Twenty Questions: the State of GPCR Research in 2004

Total Page:16

File Type:pdf, Size:1020Kb

Twenty Questions: the State of GPCR Research in 2004 The state of GPCR research in 2004 (20 Questions) Nat Rev Drug Discov. 2004 Jul;3(7):575, 577-626. PMID: 15272499 CONTENTS What new technologies are having the greatest impact on GPCR research, 578 1 and why? What tools and technologies for GPCR research would you most like to be available 583 2 in the future, and why? Tamas Bartfai 578 Jeffrey L. Benovic 582 What are the main pitfalls and advantages of currently used cell-based assay 585 3 systems for GPCRs? How will changing views of agonist and antagonist behaviour at GPCRs change the 588 4 way we view these receptors as therapeutic targets? Joël Bockaert 584 Richard A. Bond 590 Many predictions for heptahelical receptors have been based on using the 592 5 rhodopsin crystal structure as a template. How successful have these been? How close are we to having further GPCR structures, and what are the main 594 6 barriers to obtaining these? Michel Bouvier 591 Arthur Christopoulos 595 7 What big questions remain for GPCRs at the structure/function interface? 597 How widespread do you think GPCR heteromerization will turn out to be, 599 8 and how great a functional significance will it have? Olivier Civelli 598 Lakshmi A. Devi 601 Almost two-thirds of drugs on the market are thought to interact with GPCRs, 603 9 by far the largest family of targets, and yet new drugs targeting GPCRs are few and far between. Why? 10 What are the barriers to achieving specificity using GPCR ligands? 606 How will our increasing knowledge of interacting protein partners for GPCRs 607 Susan R. George 602 Akio Inui 603 11 change the way that we think about achieving selective GPCR modulation? Could there be an approach to GPCR pharmacology based around monoclonal 609 12 antibodies or proteins, rather than small molecules? How close are we to being able to integrate understanding of how individual 612 Brian Kobilka 608 Rob Leurs 610 13 GPCRs function with their role in disease states? How successful are the animal models that seek to recapitulate diseases linked 614 14 to the aberrant function of peptide-activated GPCRs? In your opinion, which diseases are most strongly associated with aberrant 615 Rick Neubig 612 Jean-Philippe Pin 614 15 function of peptide-activated GPCRs? What are the main hurdles that will need to be overcome to create further 617 16 successful therapeutic approaches based around targeting GPCRs? What would you describe as the major concerns surrounding the continued 619 Rémi Quirion 615 Bernard P. Roques 618 17 development of GPCR-targeted therapies? 18 What effect is the deorphanizing of GPCRs likely to have on the field? 620 What outstanding questions in GPCR research are likely to be clarified in 622 19 the next few years? Thomas P. Sakmar 618 Roland Seifert 619 20 What areas are unlikely to be clarified by research over the next few years? 623 Glossary 611 Ronald E. Stenkamp 622 Philip G. Strange 623 References 624 NATURE REVIEWS | DRUG DISCOVERY VOLUME 3 | JULY 2004 | 577 T WENTY QUESTIONS Olivier Civelli. A technology that has had a major interaction interface3,4.Refining these techniques will impact is the use of fluorescence detection as a tool to help in structure-based rational drug design. In addition, monitor G-protein-coupled receptor (GPCR) reac- proteomics is being used to identify and quantitate 1 tivity.This has led to studies of receptor–receptor and proteins that associate with GPCRs, thereby delineating What new receptor–ligand interactions, and to real-time mea- the signal-transducing complexes5.Finally,a variation technologies surement of signal transduction. Practically every of knockout technology (that is, targeted inducible are having report dealing with GPCR expression at the mem- deletion of individual GPCRs) is increasingly being the greatest brane, or with GPCR interactions with intracellular used to define the spatio-temporal relationships of impact on GPCR proteins, relies on fluorescence detection, including receptor activities6,7. research, techniques such as fluorescence resonance energy trans- and why? fer (FRET) or bioluminescence resonance energy Tamas Bartfai. The steady introduction of non- transfer (BRET) (FIG. 1; page 579). peptide ligands to neuropeptide GPCR receptors has enhanced research, and proven that these GPCRs are Michel Bouvier. Many new technologies are turning valuable drug targets in many important diseases. out to be extremely useful for analysing GPCR func- Such new ligands have arisen from industrial tions. Among those, I would cite fluorescence-based research, using binding, FLIPR and other cell-based techniques, such as INTERNAL FLUORESCENCE REFLECTION assays in ultra-HTS formats, and chemical libraries and single-molecule fluorescence, and resonance enhanced with β-turn mimics, which often turned energy transfer approaches, including FRET, BRET out to be recognized by GPCRs and were therefore and FLUORESCENCE LIFETIME IMAGING (FLIM). These new good starting points for medicinal chemistry. approaches should allow the real-time probing of Transgenic techniques have been important for vali- conformational changes, and of the dynamic protein– dating the involvement of GPCRs in physiological protein interactions that are involved in GPCR activa- and pathophysiological processes. No pharma project tion and regulation in the environment in which they to generate GPCR ligands proceeds today without normally occur; that is, living cells. high-quality hits from screening and access to null- mutant animals and, if possible, access to animals Lakshmi A. Devi. In recent years, high-throughput with a mutation generating a constitutively active screening (HTS) for functional activity (using methods receptor. Academic GPCR research has benefited such as the FLUOROMETRIC IMAGING PLATE READER (FLIPR) most from embracing more spectroscopic techniques, and SECRETED ALKALINE PHOSPHATASE (SEAP) ASSAYS) has been often using FLUOROPHORE-labelled ligands and/or recep- useful for deorphanizing receptors, screening for tors to follow interactions in real time, and to follow mutant receptors (to understand structure/function the trafficking of receptors during DESENSITIZATION and the relationships)1 and screening ligand libraries (to identify development of TOLERANCE. receptor-selective ligands)2.In addition, X-ray crystal- lography and modelling-based analyses of GPCRs Philip G. Strange. Industry has been quick to use have provided information on the ligand–receptor fluorescence-based technologies, in some cases in a single-molecule-detection mode — for example, fluo- rescence polarization, fluorescence intensity distribution Tamas Bartfai analysis, FLUORESCENCE CORRELATION SPECTROSCOPY and FRET — for drug screening at GPCRs. This has been stimu- Director and Professor of Neuropharmacology lated by the need for high-throughput systems and less Harold L. Dorris Neurological Research Center, 10550 North Torrey Pines Road, SR-307, La Jolla, reliance on radioactivity. Reporter-gene assays linked to California 92037, USA fluorescence or luminescence readouts, and cell-based e-mail: [email protected] assay systems for examining the movement of proteins, have also been used. These technologies have had a big Tamas Bartfai completed undergraduate studies in Physics impact on industrial research into GPCRs. and Chemistry at Eötvös Loránd University, Budapest, Hungary. He completed a Ph.D. in Biochemistry under the The academic community has been rather slow to supervision of Bengt Mannervik at Stockholm University, pick up on these techniques, perhaps owing to financial Sweden, where he was appointed Associate Professor and then Professor of Biochemistry, constraints, and much academic GPCR research and subsequently Chairman of the Department of Neurochemistry and Neurotoxicology. remains rooted in older technologies. Nevertheless, Bartfai left Stockholm University in 1997 to take up the position of Head of Central Nervous some of these techniques are likely to be very important System Research at F. Hoffman-La Roche, Basel, Switzerland. He was appointed Director of in pushing forward research on GPCRs into new areas. The Harold L. Dorris Neurological Research Center at The Scripps Research Institute, La Jolla, California, USA, in 2000, where he is also Professor in the Department of A few academic labs are using some of these technolo- Neuropharmacology and holds the Harold L. Dorris Chair in Neuroscience. Bartfai’s research gies to study GPCRs, and I would single out the work interests have spanned several topics in the field of physiological chemistry, including the from Brian Kobilka’s lab on the use of fluorescence to study of acetylcholine, glutamate, dopamine, noradrenaline and the neuropeptides VIP, NPY probe conformational changes in GPCRs8, and the use and galanin. While at Hoffman-La Roche, he was involved in research on the metabotropic by one or two labs of cyan fluorescent protein glutamate receptor, monoamine receptors and additional neuropeptide receptors from the GPCR class. His group developed several ligands that have been used as research tools or (CFP)/yellow fluorescent protein (YFP) FRET for study- 9–11 advanced into the clinic. Bartfai has been the recipient of several awards, including the ing protein–protein interactions .This latter tech- Eötvös Prize in Chemistry, the Svedberg Prize and the Eriksson Prize. nique may be of general use for examining the internal dynamics of receptors, and receptor–G-PROTEIN dynamics. 578 | JULY 2004 | VOLUME 3 www.nature.com/reviews/drugdisc T WENTY QUESTIONS Arthur Christopoulos. There
Recommended publications
  • Downregulation of GNA14 in Hepatocellular Carcinoma Indicates an Unfavorable Prognosis
    ONCOLOGY LETTERS 20: 165-172, 2020 Downregulation of GNA14 in hepatocellular carcinoma indicates an unfavorable prognosis TAO YU1*, SIYU LU2* and WENJING XIE2 Departments of 1Medical Oncology and 2Anesthesiology, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China Received August 2, 2019; Accepted March 5, 2020 DOI: 10.3892/ol.2020.11538 Abstract. Guanine nucleotide-binding protein subunit α14 In conclusion, low GNA14 expression may be a novel biomarker (GNA14) knockdown was demonstrated to inhibit the prolifera- for diagnosis and prognosis prediction for patients with HCC. tion of endometrial carcinoma cells in a recent study; however, its role in hepatocellular carcinoma (HCC) is unknown. In Introduction the present study, the clinical significance of GNA14 in HCC was assessed using a dataset of patients with HCC from The Liver cancer was the second leading cause of cancer-asso- Cancer Genome Atlas database. The Integrative Molecular ciated mortality worldwide in 2015 (1). Patients with HCC Database of Hepatocellular Carcinoma and Oncomine data- have no noticeable symptoms, making an accurate diagnosis bases were also used to identify the expression levels of GNA14 challenging; therefore, effective and efficient treatment of in HCC tissues. The association between GNA14 expression HCC should be available at a much earlier stage, and novel levels and clinicopathological features was assessed using the biomarkers are required to improve earlier diagnosis of HCC Wilcoxon signed-rank test and logistic regression analysis. and guide clinical management (2,3). Kaplan-Meier curves and Cox regression analysis were applied HCC is associated with increased expression levels of to evaluate the independent risk factors for clinical outcomes.
    [Show full text]
  • Histamine Receptors
    Tocris Scientific Review Series Tocri-lu-2945 Histamine Receptors Iwan de Esch and Rob Leurs Introduction Leiden/Amsterdam Center for Drug Research (LACDR), Division Histamine is one of the aminergic neurotransmitters and plays of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit an important role in the regulation of several (patho)physiological Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The processes. In the mammalian brain histamine is synthesised in Netherlands restricted populations of neurons that are located in the tuberomammillary nucleus of the posterior hypothalamus.1 Dr. Iwan de Esch is an assistant professor and Prof. Rob Leurs is These neurons project diffusely to most cerebral areas and have full professor and head of the Division of Medicinal Chemistry of been implicated in several brain functions (e.g. sleep/ the Leiden/Amsterdam Center of Drug Research (LACDR), VU wakefulness, hormonal secretion, cardiovascular control, University Amsterdam, The Netherlands. Since the seventies, thermoregulation, food intake, and memory formation).2 In histamine receptor research has been one of the traditional peripheral tissues, histamine is stored in mast cells, eosinophils, themes of the division. Molecular understanding of ligand- basophils, enterochromaffin cells and probably also in some receptor interaction is obtained by combining pharmacology specific neurons. Mast cell histamine plays an important role in (signal transduction, proliferation), molecular biology, receptor the pathogenesis of various allergic conditions. After mast cell modelling and the synthesis and identification of new ligands. degranulation, release of histamine leads to various well-known symptoms of allergic conditions in the skin and the airway system. In 1937, Bovet and Staub discovered compounds that antagonise the effect of histamine on these allergic reactions.3 Ever since, there has been intense research devoted towards finding novel ligands with (anti-) histaminergic activity.
    [Show full text]
  • Receptor Antagonist (H RA) Shortages | May 25, 2020 2 2 2 GERD4,5 • Take This Opportunity to Determine If Continued Treatment Is Necessary
    H2-receptor antagonist (H2RA) Shortages Background . 2 H2RA Alternatives . 2 Therapeutic Alternatives . 2 Adults . 2 GERD . 3 PUD . 3 Pediatrics . 3 GERD . 3 PUD . 4 Tables Table 1: Health Canada–Approved Indications of H2RAs . 2 Table 2: Oral Adult Doses of H2RAs and PPIs for GERD . 4 Table 3: Oral Adult Doses of H2RAs and PPIs for PUD . 5 Table 4: Oral Pediatric Doses of H2RAs and PPIs for GERD . 6 Table 5: Oral Pediatric Doses of H2RAs and PPIs for PUD . 7 References . 8 H2-receptor antagonist (H2RA) Shortages | May 25, 2020 1 H2-receptor antagonist (H2RA) Shortages BACKGROUND Health Canada recalls1 and manufacturer supply disruptions may be causing shortages of commonly used acid-reducing medications called histamine H2-receptor antagonists (H2RAs) . H2RAs include cimetidine, famotidine, nizatidine and ranitidine . 2 There are several Health Canada–approved indications of H2RAs (see Table 1); this document addresses the most common: gastroesophageal reflux disease (GERD) and peptic ulcer disease (PUD) . 2 TABLE 1: HEALTH CANADA–APPROVED INDICATIONS OF H2RAs H -Receptor Antagonists (H RAs) Health Canada–Approved Indications 2 2 Cimetidine Famotidine Nizatidine Ranitidine Duodenal ulcer, treatment ü ü ü ü Duodenal ulcer, prophylaxis — ü ü ü Benign gastric ulcer, treatment ü ü ü ü Gastric ulcer, prophylaxis — — — ü GERD, treatment ü ü ü ü GERD, maintenance of remission — ü — — Gastric hypersecretion,* treatment ü ü — ü Self-medication of acid indigestion, treatment and prophylaxis — ü† — ü† Acid aspiration syndrome, prophylaxis — — — ü Hemorrhage from stress ulceration or recurrent bleeding, — — — ü prophylaxis ü = Health Canada–approved indication; GERD = gastroesophageal reflux disease *For example, Zollinger-Ellison syndrome .
    [Show full text]
  • Histamine in the Control of Gastric Acid Secretion: a Topic Review
    Pharmacological Research 47 (2003) 299–304 Histamine in the control of gastric acid secretion: a topic review Elisabetta Barocelli∗, Vigilio Ballabeni Dipartimento di Scienze Farmacologiche, Biologiche e Chimiche Applicate, Università di Parma, Parco Area delle Scienze, 27/A, Parma 43100, Italy Accepted 30 December 2002 Abstract In this paper, the current knowledge about the role of histamine in the control of gastric acid secretion is reviewed. In particular, we focus this topic into three sections considering the recent insights on: histamine receptor subtypes involved in gastric acid secretion, the interplay between neuronal–hormonal–paracrine pathways and the cerebral histaminergic control of gastric secretion. From the careful perusal of scientific literature, the fundamental role of histamine as local stimulator of gastric acid secretion via H2 receptors is fairly confirmed while for the H3 receptor only a minor modulating role is hypothesized. An undisputed function of ECL cells as controllable source of histamine within the so-called gastrin–ECL cell–parietal cell axis is generally proposed and the intriguing possibility of a remote control of gastric secretion via H3 receptors is also suggested. © 2003 Elsevier Science Ltd. All rights reserved. Keywords: Secretagogue; Histaminergic system; Gastric acid secretion 1. Introduction the central and in the peripheral neuronal networks [7] and its cloning [8] major attention was devoted by researchers Although histamine has been found to be a potent secret- mainly to the re-examination of apparently anomalous ef- agogue of acid secretion since 1920 [1], its physiologic role fects exerted by histamine. Also for gastric acid secretion, in the stomach is again a subject of debate as also acetyl- although here histamine plays an undisputed central role choline and gastrin are of prime importance in the stimula- through H2 receptors activation [9], the possible involvement tion of gastric acid production.
    [Show full text]
  • Tamas Bartfai* and Bruno Conti INTRODUCTION
    Review TheScientificWorldJOURNAL (2010) 10, 490–503 ISSN 1537-744X; DOI 10.1100/tsw.2010.50 Fever Tamas Bartfai* and Bruno Conti Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA E-mail: [email protected]; [email protected] Received February 26, 2010; Revised February 27, 2010; Accepted March 1, 2010; Published March 16, 2010 Measurement of body temperature remains one of the most common ways to assess health. An increase in temperature above what is considered to be a normal value is inevitably regarded as a sure sign of disease and referred to with one simple word: fever. In this review, we summarize how research on fever allowed the identification of the exogenous and endogenous molecules and pathways mediating the fever response. We also show how temperature elevation is common to different pathologies and how the molecular components of the fever-generation pathway represent drug targets for antipyretics, such as acetylsalicylic acid, the first “blockbuster drug”. We also show how fever research provided new insights into temperature and energy homeostasis, and into treatment of infection and inflammation. KEYWORDS: fever, antipyretic, interleukin, temperature, hypothalamus INTRODUCTION Can a frog or a snake run a fever? Is the ramp fever (stage fright) a real fever like that in malaria? Did Moses see the burning bush in febrile hallucination since malaria was endemic along the Nile? Is fever helping to fight infection? Should fever be treated or permitted? These are but a few of the questions we have received in the past 27 years from friendly, but incredulous, colleagues who have not understood why a well-trained scientist would “fiddle with fever”.
    [Show full text]
  • Histamine H2-Receptor Antagonists Improve Non-Steroidal Anti-Inflammatory Drug-Induced Intestinal Dysbiosis
    International Journal of Molecular Sciences Article Histamine H2-Receptor Antagonists Improve Non-Steroidal Anti-Inflammatory Drug-Induced Intestinal Dysbiosis Rei Kawashima, Shun Tamaki, Fumitaka Kawakami, Tatsunori Maekawa and Takafumi Ichikawa * Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Kanagawa 252-0374, Japan; [email protected] (R.K.); [email protected] (S.T.); [email protected] (F.K.); [email protected] (T.M.) * Correspondence: [email protected]; Tel.: +81-42-778-8863 Received: 8 October 2020; Accepted: 30 October 2020; Published: 31 October 2020 Abstract: Dysbiosis, an imbalance of intestinal flora, can cause serious conditions such as obesity, cancer, and psychoneurological disorders. One cause of dysbiosis is inflammation. Ulcerative enteritis is a side effect of non-steroidal anti-inflammatory drugs (NSAIDs). To counteract this side effect, we proposed the concurrent use of histamine H2 receptor antagonists (H2RA), and we examined the effect on the intestinal flora. We generated a murine model of NSAID-induced intestinal mucosal injury, and we administered oral H2RA to the mice. We collected stool samples, compared the composition of intestinal flora using terminal restriction fragment length polymorphism, and performed organic acid analysis using high-performance liquid chromatography. The intestinal flora analysis revealed that NSAID [indomethacin (IDM)] administration increased Erysipelotrichaceae and decreased Clostridiales but that both had improved with the concurrent administration of H2RA. Fecal levels of acetic, propionic, and n-butyric acids increased with IDM administration and decreased with the concurrent administration of H2RA. Although in NSAID-induced gastroenteritis the proportion of intestinal microorganisms changes, leading to the deterioration of the intestinal environment, concurrent administration of H2RA can normalize the intestinal flora.
    [Show full text]
  • Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
    Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners.
    [Show full text]
  • Sensory Neuron Regulation of Gastrointestinal Inflammation And
    Key Symposium doi: 10.1111/joim.12591 Sensory neuron regulation of gastrointestinal inflammation and bacterial host defence N. Y. Lai, K. Mills & I. M. Chiu From the Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA Content List – Read more articles from the symposium: 13th Key Symposium - Bioelectronic Medicine: Technology targeting molecular mechanisms. Abstract. Lai NY, Mills K, Chiu IM (Harvard Medical recent work on the mechanisms of bacterial detec- School, Boston, MA, USA). Sensory neuron tion by distinct subtypes of gut-innervating sen- regulation of gastrointestinal inflammation and sory neurons. Upon activation, sensory neurons bacterial host defence (Key Symposium). J Intern communicate to the immune system to modulate Med 2017; 282:5–23. tissue inflammation through antidromic signalling and efferent neural circuits. We discuss how this Sensory neurons in the gastrointestinal tract have neuro-immune regulation is orchestrated through multifaceted roles in maintaining homeostasis, transient receptor potential ion channels and sen- detecting danger and initiating protective sory neuropeptides including substance P, calci- responses. The gastrointestinal tract is innervated tonin gene-related peptide, vasoactive intestinal by three types of sensory neurons: dorsal root peptide and pituitary adenylate cyclase-activating ganglia, nodose/jugular ganglia and intrinsic pri- polypeptide. Recent studies also highlight a role for mary afferent neurons. Here, we examine how sensory
    [Show full text]
  • International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors
    1521-0081/67/3/601–655$25.00 http://dx.doi.org/10.1124/pr.114.010249 PHARMACOLOGICAL REVIEWS Pharmacol Rev 67:601–655, July 2015 Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics ASSOCIATE EDITOR: ELIOT H. OHLSTEIN International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors Pertti Panula, Paul L. Chazot, Marlon Cowart, Ralf Gutzmer, Rob Leurs, Wai L. S. Liu, Holger Stark, Robin L. Thurmond, and Helmut L. Haas Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry (H.S.) and Institute of Neurophysiology, Medical Faculty (H.L.H.), Heinrich-Heine-University Duesseldorf, Germany; and Janssen Research & Development, LLC, San Diego, California (R.L.T.) Abstract ....................................................................................602 Downloaded from I. Introduction and Historical Perspective .....................................................602 II. Histamine H1 Receptor . ..................................................................604 A. Receptor Structure
    [Show full text]
  • Gα15 in Early Onset of Pancreatic Ductal Adenocarcinoma Giulio Innamorati1,7*, Thomas M
    www.nature.com/scientificreports OPEN Gα15 in early onset of pancreatic ductal adenocarcinoma Giulio Innamorati1,7*, Thomas M. Wilkie2,7, Giorgio Malpeli1, Salvatore Paiella1, Silvia Grasso1, Borislav Rusev3, Biagio Eugenio Leone4, Maria Teresa Valenti5, Luca dalle Carbonare5, Samuele Cheri6, Alice Giacomazzi1, Marco Zanotto1, Vanessa Guardini1, Michela Deiana6, Donato Zipeto6, Michela Serena6, Marco Parenti4, Francesca Guzzi4, Rita Teresa Lawlor3, Giovanni Malerba6, Antonio Mori6, Giuseppe Malleo1, Luca Giacomello1, Roberto Salvia1,8 & Claudio Bassi1,8 The GNA15 gene is ectopically expressed in human pancreatic ductal adenocarcinoma cancer cells. The encoded Gα15 protein can promiscuously redirect GPCR signaling toward pathways with oncogenic potential. We sought to describe the distribution of GNA15 in adenocarcinoma from human pancreatic specimens and to analyze the mechanism driving abnormal expression and the consequences on signaling and clinical follow-up. We detected GNA15 expression in pre-neoplastic pancreatic lesions and throughout progression. The analysis of biological data sets, primary and xenografted human tumor samples, and clinical follow-up shows that elevated expression is associated with poor prognosis for GNA15, but not any other GNA gene. Demethylation of the 5′ GNA15 promoter region was associated with ectopic expression of Gα15 in pancreatic neoplastic cells, but not in adjacent dysplastic or non-transformed tissue. Down-modulation of Gα15 by shRNA or CRISPR/Cas9 afected oncogenic signaling, and reduced adenocarcimoma cell motility and invasiveness. We conclude that de novo expression of wild-type GNA15 characterizes transformed pancreatic cells. The methylation pattern of GNA15 changes in preneoplastic lesions coincident with the release a transcriptional blockade that allows ectopic expression to persist throughout PDAC progression.
    [Show full text]
  • Studies on Serotonin (5-HT) 3-Receptor Antagonist Effects Of
    Jpn. J. Pharmacol. 67, 185-194 (1995) Studies on Serotonin (5-HT)3-Receptor Antagonist Effects of Enantiomers of 4, 5,6,7-Tetrahydro-1H-Benzimidazole Derivatives Takeshi Kamato, Hiroyuki Ito, Takeshi Suzuki, Keiji Miyata and Kazuo Honda Neuroscience and Gastrointestinal Research Laboratory, Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co., Ltd., 21 Miyukigaoka, Tsukuba, Ibaraki 305, Japan Received June 24, 1994 Accepted November 28, 1994 ABSTRACT-We assessed the 5-HT3-receptor antagonist effects of 4,5,6,7-1H-benzimidazole compounds which are derivatives of YM060, a potent and selective 5-HT3-receptor antagonist, in isolated guinea pig co- lon. YM114 (KAE-393), YM-26103-2, YM-26308-2 (3 x 10-9 to 3 x 10-8 M) produced concentration-depend- ent shifts to the right of the dose-response curves for both 5-HT and 2-methyl-5-HT (2-Me-5-HT). YM114 (pA2=9.08 against 5-HT, pA2=8.88 against 2-Me-5-HT), YM-26103-2 (pA2=8.27 against 5-HT, pA2 = 8.19 against 2-Me-5-HT), and YM-26308-2 (pA2 = 8.58 against 5-HT, pA2 = 8.4 against 2-Me-5-HT) show- ed similar pA2 values irrespective of the agonist used, suggesting that they have 5-HT3-receptor blocking activity irrespective of the N-position at the aromatic ring. Since these compounds have an asymmetric center, their enantiomers exist. The S-isomers were one to three orders of magnitude less potent than the respective R-isomer compounds, indicating that the stereochemical configuration of 4,5,6,7-tetrahydro-lH- benzimidazoles is an important determinant of their affinity for 5-HT3 receptors.
    [Show full text]
  • Insulin Resistance & Type 2 Diabetes
    Doctoral College Metabolic & Cardiovascular Disease InsulinInsulin ResistanceResistance && TypeType 22 DiabetesDiabetes GUEST LECTURE by Olivia Osborn, PhD Division of Endocrinology and Metabolism School of Medicine, University of California San Diego, USA Tuesday, 17.04.2012 17:00h SR 07.12, Preclinics Harrachgasse 21, 1st floor Inflammatory signaling pathways involved in the development of insulin resistance Abstract Obesity-associated chronic tissue inflammation is a key contributing factor to insulin resistance and type 2 diabetes. In the obese state, macrophages accumulate in insulin target tissues and secrete proinflammatory mediators that drive the development of insulin resistance. GPR21 is an orphan G protein coupled receptor that is highly expressed in macrophages as well as the brain. In adipose tissue, obesity-induced GPR21 expression occurs primarily in the stromal vascular cells. In mice fed a high fat diet, whole body knockout of GPR21 resulted in improved insulin sensitivity and glucose tolerance as well as increased energy expenditure. Macrophage deletion of GPR21 mediates potent insulin sensitizing effects in vivo by repressing chemotaxis as well as reducing adipose tissue and liver tissue inflammation. Hypothalamic knockdown of GPR21 expression results in decreased body weight. In summary, reduced expression of GPR21 in the hypothalamus or macrophage both contribute to improved insulin sensitivity and suggest that GPR21 is an important target for the Schematic of integrative physiology. Nutrient development of new therapeutic
    [Show full text]