On Continuous Rings

Total Page:16

File Type:pdf, Size:1020Kb

On Continuous Rings JOURNAL OF ALGEBRA 191, 495]509Ž. 1997 ARTICLE NO. JA966936 On Continuous Rings Mohamed F. Yousif* Department of Mathematics, The Ohio State Uni¨ersity, Lima, Ohio 45804 and Centre de Recerca Matematica, Institut d'Estudis Catalans, Apartat 50, E-08193 Bellaterra, Spain View metadata, citation and similar papers at core.ac.uk brought to you by CORE Communicated by Kent R. Fuller provided by Elsevier - Publisher Connector Received March 11, 1996 We show that if R is a semiperfect ring with essential left socle and rlŽ. K s K for every small right ideal K of R, then R is right continuous. Accordingly some well-known classes of rings, such as dual rings and rings all of whose cyclic right R-modules are essentially embedded in projectives, are shown to be continuous. We also prove that a ring R has a perfect duality if and only if the dual of every simple right R-module is simple and R [ R is a left and right CS-module. In Sect. 2 of the paper we provide a characterization for semiperfect right self-injective rings in terms of the CS-condition. Q 1997 Academic Press According to S. K. Jain and S. Lopez-Permouth wx 15 , a ring R is called a right CEP-ring if every cyclic right R-module is essentially embedded in a projectiveŽ. free right R-module. In a recent and interesting article by J. L. Gomez Pardo and P. A. Guil Asensiowx 9 , right CEP-rings were shown to be right artinian. In this paper we will show that such rings are right continuous, and so R is quasi-Frobenius if and only if MR2Ž.is a right CEP-ring. This result extends some of the work inwx 14 and wx 15 . We will also show that right CEP-rings inherit some of the important features which are known to hold for pseudo- and quasi-Frobenius rings, such asŽ. i Ž. Ž . Ž . Ž . Ž . Soc RRR s Soc R ,ii JRsZR RRsZR , iii R is left and right Kasch, andŽ. iv R admits a Nakayama permutation of its basic primitive idempotents. A ring R is called a D-ringŽ.Ž.Ž. dual ring if rl I s I and lr L s L for every right ideal I and every left ideal L of R. We will show that D-rings *E-mail: [email protected]. 495 0021-8693r97 $25.00 Copyright Q 1997 by Academic Press All rights of reproduction in any form reserved. 496 MOHAMED F. YOUSIF are left and right continuous and as a result, R will have a perfect duality if and only if MR2Ž.is a D-ring. These results are direct consequences of a more general result which will be proved in Theorem 1.7 of this paper. We will show that if R is a ess Ž. semiperfect ring with Soc RRR : R and rl K s K for every small right ideal K of R then R is right continuous and rlŽ. A s A for every right ideal A of R. Motivated by the work of J. L. Gomez Pardo and P. A. Guil Asensiow 9, 10x we will also prove the following results: Ž.A Ris a right CS-ring which is left and right Kasch if and only if R is semiperfect right continuous with essential right socle. Ž.B Ris a left and right CS-ring and the dual of every simple right R-module is simple if and only if R is semiperfect left and right continuous Ž. Ž. with Soc RRR s Soc R is essential as a left and as a right R-module in R. Moreover in this case R admits a Nakayama permutation of its basic set of primitive idempotents. Ž.C Rhas a perfect duality if and only if the dual of every simple right S-module is simple and S is a left and right CS-ring, where S s MR2Ž.. Following ideas of M. Haradawx 11 , K. Oshiro wx 20 , and D. v. Huynh wx13 we will show, in Sect. 2 of the paper, that R is semiperfect right self- injective if and only if R has DCC on principal projective right ideals, Ž. Ž . R[Ris a right CS-module, and JRsZRR . Throughout this paper all rings considered are associative with unity and all modules are unitary R-modules. We write A : BAŽ.;Bto mean A is a submoduleŽ. proper of B.If MR is a right R-module, we will denote by JMŽ., ZM Ž., Soc Ž.M , and EM Ž.the Jacobson radical, the singular submodule, the socle, and the injective hull of M, respectively. The left Ž.resp. right annihilator of a subset X of R is denoted by lX Ž.Žresp. rXŽ... We will write M Žk.to indicate to a direct sum of k-copies of M. ess The notation A : B and C :[ D will mean A is an essential submodule of B and C is a direct summand of D. We will indicate by R M* s HomŽ.MRR, R the dual left R-module. A module MR is said to satisfy: the C1-conditionŽ. CS-condition if every submodule of M is essential in a summand of M; the C2-condition if every submodule of M which is isomorphic to a summand of M is itself a summand of M; CONTINUOUS RINGS 497 the C3-condition if M12and M are summands of M and M12l M s 0, then M12[ M is a summand of M. MR is called continuous if M satisfies both the C1- and C2-conditions, and is called quasicontinuous if it satisfies the C1- and C3-conditions. A ring R is called a right CS-ringŽ. right continuous, right quasicontinuous if RR is a CS-moduleŽ. continuous module, quasicontinuous module . It is well known that M12[ M is continuous if and only if M1and M 2are continuous and Mijis M -injective, where i / j and 1 F i, j F 2. We refer the reader towx 4 andwx 16 for detailed information on continuous, quasicontinuous, and CS-modules. A ring R will be called left Kasch if every simple left R-module is embedded in R, and is called right QF}3if ERŽ.R is projective. According to W. K. Nicholsonwx 17 , a ring R is called semiregu- lar if RrJRŽ.is a regular ring and idempotents lift modulo JRŽ.. 1. CONTINUOUS RINGS We begin with the following lemma which is of independent interest and has several interesting consequences which will be presentedŽ and dis- cussed. after we prove the main results of this section. Recall that a submodule N of a module M is said to lie over a direct summand of M if there exist submodules L and K of M such that M s L [ K, L : N, and NlK:JMŽ.. Ž. Ž . LEMMA 1.1. Suppose R is a semiregular ring with J R s ZRR .Then Žk. R satisfies the right C2-condition, ;k G 1. Proof. Since R is semiregular, every finitely generated submodule of Žk. R lies over a direct summand. Suppose ARR( B , where B is a sum- mand of RŽk.. Then A is a finitely generated projective right R-module. Žk. Ž k. Let C and D be submodules of R such that R s C [ D, C : A, and Žk. AlDis a small submodule of R . Thus A s C [ Ž.A l D , where Ž Žk.. Ž.Žk. AlD:rad R s wZRR x. But this means A l D is a finitely gen- erated projective singular right R-module. This is impossible, unless A l Žk. D s 0, and so A s C is a summand of R . ess ess LEMMA 1.2. Suppose R is a semiperfect ring, Soc RRR : R, Soc R RR: R , and rlŽ. K s K for e¨ery minimal right ideal K of R. Then the following hold: Ž.i R is left mininjecti¨eiŽ.e., maps from minimal left ideals of R into R are gi¨en by right multiplication.. Ž.ii R is left and right Kasch. 498 MOHAMED F. YOUSIF Ž.iii If k g R, Rk is a minimal left ideal of R if and only if kR is a minimal right ideal of R. Ž. Ž . Ž . iv Soc RRR s Soc R s S. Ž.v Soc ŽeR . is simple for e¨ery primiti¨e idempotent e of R. Ž.vi R is right finite dimensional. Ž. Ž. Ž . Ž . vii JRsZRRRsZR . Ž. Ä4 viii if e1,...,en is a basic set of primiti¨e idempotents of R, there exist elements k1,...,kinRn ,and a permutation s of Ä41,...,n such that the following hold for all i s 1,...,n: Ž. a Rkii: Re and k i R : eRsŽi.. Ž. b Rki( ResŽi.rJesŽi. and kiii R ( eRreJ. Ž.c kR1 ,...,kn R and Rk1,...,Rkn are complete sets of representa- ti¨es of the simple right and simple left R-modules, respecti¨ely. Ž. Ž . d Soc eRsŽi. skRi seSsŽi. (eRiireJ. Ž.e Soc ŽRei . is homogeneous with each simple submodule isomor- phic to Res Ži.rJes Ži.. Proof. By Corollary 3.15 and Theorem 3.14 ofwx 19 . The next result was originally proved by Y. Utumiwx 24, Proposition 3.12 for left pseudo-Frobenius rings. With the help of the above two lemmas and by adapting Utumi's argument we extend his result to a much larger class of rings. ess ess LEMMA 1.3.
Recommended publications
  • Single Elements
    Beitr¨agezur Algebra und Geometrie Contributions to Algebra and Geometry Volume 47 (2006), No. 1, 275-288. Single Elements B. J. Gardner Gordon Mason Department of Mathematics, University of Tasmania Hobart, Tasmania, Australia Department of Mathematics & Statistics, University of New Brunswick Fredericton, N.B., Canada Abstract. In this paper we consider single elements in rings and near- rings. If R is a (near)ring, x ∈ R is called single if axb = 0 ⇒ ax = 0 or xb = 0. In seeking rings in which each element is single, we are led to consider 0-simple rings, a class which lies between division rings and simple rings. MSC 2000: 16U99 (primary), 16Y30 (secondary) Introduction If R is a (not necessarily unital) ring, an element s is called single if whenever asb = 0 then as = 0 or sb = 0. The definition was first given by J. Erdos [2] who used it to obtain results in the representation theory of normed algebras. More recently the idea has been applied by Longstaff and Panaia to certain matrix algebras (see [9] and its bibliography) and they suggest it might be worthy of further study in other contexts. In seeking rings in which every element is single we are led to consider 0-simple rings, a class which lies between division rings and simple rings. In the final section we examine the situation in nearrings and obtain information about minimal N-subgroups of some centralizer nearrings. 1. Single elements in rings We begin with a slightly more general definition. If I is a one-sided ideal in a ring R an element x ∈ R will be called I-single if axb ∈ I ⇒ ax ∈ I or xb ∈ I.
    [Show full text]
  • Right Ideals of a Ring and Sublanguages of Science
    RIGHT IDEALS OF A RING AND SUBLANGUAGES OF SCIENCE Javier Arias Navarro Ph.D. In General Linguistics and Spanish Language http://www.javierarias.info/ Abstract Among Zellig Harris’s numerous contributions to linguistics his theory of the sublanguages of science probably ranks among the most underrated. However, not only has this theory led to some exhaustive and meaningful applications in the study of the grammar of immunology language and its changes over time, but it also illustrates the nature of mathematical relations between chunks or subsets of a grammar and the language as a whole. This becomes most clear when dealing with the connection between metalanguage and language, as well as when reflecting on operators. This paper tries to justify the claim that the sublanguages of science stand in a particular algebraic relation to the rest of the language they are embedded in, namely, that of right ideals in a ring. Keywords: Zellig Sabbetai Harris, Information Structure of Language, Sublanguages of Science, Ideal Numbers, Ernst Kummer, Ideals, Richard Dedekind, Ring Theory, Right Ideals, Emmy Noether, Order Theory, Marshall Harvey Stone. §1. Preliminary Word In recent work (Arias 2015)1 a line of research has been outlined in which the basic tenets underpinning the algebraic treatment of language are explored. The claim was there made that the concept of ideal in a ring could account for the structure of so- called sublanguages of science in a very precise way. The present text is based on that work, by exploring in some detail the consequences of such statement. §2. Introduction Zellig Harris (1909-1992) contributions to the field of linguistics were manifold and in many respects of utmost significance.
    [Show full text]
  • On Various Types of Ideals of Gamma Rings and the Corresponding Operator Rings
    Ranu Paul Int. Journal of Engineering Research and Applications www.ijera.com ISSN: 2248-9622, Vol. 5, Issue 8, (Part -4) August 2015, pp.95-98 RESEARCH ARTICLE OPEN ACCESS On Various Types of Ideals of Gamma Rings and the Corresponding Operator Rings Ranu Paul Department of Mathematics Pandu College, Guwahati 781012 Assam State, India Abstract The prime objective of this paper is to prove some deep results on various types of Gamma ideals. The characteristics of various types of Gamma ideals viz. prime/maximal/minimal/nilpotent/primary/semi-prime ideals of a Gamma-ring are shown to be maintained in the corresponding right (left) operator rings of the Gamma-rings. The converse problems are also investigated with some good outcomes. Further it is shown that the projective product of two Gamma-rings cannot be simple. AMS Mathematics subject classification: Primary 16A21, 16A48, 16A78 Keywords: Ideals/Simple Gamma-ring/Projective Product of Gamma-rings I. Introduction left) ideal if the only right (or left) ideal of 푋 Ideals are the backbone of the Gamma-ring contained in 퐼 are 0 and 퐼 itself. theory. Nobusawa developed the notion of a Gamma- ring which is more general than a ring [3]. He Definition 2.5: A nonzero ideal 퐼 of a gamma ring obtained the analogue of the Wedderburn theorem for (푋, ) such that 퐼 ≠ 푋 is said to be maximal ideal, simple Gamma-ring with minimum condition on one- if there exists no proper ideal of 푋 containing 퐼. sided ideals. Barnes [6] weakened slightly the defining conditions for a Gamma-ring, introduced the Definition 2.6: An ideal 퐼 of a gamma ring (푋, ) is notion of prime ideals, primary ideals and radical for said to be primary if it satisfies, a Gamma-ring, and obtained analogues of the 푎훾푏 ⊆ 퐼, 푎 ⊈ 퐼 => 푏 ⊆ 퐽 ∀ 푎, 푏 ∈ 푋 푎푛푑 훾 ∈ .
    [Show full text]
  • L-Stability in Rings and Left Quasi-Duo Rings
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2018-05-28 L-stability in Rings and Left Quasi-duo Rings Horoub, Ayman Mohammad Abedalqader Horoub, A. M. A, (2018). L-stability in Rings and Left Quasi-duo Rings (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/31958 http://hdl.handle.net/1880/106702 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY L-stability in Rings and Left Quasi-duo Rings by Ayman Mohammad Abedalqader Horoub A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN MATHEMATICS AND STATISTICS CALGARY, ALBERTA May, 2018 c Ayman Mohammad Abedalqader Horoub 2018 Abstract A ring R is said to have stable range 1 if, for any element a 2 R and any left ideal L of R, Ra + L = R implies a − u 2 L for some unit u in R. Here we insist only that this holds for all L in some non-empty set L(R) of left ideals of R, and say that R is left L-stable in this case. We say that a class C of rings is affordable if C is the class of left L-stable rings for some left idealtor L.
    [Show full text]
  • THE STRUCTURE of RINGS of QUOTIENTS Gary F. Birkenmeier1
    THE STRUCTURE OF RINGS OF QUOTIENTS Gary F. Birkenmeier1; y, Jae Keol Park2 and S. Tariq Rizvi3 1Department of Mathematics, University of Louisiana at Lafayette Lafayette, LA 70504-1010, U. S. A. [email protected] 2Department of Mathematics, Busan National University Busan 609-735, South Korea [email protected] 3Department of Mathematics, Ohio State University Lima, OH 45804-3576, U. S. A. [email protected] Abstract. For an arbitrary ring R we completely characterize when Q(R), the maximal right ring of quotients of R, is a direct product of indecomposable rings and when Q(R) is a direct product of prime rings in terms of conditions on ideals of R. Our work generalizes decomposition results of Goodearl for a von Neumann regular right self-injective ring and of Jain, Lam, and Leroy for Q(R) when R is right nonsingular. To develop our results, we de¯ne a useful dimension on bimodules and characterize the subset of ideals of R which are dense in ring direct summands of Q(R). A structure theorem for RB(Q(R)), the subring of Q(R) generated by fre j r 2 R and e 2 B(Q(R))g, is provided for a semiprime ring R. Our methods allow us to properly generalize Rowen's theorem for semiprime PI-rings. We also apply our results to Functional Analysis to obtain a direct product decomposition of the local multiplier ¤ ¤ algebra, Mloc(A), of a C -algebra A. As a byproduct, we obtain a complete description of a C -algebra whose extended centroid is C@.
    [Show full text]
  • Determination of the Differentiably Simple Rings with a Minimal Ideal Author(S): Richard E
    Annals of Mathematics Determination of the Differentiably Simple Rings with a Minimal Ideal Author(s): Richard E. Block Source: The Annals of Mathematics, Second Series, Vol. 90, No. 3 (Nov., 1969), pp. 433-459 Published by: Annals of Mathematics Stable URL: http://www.jstor.org/stable/1970745 Accessed: 07/11/2010 19:03 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=annals. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to The Annals of Mathematics. http://www.jstor.org Determinationof the differentiablysimple ringswith a minimalideal* By RICHARD E.
    [Show full text]
  • Study of Formal Triangular Matrix Rings
    International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014 ISSN 2229-5518 21 STUDY OF FORMAL TRIANGULAR MATRIX RINGS MRS Sunita Salunke SCOE Kharghar Navi Mumbai Email:[email protected] Abstract—There has been a continuous study on formal triangular matrix rings. In this present study 2. Generalities on formal triangular matrix of formal triangular matrix rings few ring theoretic rings characteristic properties of formal triangular matrix rings have been studied in detail. Some definitive re- Proposition II.1. (1) The set of maximal right sults are verified on these rings concerning properties ideals of T is given by such as being respectively left Kasch, right mininjec- tive, clean, potent or a ring of stable rank≤ n. The f(I ⊕ M) ⊕ Kj either I = concepts of a strong left Kasch ring and a strong right A and K is a maximal right ideal of B mininjective ring are introduced and it is determined or I is a maximal right ideal of A and K = when the triangular matrix rings are respectively Bg strong left Kasch or strong right mininjective (2) The set of minimal right ideals of T is the I. INTRODUCTION union of the two sets, fW ⊕ 0j W a simple submodule of (A ⊕ All the rings considered will be associative rings M) g and with identity, all the modules considered will be A f0 ⊕ Kj with 0 the zero submodule of (A ⊕ unital modules. For any ring R the category of right M) and K a minimal right (resp left) R-modules will be denoted by Mod- A ideal of B satisfying KM = 0g: R(resp R-Mod).
    [Show full text]
  • Regular and Semisimple Modules
    Pacific Journal of Mathematics REGULAR AND SEMISIMPLE MODULES T. J. CHEATHAM AND J. R. SMITH Vol. 65, No. 2 October 1976 PACIFIC JOURNAL OF MATHEMATICS Vol. 65, No. 2, 1976 REGULAR AND SEMISIMPLE MODULES T. J. GHEATHAM AND J. R. SMITH A module is regular if all its submodules are (Cohn) pure. The family of all regular modules is closed under products if and only if RjJ{R) is a von Neumann regular ring. If each regular ϋJ-module is semisimple then R is a Γ-ring. An extra condition is needed for the converse* Character modules and extensions of regular and semisimple modules are investigated. 1* Introduction* Rings will be associative with identity and modules will be (left) unitary. R will denote a ring which is not assumed commutative unless specifically stated and J{R) will denote the Jacobson radical of R. Fieldhouse [5] calls a module B regular if each submodule A of B is pure in B, i.e., the inclusion 0—• A—>B remains exact upon tensor ing by any (right) iϋ-module. Regular modules have been studied under different definitions by Ware [12], Zelmanowitz [14], and Ramamurthi and Rangaswamy [9]. A module is semisimple if it is a sum of simple modules. For a subset A of a module J5, (0: A) will denote the left ideal {r eR\rx — 0 for all x e A}. 2* Products. The class of all semisimple modules is closed under products if and only if R/J(R) is a semisimple (Artinian) ring. This follows from the canonical embedding R/J(R) <=-+ ΠR/M, where the product is taken over the set of maximal left ideals M of R.
    [Show full text]
  • A Primer of Commutative Algebra
    A Primer of Commutative Algebra James S. Milne April 5, 2009, v2.00 Abstract These notes prove the basic theorems in commutative algebra required for alge- braic geometry and algebraic groups. They assume only a knowledge of the algebra usually taught in advanced undergraduate or first-year graduate courses. Available at www.jmilne.org/math/. Contents 1 Rings and algebras . 2 2 Ideals . 3 3 Noetherian rings . 7 4 Unique factorization . 12 5 Integrality . 14 6 Rings of fractions . 19 7 Direct limits. 23 8 Tensor Products . 24 9 Flatness . 28 10 The Hilbert Nullstellensatz . 32 11 The max spectrum of a ring . 34 12 Dimension theory for finitely generated k-algebras . 42 13 Primary decompositions . 45 14 Artinian rings . 49 15 Dimension theory for noetherian rings . 50 16 Regular local rings . 54 17 Connections with geometry . 56 NOTATIONS AND CONVENTIONS Our convention is that rings have identity elements,1 and homomorphisms of rings respect the identity elements. A unit of a ring is an element admitting an inverse. The units of a c 2009 J.S. Milne. Single paper copies for noncommercial personal use may be made without explicit permission from the copyright holder. 1An element e of a ring A is an identity element if ea a ae for all elements a of the ring. It is usually D D denoted 1A or just 1. Some authors call this a unit element, but then an element can be a unit without being a unit element. Worse, a unit need not be the unit. 1 1 RINGS AND ALGEBRAS 2 2 ring A form a group, which we denote A.
    [Show full text]
  • T-Essentially Coretractable and Weakly T-Essentially Coretractable Modules
    Open Access Baghdad Science Journal P-ISSN: 2078-8665 Published Online First: December 2020 E-ISSN: 2411-7986 DOI: http://dx.doi.org/10.21123/bsj.2021.18.1.0156 T-Essentially Coretractable and Weakly T-Essentially Coretractable Modules Inaam Mohammed Ali Hadi*1 Shukur Neamah Al-Aeashi 2 Farhan Dakhil Shyaa3 1 Department of Mathematics, College of Education for Pure Science/ Ibn Al-Haitham, University of Baghdad, Iraq. 2 Department of Mathematics, College of Education, University of Kufa, Kufa, Iraq. 3 Department of Mathematics, College of Education, University of Al-Qadisiyah, Qadisiyah, Iraq. *Corresponding author: [email protected] *,[email protected], [email protected] *ORCID ID: https://orcid.org/0000-0002-1058-7410, https://orcid.org/0000-0002-9886-3247, https://orcid.org/0000- 0003-1123-1974 Received 24/2/2019, Accepted 25/4/2020, Published Online First 6/12/2020, Published 1/3/2021 This work is licensed under a Creative Commons Attribution 4.0 International License. Abstract: A new generalizations of coretractable modules are introduced where a module ℳ is called t-essentially (weakly t-essentially) coretractable if for all proper submodule 퐾 of ℳ, there exists f∈End(ℳ), f(퐾)=0 and Imf≤tes ℳ (Im f +퐾 ≤tes ℳ). Some basic properties are studied and many relationships between these classes and other related one are presented. Key words: Coretractable module, Essentially coretractable module, T-essentially coretractable module, Weakly t-essentially coretractable module, Weakly essentially coretractable module. Introduction: In this work, all rings have identity and all weakly essentially coretractable if Imf+퐾 ≤ess ℳ" modules are unitary left R-modules.
    [Show full text]
  • ON SEMIPERFECT F-INJECTIVE RINGS Truong Cong Quynh 1
    International Electronic Journal of Algebra Volume 1 (2007) 18{29 ON SEMIPERFECT F-INJECTIVE RINGS Truong Cong Quynh Received: 12 June 2006; Revised: 26 October 2006 Communicated by W. K. Nicholson Abstract. A ring R is called right F-injective if every right R-homomorphism from a finitely generated right ideal of R to R extends to an endomorphism of R. R is called a right FSE-ring if R is a right F-injective semiperfect ring with essential right socle. The class of right FSE-rings is broader than that of right PF-rings. In this paper, we study and provide some characterizations of this class of rings. We prove that if R is left perfect, right F-injective, then R is QF if and only if R=S is left finitely cogenerated where S = Sr = Sl if and only if R is left semiartinian, Soc2(R) is left finitely generated. It is also proved that R is QF if and only if R is left perfect, mininjective and J2 = r(I) for a finite subset I of R. Some known results are obtained as corollaries. Mathematics Subject Classification (2000): 16D50, 16D70, 16D80 Keywords: F(P)-injective ring, mininjective ring, finitely continuous ring, min-CS, QF-ring, PF-ring, FSE-ring, uniform module 1. Introduction Throughout the paper, R represents an associative ring with identity 1 6= 0 and all modules are unitary R-modules. We write MR (resp., RM) to indicate that M is a right (resp., left) R-module. We also write J (resp., Zr, Sr) for the Jacobson radical (resp., the right singular ideal, the right socle of R) and E(MR) for the injective hull of MR.
    [Show full text]
  • Ideals and Overrings of Divided Domains
    International Electronic Journal of Algebra Volume 8 (2009) 80-113 IDEALS AND OVERRINGS OF DIVIDED DOMAINS Gabriel Picavet Received: 27 November 2009; Revised: 3 June 2010 Communicated by Abdullah Harmanc³ Abstract. New properties of divided domains R are established by looking at multiplicatively closed subsets associated to ring morphisms. Let I be an p ideal of R. We exhibit primary ideals, like I I and In if I is primary. We show that Ass(I) = V(I) \ Spec(RMax(Ass(I))). Moreover, the image of the maximal spectrum of (I : I) is contained in Ass(I). We show that certain intersections of ideals are primary ideals. Goldman prime ideals are prime g- ideals. The characterization of maximal flat epimorphic subextensions gives as a result that R is a valuation subring of PrÄuferhulls. We characterize Fontana- Houston divided ­-domains, divided APVDs and divided PPC-domains. Mathematics Subject Classi¯cation (2000): Primary 13G05; Secondary 13A15, 13B24, 13F05 Keywords: a±ne open subset, almost pseudo-valuation domain, antesharp prime ideal, complete integral closure, conductor overring, divided domain (ring), (flat) epimorphism, fragmented domain, g-ideal ring, G-ideal ring, going-down domain, i-domain, Kaplansky transform, Kasch ring, Manis pair, maximal flat epimorphic (sub)extension, ­-domain, open domain, PPC-domain, power-Ahmes domain, propen domain, primal ideal, primary ideal, treed do- main, unbranched prime ideal, valuation pair. 1. Introduction and notation This paper deals with commutative unital rings and their (homo)morphisms. Dobbs introduced the divided property [7]. Let R be an integral domain with quotient ¯eld K, with R 6= K (i.e.
    [Show full text]