WO 2015/035367 Al 12 March 2015 (12.03.2015) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2015/035367 Al 12 March 2015 (12.03.2015) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/035367 Al 12 March 2015 (12.03.2015) P O P C T (51) International Patent Classification: (72) Inventors; and C12Q 1/68 (2006.01) (71) Applicants : SALOMON, Daniel [US/US]; 4728 Reedley Terrace, San Diego, CA 92130 (US). KURIAN, Sunil, M. (21) International Application Number: [IN/US]; 10963 Tobago Road, San Diego, CA 92126 (US). PCT/US2014/054735 HEAD, Steven [US/US]; 11673 Valle Vista Road, (22) International Filing Date: Lakeside, CA 92040 (US). ABECASSIS, Michael, M. >September 2014 (09.09.2014) [US/US]; 1975 Keats Court, Highland Park, IL 60035 (US). FRIEDEWALD, John, J. [US/US]; 3315 N . Lake- (25) Filing Language: English wood Avenue, Chicago, IL 60657 (US). LEVITSKY, (26) Publication Language: English Josh [US/US]; 1308 Judson, Evanston, IL 60201 (US). (30) Priority Data: (74) Agents: FITTING, Thomas et al; The Scripps Research 61/875,276 ' September 2013 (09.09.2013) US Institute, 10550 North Torrey Pines Road, TPC-8, La Jolla, 61/965,040 16 January 2014 (16.01.2014) US CA 92037 (US). 62/001,889 22 May 2014 (22.05.2014) US (81) Designated States (unless otherwise indicated, for every 22 May 2014 (22.05.2014) US 62/001,909 kind of national protection available): AE, AG, AL, AM, 62/001,902 22 May 2014 (22.05.2014) US AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, 62/029,038 25 July 2014 (25.07.2014) US BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (71) Applicants: THE SCRIPPS RESEARCH INSTITUTE DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, [US/US]; 10550 North Torrey Pines Road, La Jolla, CA HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 92037 (US). NORTHWESTERN UNIVERSITY KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, [US/US]; 633 Clark Street, Evanston, IL 60208 (US). MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, [Continued on nextpage] (54) Title: METHODS AND SYSTEMS FOR ANALYSIS OF ORGAN TRANSPLANTATION Fig. 1 (57) Abstract: Disclosed herein are methods of detecting, predicting or monitoring a status or outcome of a transplant in a transplant recipient. In some aspects, a method for detecting or predicting a condition of a transplant recipient comprises a) 110. Obtain sample from a obtaining a sample, wherein the sample comprises one or transplant recipient more gene expression products from the transplant recipient; b) performing an assay to determine an expression level of the one or more gene expression products from the transplant re cipient; and c) detecting or predicting the condition of the transplant recipient by applying an algorithm to the expres 120. Perform assay to sion level determined in step (b), wherein the algorithm is a determine gene expression classifier capable of distinguishing between at least two con level ditions that are not normal conditions, and wherein one of the at least two conditions is transplant rejection or transplant dysfunction. 130. Apply computer algorithm to tire gene expression level 140. Classification Class A Class C based on the results © o o w o 2015/035367 AI Iinn iiiiiii 1mil i mil il i 1ill inn i l i i i imill i i i SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, (84) Designated States (unless otherwise indicated, for every GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, Published: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, — with international search report (Art. 21(3)) TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, METHODS AND SYSTEMS FOR ANALYSIS OF ORGAN TRANSPLANTATION CROSS REFERENCE TO RELATED APPLICATIONS [0002] This application claims the benefit of U.S. Provisional Application No. 61/875,276 filed on September 9, 2013, U.S. Provisional Application No. 61/965,040 filed on January 16, 2014, U.S. Provisional Application No. 62/001,889 filed on May 22, 2014, U.S. Provisional Application No. 62/029,038 filed on July 25, 2014, U.S. Provisional Application No. 62/001,909 filed on May 22, 2014, and U.S. Provisional Application No. 62/001,902 filed on May 22, 2014, all of which are incorporated herein by reference in their entireties. GOVERNMENT RIGHTS [0003] This invention was made with government support under Grant Numbers AI052349, AI084146, and AI063603 awarded by the National Institutes of Health. The government has certain rights in the invention. BACKGROUND [0004] The current method for detecting organ rejection in a patient is a biopsy of the transplanted organ. However, organ biopsy results can be inaccurate, particularly if the area biopsied is not representative of the health of the organ as a whole (e.g., as a result of sampling error). There can be significant differences between individual observors when they read the same biopsies independently and these discrepancies are particularly an issue for complex histologies that can be challenging for clinicians. Biopsies, especially surgical biopsies, can also be costly and pose significant risks to a patient. In addition, the early detection of rejection of a transplant organ may require serial monitoring by obtaining multiple biopsies, thereby multiplying the risks to the patients, as well as the associated costs. [0005] Transplant rejection is a marker of ineffective immunosuppression and ultimately if it cannot be resolved, a failure of the chosen therapy. The fact that 50% of kidney transplant patients will lose their grafts by ten years post transplant reveals the difficulty of maintaining adequate and effective longterm immunosuppression. There is a need to develop a minimally invasive, objective metric for detecting, identifying and tracking transplant rejection. In particular, there is a need to develop a minimally invasive metric for detecting, identifying and tracking transplant rejection in the setting of a confounding diagnosis, such as acute dysfunction with no rejection. This is especially true for identifying the rejection of a transplanted kidney. For example, elevated creatinine levels in a kidney transplant recipient may indicate either that the patient is undergoing an acute rejection or acute dysfunction without rejection. A minimally- invasive test that is capable of distinguishing between these two conditions would therefore be extremely valuable and would diminish or eliminate the need for costly, invasive biopsies. SUMMARY [0006] The methods and systems disclosed herein may be used for detecting or predicting a condition of a transplant recipient (e.g., acute transplant rejection, acute dysfunction without rejection, subclinical acute rejection, hepatitis C virus recurrence, etc.). In some aspects, a method for detecting or predicting a condition of a transplant recipient comprises a) obtaining a sample, wherein the sample comprises one or more gene expression products from the transplant recipient; b) performing an assay to determine an expression level of the one or more gene expression products from the transplant recipient; and c) detecting or predicting the condition of the transplant recipient by applying an algorithm to the expression level determined in step (b), wherein the algorithm is a classifier capable of distinguishing between at least two conditions that are not normal conditions, and wherein one of the at least two conditions is transplant rejection or transplant dysfunction. In another embodiment, a method for detecting or predicting a condition of a transplant recipient comprises a) obtaining a sample, wherein the sample comprises one or more gene expression products from the transplant recipient; b) performing an assay to determine an expression level of the one or more gene expression products from the transplant recipient; and c) detecting or predicting the condition of the transplant recipient by applying an algorithm to the expression level determined in step (b), wherein the algorithm is a classifier capable of distinguishing between at least two conditions that are not normal conditions, and wherein one of the at least two conditions is transplant rejection. In another embodiment, a method for detecting or predicting a condition of a transplant recipient comprises a) obtaining a sample, wherein the sample comprises one or more gene expression products from the transplant recipient; b) performing an assay to determine an expression level of the one or more gene expression products from the transplant recipient; and c) detecting or predicting the condition of the transplant recipient by applying an algorithm to the expression level determined in step (b), wherein the algorithm is a classifier capable of distinguishing between at least two conditions that are not normal conditions, and wherein one of the at least two conditions is transplant dysfunction. In some cases, the transplant recipient is a kidney transplant recipient. In some cases, the transplant recipient is a liver transplant recipient. [0007] In some embodiments, a method of detecting or predicting a condition of a transplant recipient comprises: a) obtaining a sample, wherein the sample comprises one or more gene expression products from the transplant recipient; b) performing an assay to determine an expression level of the one or more gene expression products from the transplant recipient; and c) detecting or predicting the condition of the transplant recipient by applying an algorithm to the expression level determined in step (b), wherein the algorithm is capable of distinguishing between acute rejection and transplant dysfunction with no rejection.
Recommended publications
  • Evidence for Differential Alternative Splicing in Blood of Young Boys With
    Stamova et al. Molecular Autism 2013, 4:30 http://www.molecularautism.com/content/4/1/30 RESEARCH Open Access Evidence for differential alternative splicing in blood of young boys with autism spectrum disorders Boryana S Stamova1,2,5*, Yingfang Tian1,2,4, Christine W Nordahl1,3, Mark D Shen1,3, Sally Rogers1,3, David G Amaral1,3 and Frank R Sharp1,2 Abstract Background: Since RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing (DAS) has been reported in ASD brains, we determined if there was DAS in blood mRNA of ASD subjects compared to typically developing (TD) controls, as well as in ASD subgroups related to cerebral volume. Methods: RNA from blood was processed on whole genome exon arrays for 2-4–year-old ASD and TD boys. An ANCOVA with age and batch as covariates was used to predict DAS for ALL ASD (n=30), ASD with normal total cerebral volumes (NTCV), and ASD with large total cerebral volumes (LTCV) compared to TD controls (n=20). Results: A total of 53 genes were predicted to have DAS for ALL ASD versus TD, 169 genes for ASD_NTCV versus TD, 1 gene for ASD_LTCV versus TD, and 27 genes for ASD_LTCV versus ASD_NTCV. These differences were significant at P <0.05 after false discovery rate corrections for multiple comparisons (FDR <5% false positives). A number of the genes predicted to have DAS in ASD are known to regulate DAS (SFPQ, SRPK1, SRSF11, SRSF2IP, FUS, LSM14A). In addition, a number of genes with predicted DAS are involved in pathways implicated in previous ASD studies, such as ROS monocyte/macrophage, Natural Killer Cell, mTOR, and NGF signaling.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Table SI. Primer List of Genes Used for Reverse Transcription‑Quantitative PCR Validation
    Table SI. Primer list of genes used for reverse transcription‑quantitative PCR validation. Genes Forward (5'‑3') Reverse (5'‑3') Length COL1A1 AGTGGTTTGGATGGTGCCAA GCACCATCATTTCCACGAGC 170 COL6A1 CCCCTCCCCACTCATCACTA CGAATCAGGTTGGTCGGGAA 65 COL2A1 GGTCCTGCAGGTGAACCC CTCTGTCTCCTTGCTTGCCA 181 DCT CTACGAAACCAGGATGACCGT ACCATCATTGGTTTGCCTTTCA 192 PDE4D ATTGCCCACGATAGCTGCTC GCAGATGTGCCATTGTCCAC 181 RP11‑428C19.4 ACGCTAGAAACAGTGGTGCG AATCCCCGGAAAGATCCAGC 179 GPC‑AS2 TCTCAACTCCCCTCCTTCGAG TTACATTTCCCGGCCCATCTC 151 XLOC_110310 AGTGGTAGGGCAAGTCCTCT CGTGGTGGGATTCAAAGGGA 187 COL1A1, collagen type I alpha 1; COL6A1, collagen type VI, alpha 1; COL2A1, collagen type II alpha 1; DCT, dopachrome tautomerase; PDE4D, phosphodiesterase 4D cAMP‑specific. Table SII. The differentially expressed mRNAs in the ParoAF_Control group. Gene ID logFC P‑Value Symbol Description ENSG00000165480 ‑6.4838 8.32E‑12 SKA3 Spindle and kinetochore associated complex subunit 3 ENSG00000165424 ‑6.43924 0.002056 ZCCHC24 Zinc finger, CCHC domain containing 24 ENSG00000182836 ‑6.20215 0.000817 PLCXD3 Phosphatidylinositol‑specific phospholipase C, X domain containing 3 ENSG00000174358 ‑5.79775 0.029093 SLC6A19 Solute carrier family 6 (neutral amino acid transporter), member 19 ENSG00000168916 ‑5.761 0.004046 ZNF608 Zinc finger protein 608 ENSG00000134343 ‑5.56371 0.01356 ANO3 Anoctamin 3 ENSG00000110400 ‑5.48194 0.004123 PVRL1 Poliovirus receptor‑related 1 (herpesvirus entry mediator C) ENSG00000124882 ‑5.45849 0.022164 EREG Epiregulin ENSG00000113448 ‑5.41752 0.000577 PDE4D Phosphodiesterase
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2013 Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance Alyssa Lea MacMillan University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Virology Commons Recommended Citation MacMillan, Alyssa Lea, "Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance" (2013). Publicly Accessible Penn Dissertations. 894. https://repository.upenn.edu/edissertations/894 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/894 For more information, please contact [email protected]. Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance Abstract APOBEC3 proteins are important for antiretroviral defense in mammals. The activity of these factors has been well characterized in vitro, identifying cytidine deamination as an active source of viral restriction leading to hypermutation of viral DNA synthesized during reverse transcription. These mutations can result in viral lethality via disruption of critical genes, but in some cases is insufficiento t completely obstruct viral replication. This sublethal level of mutagenesis could aid in viral evolution. A cytidine deaminase-independent mechanism of restriction has also been identified, as catalytically inactive proteins are still able to inhibit infection in vitro. Murine retroviruses do not exhibit characteristics of hypermutation by mouse APOBEC3 in vivo. However, human APOBEC3G protein expressed in transgenic mice maintains antiviral restriction and actively deaminates viral genomes. The mechanism by which endogenous APOBEC3 proteins function is unclear. The mouse provides a system amenable to studying the interaction of APOBEC3 and retroviral targets in vivo.
    [Show full text]
  • Global Gene Expression Analysis of the Mouse Colonic Mucosa Treated
    BMC Cancer BioMed Central Research article Open Access Global gene expression analysis of the mouse colonic mucosa treated with azoxymethane and dextran sodium sulfate Rikako Suzuki1, Shingo Miyamoto2, Yumiko Yasui1, Shigeyuki Sugie1 and Takuji Tanaka*1 Address: 1Department of Oncologic Pathology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan and 2Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan Email: Rikako Suzuki - [email protected]; Shingo Miyamoto - [email protected]; Yumiko Yasui - y-yasui@kanazawa- med.ac.jp; Shigeyuki Sugie - [email protected]; Takuji Tanaka* - [email protected] * Corresponding author Published: 17 May 2007 Received: 10 July 2006 Accepted: 17 May 2007 BMC Cancer 2007, 7:84 doi:10.1186/1471-2407-7-84 This article is available from: http://www.biomedcentral.com/1471-2407/7/84 © 2007 Suzuki et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Chronic inflammation is well known to be a risk factor for colon cancer. Previously we established a novel mouse model of inflammation-related colon carcinogenesis, which is useful to examine the involvement of inflammation in colon carcinogenesis. To shed light on the alterations in global gene expression in the background of inflammation-related colon cancer and gain further insights into the molecular mechanisms underlying inflammation-related colon carcinogenesis, we conducted a comprehensive DNA microarray analysis using our model.
    [Show full text]
  • Table SII. Significantly Differentially Expressed Mrnas of GSE23558 Data Series with the Criteria of Adjusted P<0.05 And
    Table SII. Significantly differentially expressed mRNAs of GSE23558 data series with the criteria of adjusted P<0.05 and logFC>1.5. Probe ID Adjusted P-value logFC Gene symbol Gene title A_23_P157793 1.52x10-5 6.91 CA9 carbonic anhydrase 9 A_23_P161698 1.14x10-4 5.86 MMP3 matrix metallopeptidase 3 A_23_P25150 1.49x10-9 5.67 HOXC9 homeobox C9 A_23_P13094 3.26x10-4 5.56 MMP10 matrix metallopeptidase 10 A_23_P48570 2.36x10-5 5.48 DHRS2 dehydrogenase A_23_P125278 3.03x10-3 5.40 CXCL11 C-X-C motif chemokine ligand 11 A_23_P321501 1.63x10-5 5.38 DHRS2 dehydrogenase A_23_P431388 2.27x10-6 5.33 SPOCD1 SPOC domain containing 1 A_24_P20607 5.13x10-4 5.32 CXCL11 C-X-C motif chemokine ligand 11 A_24_P11061 3.70x10-3 5.30 CSAG1 chondrosarcoma associated gene 1 A_23_P87700 1.03x10-4 5.25 MFAP5 microfibrillar associated protein 5 A_23_P150979 1.81x10-2 5.25 MUCL1 mucin like 1 A_23_P1691 2.71x10-8 5.12 MMP1 matrix metallopeptidase 1 A_23_P350005 2.53x10-4 5.12 TRIML2 tripartite motif family like 2 A_24_P303091 1.23x10-3 4.99 CXCL10 C-X-C motif chemokine ligand 10 A_24_P923612 1.60x10-5 4.95 PTHLH parathyroid hormone like hormone A_23_P7313 6.03x10-5 4.94 SPP1 secreted phosphoprotein 1 A_23_P122924 2.45x10-8 4.93 INHBA inhibin A subunit A_32_P155460 6.56x10-3 4.91 PICSAR P38 inhibited cutaneous squamous cell carcinoma associated lincRNA A_24_P686965 8.75x10-7 4.82 SH2D5 SH2 domain containing 5 A_23_P105475 7.74x10-3 4.70 SLCO1B3 solute carrier organic anion transporter family member 1B3 A_24_P85099 4.82x10-5 4.67 HMGA2 high mobility group AT-hook 2 A_24_P101651
    [Show full text]
  • Deaminase-Independent Mode of Antiretroviral Action in Human and Mouse APOBEC3 Proteins
    microorganisms Review Deaminase-Independent Mode of Antiretroviral Action in Human and Mouse APOBEC3 Proteins Yoshiyuki Hakata 1,* and Masaaki Miyazawa 1,2 1 Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan; [email protected] 2 Kindai University Anti-Aging Center, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan * Correspondence: [email protected]; Tel.: +81-72-367-7660 Received: 8 December 2020; Accepted: 9 December 2020; Published: 12 December 2020 Abstract: Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (APOBEC3) proteins (APOBEC3s) are deaminases that convert cytosines to uracils predominantly on a single-stranded DNA, and function as intrinsic restriction factors in the innate immune system to suppress replication of viruses (including retroviruses) and movement of retrotransposons. Enzymatic activity is supposed to be essential for the APOBEC3 antiviral function. However, it is not the only way that APOBEC3s exert their biological function. Since the discovery of human APOBEC3G as a restriction factor for HIV-1, the deaminase-independent mode of action has been observed. At present, it is apparent that both the deaminase-dependent and -independent pathways are tightly involved not only in combating viruses but also in human tumorigenesis. Although the deaminase-dependent pathway has been extensively characterized so far, understanding of the deaminase-independent pathway remains immature. Here, we review existing knowledge regarding the deaminase-independent antiretroviral functions of APOBEC3s and their molecular mechanisms. We also discuss the possible unidentified molecular mechanism for the deaminase-independent antiretroviral function mediated by mouse APOBEC3. Keywords: APOBEC3; deaminase-independent antiretroviral function; innate immunity 1.
    [Show full text]
  • 1 APOBEC-Mediated Mutagenesis in Urothelial Carcinoma Is Associated
    bioRxiv preprint doi: https://doi.org/10.1101/123802; this version posted April 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. APOBEC-mediated mutagenesis in urothelial carcinoma is associated with improved survival, mutations in DNA damage response genes, and immune response Alexander P. Glaser MD, Damiano Fantini PhD, Kalen J. Rimar MD, Joshua J. Meeks MD PhD APG, DF, KJR, JJM: Northwestern University, Department of Urology, Chicago, IL, 60607 Running title: APOBEC mutagenesis in bladder cancer *Corresponding author: Joshua J. Meeks, MD PhD 303 E. Chicago Ave. Tarry 16-703 Chicago, IL 60611 Email: [email protected] Keywords (4-6): • Urinary bladder neoplasms • APOBEC Deaminases • Mutagenesis • DNA damage • Interferon Abbreviations and Acronyms: TCGA – The Cancer Genome Atlas ssDNA – single stranded DNA APOBEC –apolipoprotein B mRNA editing catalytic polypeptide-like GCAC – Genome Data Analysis Center MAF – mutation annotation format “APOBEC-high” – tumors enriched for APOBEC mutagenesis “APOBEC-low” – tumors not enriched for APOBEC mutagenesis 1 bioRxiv preprint doi: https://doi.org/10.1101/123802; this version posted April 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract: Background: The APOBEC family of enzymes is responsible for a mutation signature characterized by a TCW>T/G mutation. APOBEC-mediated mutagenesis is implicated in a wide variety of tumors, including bladder cancer. In this study, we explore the APOBEC mutational signature in bladder cancer and the relationship with specific mutations, molecular subtype, gene expression, and survival.
    [Show full text]
  • AID Downregulation Is a Novel Function of the DNMT Inhibitor 5-Aza-Deoxycytidine
    www.impactjournals.com/oncotarget/ Oncotarget, January, Vol. 5, No. 1 AID downregulation is a novel function of the DNMT inhibitor 5-aza-deoxycytidine Chiou-Tsun Tsai1, Pei-Ming Yang1, Ting-Rong Chern3, Shu-Hui Chuang1, Jung-Hsin Lin2,3,4, Lars Klemm5, Markus Müschen5 and Ching-Chow Chen1 1 Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan 2 School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan 3 Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan 4 Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan 5 Department of Laboratory Medicine, University of California San Francisco, San Francisco, California Correspondence to: Ching-Chow Chen, email: [email protected] Keywords: AID, 5-aza-CdR, Zebularine, DNMT1 Received: August 23, 2013 Accepted: November 23, 2013 Published: November 25, 2013 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT: Activation-induced cytidine deaminase (AID) was originally identified as an inducer of somatic hypermutation (SHM) and class switch recombination (CSR) in immunoglobulin genes. However, AID can also cause mutations in host genes and contribute to cancer progression and drug resistance. In this study, molecular docking showed the interaction of free 5-aza-CdR and Zebularine (Zeb) with AID. However, only 5-aza-CdR-incorporated ssDNA bound to the active site of AID and inhibited AID expression through proteasomal degradation. 5-aza-CdR demonstrated cytotoxicity against AID-positive and -negative hematopoietic cancer cells.
    [Show full text]
  • Diversification of AID/APOBEC-Like Deaminases in Metazoa: Multiplicity
    Diversification of AID/APOBEC-like deaminases in PNAS PLUS metazoa: multiplicity of clades and widespread roles in immunity Arunkumar Krishnana, Lakshminarayan M. Iyera, Stephen J. Hollandb, Thomas Boehmb, and L. Aravinda,1 aNational Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894; and bDepartment of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany Edited by Anjana Rao, La Jolla Institute and University of California San Diego, La Jolla, CA, and approved February 23, 2018 (received for review November 30, 2017) AID/APOBEC deaminases (AADs) convert cytidine to uridine in viruses and retrotransposons through hypermutation of DNA during single-stranded nucleic acids. They are involved in numerous muta- reverse transcription (APOBEC3s) (21). genic processes, including those underpinning vertebrate innate and The deaminase superfamily displays a conserved β-sheet with adaptive immunity. Using a multipronged sequence analysis strategy, five β-strands arranged in 2-1-3-4-5 order interleaved with three we uncover several AADs across metazoa, dictyosteliida, and algae, α-helices forming an α/β-fold (the deaminase fold) (22), which it including multiple previously unreported vertebrate clades, and shares with JAB/RadC, AICAR transformylase, formate de- versions from urochordates, nematodes, echinoderms, arthropods, hydrogenase accessory subunit (FdhD), and Tm1506 superfamilies lophotrochozoans, cnidarians, and porifera. Evolutionary analysis sug- of proteins. The active site consists of two zinc (Zn)-chelating gests a fundamental division of AADs early in metazoan evolution into motifs, respectively typified by the signatures HxE/CxE/DxE at secreted deaminases (SNADs) and classical AADs, followed by diver- the end of helix 2 and CxnC (where x is any amino acid and n is ≥2) sification into several clades driven by rapid-sequence evolution, gene located in loop 5 and the beginning of helix 3 (Fig.
    [Show full text]
  • Insights Into the Structures and Multimeric Status of APOBEC Proteins Involved in Viral Restriction and Other Cellular Functions
    viruses Review Insights into the Structures and Multimeric Status of APOBEC Proteins Involved in Viral Restriction and Other Cellular Functions Xiaojiang S. Chen 1,2,3 1 Molecular and Computational Biology, Departments of Biological Sciences, Chemistry, University of Southern California, Los Angeles, CA 90089, USA; [email protected]; Tel.: +1-213-740-5487 2 Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA 3 Center of Excellence in NanoBiophysics/Structural Biology, University of Southern California, Los Angeles, CA 90089, USA Abstract: Apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) proteins belong to a family of deaminase proteins that can catalyze the deamination of cytosine to uracil on single- stranded DNA or/and RNA. APOBEC proteins are involved in diverse biological functions, including adaptive and innate immunity, which are critical for restricting viral infection and endogenous retroelements. Dysregulation of their functions can cause undesired genomic mutations and RNA modification, leading to various associated diseases, such as hyper-IgM syndrome and cancer. This review focuses on the structural and biochemical data on the multimerization status of individual APOBECs and the associated functional implications. Many APOBECs form various multimeric complexes, and multimerization is an important way to regulate functions for some of these proteins at several levels, such as deaminase activity, protein stability, subcellular localization, protein storage Citation: Chen, X.S. Insights into and activation, virion packaging, and antiviral activity. The multimerization of some APOBECs is the Structures and Multimeric Status more complicated than others, due to the associated complex RNA binding modes.
    [Show full text]