manuscript submitted to JGR: Space Physics 1 Jensen-Shannon Complexity and Permutation Entropy 2 Analysis of Geomagnetic Auroral Currents 1 2 3,4 3 Adnane Osmane , Andrew P. Dimmock , Tuija I. Pulkkinen 1 4 Department of Physics, University of Helsinki, Helsinki, Finland 2 5 Swedish Institute of Space Physics, Uppsala University, Uppsala, Sweden 3 6 Department of Climate and Space Sciences, University of Michigan, Ann Arbor, MI, USA 4 7 Aalto University, School of Electrical Engineering, Espoo, Finland 8 Key Points: 9 • Jensen-Shannon complexity plane used to analyse auroral geomagnetic indices. 10 • Auroral indices are shown to be inconsistent with low-dimensional chaotic processes. 11 • Maximum in complexity occurs on timescales ranging between 10 and 40 minutes. This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1029/2018JA026248 Corresponding author: Adnane Osmane,
[email protected] This article is protected by copyright.–1– All rights reserved. manuscript submitted to JGR: Space Physics 12 Abstract 13 In this study we determine whether auroral westward currents can be characterised by 14 low dimensional chaotic attractors through the use of the complexity-entropy method- 15 ology developed by Rosso, Larrondo, Martin, Plastino, and Fuentes (2007) and based 16 on the permutation entropy developed by Bandt and Pompe (2002). Our results indi- 17 cate that geomagnetic auroral indices are indistinguishable from stochastic processes from 18 timescales ranging from a few minutes to 10 hours and for embedded dimensions d < 19 8.