximal right ring of quotients of R, is a direct product of indecomposable rings and when Q(R) is a direct product of prime rings in terms of conditions on ideals of R. Our work generalizes decomposition results of Goodearl for a von Neumann regular right self-injective ring and of Jain, Lam, and Leroy for Q(R) when R is right nonsingular. To develop our results, we de¯ne a useful dimension on bimodules and characterize the subset of ideals of R which are dense in ring direct summands of Q(R). A structure theorem for RB(Q(R)), the subring of Q(R) generated by fre j r 2 R and e 2 B(Q(R))g, is provided for a semiprime ring R. Our methods allow us to properly generalize Rowen's theorem for semiprime PI-rings. We also apply our results to Functional Analysis to obtain a direct product decomposition of the local multiplier ¤ ¤ algebra, Mloc(A), of a C -algebra A. As a byproduct, we obtain a complete description of a C -algebra whose extended centroid is C@. -
Determination of the Differentiably Simple Rings with a Minimal Ideal Author(S): Richard E
Annals of Mathematics Determination of the Differentiably Simple Rings with a Minimal Ideal Author(s): Richard E. Block Source: The Annals of Mathematics, Second Series, Vol. 90, No. 3 (Nov., 1969), pp. 433-459 Published by: Annals of Mathematics Stable URL: http://www.jstor.org/stable/1970745 Accessed: 07/11/2010 19:03 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=annals. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to The Annals of Mathematics. http://www.jstor.org Determinationof the differentiablysimple ringswith a minimalideal* By RICHARD E. -
Algebraic Modules for Finite Groups
Algebraic Modules for Finite Groups David A. Craven January 2007 For the purposes of this talk, G is a finite group, K is an algebraically closed field of characteristic p, where p | |G|, and all modules are finite-dimensional. 1 Algebraic Modules The Green ring of KG-modules is defined to be the free abelian group on the basis set of all indecomposable KG-modules, with M + N defined to be equal to M ⊕ N, and the product of two modules defined as M ⊗ N. Notice that not all elements of the Green ring can be thought of as modules, since they could have negative multiplicities attached; they are virtual modules. The structure of the Green ring, while a commutative ring with a 1, is far from that of traditional commutative rings. For example, it is not an integral domain: in general, it has nilpotent elements. It is also in general infinite-dimensional. We can still, however, carry over some notions from algebraic number theory. One of those is algebraic modules. A module is said to be algebraic if it satisfies some polynomial equation in the Green ring, with co-efficients in Z. Proposition 1.1 Let M be a KG-module. Then the following are equivalent: (i) M is algebraic; (ii) M satisfies a monic polynomial equation in the Green ring with co-efficients in Z; and (iii) there are only finitely many different indecomposable summands of the (infinite-dimensional) module T (M) = M ⊕ M ⊗2 ⊕ M ⊗3 ⊕ · · · . The third equivalent condition is often the easiest to use in actually deciding if modules are algebraic or not. -
Study of Formal Triangular Matrix Rings
International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014 ISSN 2229-5518 21 STUDY OF FORMAL TRIANGULAR MATRIX RINGS MRS Sunita Salunke SCOE Kharghar Navi Mumbai Email:[email protected] Abstract—There has been a continuous study on formal triangular matrix rings. In this present study 2. Generalities on formal triangular matrix of formal triangular matrix rings few ring theoretic rings characteristic properties of formal triangular matrix rings have been studied in detail. Some definitive re- Proposition II.1. (1) The set of maximal right sults are verified on these rings concerning properties ideals of T is given by such as being respectively left Kasch, right mininjec- tive, clean, potent or a ring of stable rank≤ n. The f(I ⊕ M) ⊕ Kj either I = concepts of a strong left Kasch ring and a strong right A and K is a maximal right ideal of B mininjective ring are introduced and it is determined or I is a maximal right ideal of A and K = when the triangular matrix rings are respectively Bg strong left Kasch or strong right mininjective (2) The set of minimal right ideals of T is the I. INTRODUCTION union of the two sets, fW ⊕ 0j W a simple submodule of (A ⊕ All the rings considered will be associative rings M) g and with identity, all the modules considered will be A f0 ⊕ Kj with 0 the zero submodule of (A ⊕ unital modules. For any ring R the category of right M) and K a minimal right (resp left) R-modules will be denoted by Mod- A ideal of B satisfying KM = 0g: R(resp R-Mod).