Mikio Sato, a Visionary of Mathematics, Volume 54, Number 2

Total Page:16

File Type:pdf, Size:1020Kb

Mikio Sato, a Visionary of Mathematics, Volume 54, Number 2 Mikio Sato, a Visionary of Mathematics Pierre Schapira Like singularities in mathematics and physics, ideas People were essentially looking for existence propagate, and the speed of propagation depends theorems for linear partial differential equations highly on the energy put into promoting them. (PDE), and most of the proofs were reduced to Mikio Sato did not spend a great deal of time or finding “the right functional space”, to prove some energy popularizing his ideas. We can hope that a priori estimate and apply the Hahn-Banach his receipt of the 2002/2003 Wolf Prize1 will help theorem. make better known his deep work, which is perhaps It was in this environment that Mikio Sato too original to be immediately accepted. Sato does defined hyperfunctions in 1959–1960 as boundary not write a lot, does not communicate easily, and values of holomorphic functions, a discovery that attends very few meetings. But he invented a new allowed him to obtain a position at Tokyo Univer- way of doing analysis, “Algebraic Analysis”, and sity thanks to the clever patronage of Shokichi created a school, “the Kyoto school”. Iyanaga, an exceptionally open-minded person 2 Born in 1928 , Sato became known in mathe- and a great friend of French culture. Next, Sato matics only in 1959–1960 with his theory of spent two years in the USA, in Princeton, where he hyperfunctions. Indeed, his studies had been unsuccessfully tried to convince André Weil of the seriously disrupted by the war, particularly by relevance of his cohomological approach to the bombing of Tokyo. After his family home analysis. burned down, he had to work as a coal delivery man Sato’s method was radically new, in no way and later as a school teacher. At age 29 he became using the notion of limit. His hyperfunctions are an assistant professor at Tokyo University. He stud- not limits of functions in any sense of the word, ied mathematics and physics, on his own. and the space of hyperfunctions has no natural To understand the originality of Sato’s theory topology other than the trivial one. For his con- of hyperfunctions, one has to place it in the struction, Sato invented local cohomology in mathematical landscape of the time. Mathematical parallel with Grothendieck. This was truly a revo- analysis from the 1950s to the 1970s was under lutionary vision of analysis. the domination of functional analysis, marked But besides its evident originality, Sato’s ap- by the success of the theory of distributions. proach had deep implications since it naturally led Pierre Schapira is professor of mathematics at the Uni- to microlocal analysis, as I will try to explain. versité Pierre et Marie Curie, Institut de Mathématiques, The theory of linear PDE with variable coeffi- Paris, France. His contact addresses are: schapira@ cients was in its early beginnings in the years math.jussieu.fr. and http://www.math.jussieu. 1965–1970 and under the shock of Hans Lewy’s fr/~schapira/. example√ showing that the first√ order linear equa- 1 Translation of a paper appearing in La Gazette des tion (− −1∂1 + ∂2 − 2(x1 + −1x2)∂3)u = v had Mathématiciens 97 (2003) on the occasion of Sato’s re- no solution, even a local solution, in the space of ceiving the 2002/2003 Wolf Prize. distributions3. The fact that an equation had no 2 In 1990, Sato gave an interview to Emmanuel Andronikof √ 3 who unfortunately passed away in 1994. I have made use The slightly simpler equation (∂1 + −1x1∂2)u = v does of his notes, which were edited by A. D’Agnolo. I also have not have any solution in the space of germs at the origin benefited from the scientific comments of J-B. Bost and of distributions in R2 either, nor even in the space of A. Chambert-Loir, whom I warmly thank. germs of hyperfunctions. FEBRUARY 2007 NOTICES OF THE AMS 243 Indeed, pseudo-differential operators did exist before the wave front set. But Sato was the first to make the objects of analysis, such as distributions, live in the cotangent space, and for that purpose he constructed a key tool of sheaf theory, the microlocalization functor, that is, the “Fourier- Sato” transform of the specialization functor. This is also the origin of the microlocal theory of sheaves of [3]. In 1973 Sato and his two students, M. Kashiwara and T. Kawai, published a treatise on the microlocal analysis of PDE [8]. Certainly this work had a considerable impact, although most an- alysts did not understand a single word. Hörman- der and his school then adapted the classical Fourier transform to these new ideas, leading to the Mikio Sato (left) with Pierre Schapira, around 1972. now popular theory of Fourier-integral operators. solution was quite disturbing at that time. People Already in the 1960s, Sato had the intuition of D-module theory, of holonomic systems, and of the thought that it was a defect of the theory, that the b-function (the so-called Bernstein-Sato b-func- spaces one had considered were too small to admit tion). He gave a series of talks on these topics at the solutions. Of course, often just the opposite Tokyo University but had to stop for lack of com- is true and one finds that the occurrence of a batants. His ideas were reconsidered and system- cohomological obstruction heralds interesting atically developed by Masaki Kashiwara in his 1969 phenomena: the lack of a solution is the demon- thesis ([1], [2]). As its name indicates, a D-module stration of some deep and hidden geometrical is a module over the (sheaf of) ring(s) D of differ- phenomena. In the case of the Hans Lewy equation, ential operators, and a module over a ring essen- the hidden geometry is “microlocal”, and this tially means “a system of linear equations” with equation is microlocally equivalent to an induced coefficients in this ring. The task is now to treat Cauchy-Riemann equation on a real hypersurface (general) systems of linear PDE. This theory, which of the complex space. also simultaneously appeared in Moscow in a more In mathematics, as in physics, in order to treat algebraic framework developed by Gelfand’s stu- phenomena in a given (affine) space, one is natu- dent J. Bernstein, quickly had considerable suc- rally led to compute in the dual space. One way, cess in several branches of mathematics. In 1970– the most commonly used in analysis, is via the 1980, Kashiwara obtained almost all the funda- Fourier transform. This transform, far from being mental results of the theory, in particular those of a local nature, is not easily adapted to calculus concerned with holonomic modules, such as his on manifolds. By contrast, Sato’s method is per- constructibility theorem, his index theorem for fectly suited for this case: you can complexify a real holomorphic solutions of holonomic modules, analytic manifold and, instead of looking at the the proof of the rationality of the zeroes of the behavior at infinity of the Fourier transform, you b-function, and his theory of regular holonomic look “where the boundary values come from”. In modules. technical terms, one regards the cotangent bundle √ The mathematical landscape of 1970–1980 had (more precisely, −1-times the cotangent bundle) thus considerably changed. Not only did one treat as the conormal bundle to the real space in the com- equations with variable coefficients, but one treated plex space. This is how Sato defines the analytic systems of such equations and moreover one wave front set of hyperfunctions (in particular, of worked microlocally, that is, in the cotangent bun- distributions), a closed conic subset of the cotan- dle, the phase space of the physicists. But there gent bundle, and he shows that if a hyperfunction were two schools in the world: the C∞ school u is a solution of the equation Pu =0, then its issuing from classical analysis and headed by wave front set is contained in the real part of the Hörmander, who developed the calculus of Fourier characteristic variety of the operator P. This is the integral operators4, and the analytic school that starting point of microlocal analysis, invented by Sato established, which was almost nonexistent Sato, a kind of revolution in analysis. outside Japan and France. Of course, at this time other mathematicians France was a strategic place to receive Sato’s (especially L. Hörmander) and physicists (e.g., ideas since they are based on those of both Jean D. Iagolnitzer) had the intuition that the cotangent Leray and Alexandre Grothendieck. Like Leray, Sato space was the natural space for analysis, and in fact this intuition arose much earlier (in the work of 4Many names should be quoted at this point, in particu- J. Hadamard, F. John, and J. Leray, in particular). lar those of V. Maslov and Yu. Egorov. 244 NOTICES OF THE AMS VOLUME 54, NUMBER 2 understood that singularities have to be sought in studying algebraic cycles and Sato by computing the complex domain, even for the understanding numerical data. of real phenomena. Sato’s algebraic analysis is Sato’s most recent works are essentially un- based on sheaf theory, a theory invented by Leray published and have been presented in seminars in 1944 when he was a prisoner of war, clarified attended only by a small group of people. They treat by Cartan, and made extraordinarily efficient by an algebraic approach to nonlinear systems of PDE, Grothendieck and his formalism of derived cate- in particular holonomic systems, of which theta gories and the six opérations. functions are examples of solutions! Sato, motivated by physics as usual, then Looking back, forty years later, we realize that tackled the analysis of the S-matrix in light of Sato’s approach to mathematics is not so different microlocal analysis.
Recommended publications
  • Algebraic Analysis of Rotation Data
    11 : 2 2020 Algebraic Statistics ALGEBRAIC ANALYSIS OF ROTATION DATA MICHAEL F. ADAMER, ANDRÁS C. LORINCZ˝ , ANNA-LAURA SATTELBERGER AND BERND STURMFELS msp Algebraic Statistics Vol. 11, No. 2, 2020 https://doi.org/10.2140/astat.2020.11.189 msp ALGEBRAIC ANALYSIS OF ROTATION DATA MICHAEL F. ADAMER, ANDRÁS C. LORINCZ˝ , ANNA-LAURA SATTELBERGER AND BERND STURMFELS We develop algebraic tools for statistical inference from samples of rotation matrices. This rests on the theory of D-modules in algebraic analysis. Noncommutative Gröbner bases are used to design numerical algorithms for maximum likelihood estimation, building on the holonomic gradient method of Sei, Shibata, Takemura, Ohara, and Takayama. We study the Fisher model for sampling from rotation matrices, and we apply our algorithms to data from the applied sciences. On the theoretical side, we generalize the underlying equivariant D-modules from SO.3/ to arbitrary Lie groups. For compact groups, our D-ideals encode the normalizing constant of the Fisher model. 1. Introduction Many of the multivariate functions that arise in statistical inference are holonomic. Being holonomic roughly means that the function is annihilated by a system of linear partial differential operators with polynomial coefficients whose solution space is finite-dimensional. Such a system of PDEs can be written as a left ideal in the Weyl algebra, or D-ideal, for short. This representation allows for the application of algebraic geometry and algebraic analysis, including the use of computational tools, such as Gröbner bases in the Weyl algebra[28; 30]. This important connection between statistics and algebraic analysis was first observed by a group of scholars in Japan, and it led to their development of the holonomic gradient method (HGM) and the holonomic gradient descent (HGD).
    [Show full text]
  • 27 Oct 2008 Masaki Kashiwara and Algebraic Analysis
    Masaki Kashiwara and Algebraic Analysis Pierre Schapira Abstract This paper is based on a talk given in honor of Masaki Kashiwara’s 60th birthday, Kyoto, June 27, 2007. It is a brief overview of his main contributions in the domain of microlocal and algebraic analysis. It is a great honor to present here some aspects of the work of Masaki Kashiwara. Recall that Masaki’s work covers many fields of mathematics, algebraic and microlocal analysis of course, but also representation theory, Hodge the- ory, integrable systems, quantum groups and so on. Also recall that Masaki had many collaborators, among whom Daniel Barlet, Jean-Luc Brylinski, Et- surio Date, Ryoji Hotta, Michio Jimbo, Seok-Jin Kang, Takahiro Kawai, Tet- suji Miwa, Kiyosato Okamoto, Toshio Oshima, Mikio Sato, myself, Toshiyuki Tanisaki and Mich`ele Vergne. In each of the domain he approached, Masaki has given essential contri- butions and made important discoveries, such as, for example, the existence of crystal bases in quantum groups. But in this talk, I will restrict myself to describe some part of his work related to microlocal and algebraic analysis. The story begins long ago, in the early sixties, when Mikio Sato created a new branch of mathematics now called “Algebraic Analysis”. In 1959/60, arXiv:0810.4875v1 [math.HO] 27 Oct 2008 M. Sato published two papers on hyperfunction theory [24] and then devel- oped his vision of analysis and linear partial differential equations in a series of lectures at Tokyo University (see [1]). If M is a real analytic manifold and X is a complexification of M, hyperfunctions on M are cohomology classes supported by M of the sheaf X of holomorphic functions on X.
    [Show full text]
  • Algebraic Analysis of Differential Equations
    T. Aoki· H. Majima- Y. Takei· N. Tose (Eds.) Algebraic Analysis of Differential Equations from Microlocal Analysis to Exponential Asymptotics Festschrift in Honor of Takahiro Kawai ~ Springer Editors Takashi Aoki Department of Mathematics Kinki University Higashi-Osaka 577-8502, Japan e-mail: [email protected] Hideyuki Majima Department of Mathematics Ochanomizu University Tokyo 112-8610, Japan e-mail: [email protected] Yoshitsugu Takei Research Institute for Mathematical Sciences Kyoto University Kyoto 606-8502, Japan e-mail: [email protected] Nobuyuki Tose Faculty of Economics Keio University Yokohama 223-8521, Japan e-mail: [email protected] Library of Congress Control Number: 2007939560 ISBN 978-4-431-73239-6 Springer Tokyo Berlin Heidelberg New York Springer is a part of Springer Science+Business Media springer.com c Springer 2008 This work is subject to copyright. All rights are reserved, whether the whole or a part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Camera-ready copy prepared from the authors’ LATEXfiles. Printed and bound by Shinano Co. Ltd., Japan. SPIN: 12081080 Printed on acid-free paper Dedicated to Professor Takahiro Kawai on the Occasion of His Sixtieth Birthday Preface This is a collection of articles on algebraic analysis of differential equations and related topics.
    [Show full text]
  • An Introduction to Constructive Algebraic Analysis and Its Applications Alban Quadrat
    An introduction to constructive algebraic analysis and its applications Alban Quadrat To cite this version: Alban Quadrat. An introduction to constructive algebraic analysis and its applications. [Research Report] RR-7354, INRIA. 2010, pp.237. inria-00506104 HAL Id: inria-00506104 https://hal.inria.fr/inria-00506104 Submitted on 27 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE Une introduction à l’analyse algébrique constructive et à ses applications Alban Quadrat N° 7354 July 2010 Algorithms, Certification, and Cryptography apport de recherche ISSN 0249-6399 ISRN INRIA/RR--7354--FR+ENG Une introduction à l’analyse algébrique constructive et à ses applications Alban Quadrat ∗ Theme : Algorithms, Certification, and Cryptography Équipe-Projet AT-SOP Rapport de recherche n° 7354 — July 2010 — 237 pages Résumé : Ce texte est une extension des notes de cours que j’ai préparés pour les Journées Nationales de Calcul Formel qui ont eu lieu au CIRM, Luminy (France) du 3 au 7 Mai 2010. Le but principal de ce cours était d’introduire la communauté française du calcul formel à l’analyse algébrique constructive, et particulièrement à la théorie des D-modules algébriques, à ses applications à la théorie mathématique des systèmes et à ses implantations dans des logiciels de calcul formel tels que Maple ou GAP4.
    [Show full text]
  • Nonlinear Generalized Functions: Their Origin, Some Developments and Recent Advances
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Cadernos Espinosanos (E-Journal) S~aoPaulo Journal of Mathematical Sciences 7, 2 (2013), 201{239 Nonlinear Generalized Functions: their origin, some developments and recent advances Jean F. Colombeau Institut Fourier, Universit´ede Grenoble (retired) Abstract. We expose some simple facts at the interplay between math- ematics and the real world, putting in evidence mathematical objects " nonlinear generalized functions" that are needed to model the real world, which appear to have been generally neglected up to now by mathematicians. Then we describe how a "nonlinear theory of gen- eralized functions" was obtained inside the Leopoldo Nachbin group of infinite dimensional holomorphy between 1980 and 1985 **. This new theory permits to multiply arbitrary distributions and contains the above mathematical objects, which shows that the features of this theory are natural and unavoidable for a mathematical description of the real world. Finally we present direct applications of the theory such as existence-uniqueness for systems of PDEs without classical so- lutions and calculations of shock waves for systems in non-divergence form done between 1985 and 1995 ***, for which we give three examples of different nature (elasticity, cosmology, multifluid flows). * work done under support of FAPESP, processo 2011/12532-1, and thanks to the hospitality of the IME-USP. ** various supports from Fapesp, Finep and Cnpq between 1978 and 1984. *** support of "Direction des Recherches, Etudes´ et Techniques", Minist`ere de la D´efense,France, between 1985 and 1995. [email protected] 1. Mathematics and the real world.
    [Show full text]
  • Elements of Computer-Algebraic Analysis 2 G
    Operator algebras, partial classification Operator algebras, partial classification More general framework: G-algebras More general framework: G-algebras Recommended literature (textbooks) 1 J. C. McConnell, J. C. Robson, ”Noncommutative Noetherian Rings”, Graduate Studies in Mathematics, 30, AMS (2001) Elements of Computer-Algebraic Analysis 2 G. R. Krause and T. H. Lenagan, ”Growth of Algebras and Gelfand-Kirillov Dimension”, Graduate Studies in Mathematics, 22, AMS (2000) Viktor Levandovskyy 3 S. Saito, B. Sturmfels and N. Takayama, “Gr¨obner Lehrstuhl D f¨urMathematik, RWTH Aachen, Germany Deformations of Hypergeometric Differential Equations”, Springer, 2000 4 J. Bueso, J. G´omez–Torrecillas and A. Verschoren, 22.07. Tutorial at ISSAC 2012, Grenoble, France ”Algorithmic methods in non-commutative algebra. Applications to quantum groups”, Kluwer , 2003 5 H. Kredel, ”Solvable polynomial rings”, Shaker Verlag, 1993 6 H. Li, ”Noncommutative Gr¨obnerbases and filtered-graded transfer”, Springer, 2002 VL Elements of CAAN VL Elements of CAAN Operator algebras, partial classification Operator algebras, partial classification More general framework: G-algebras More general framework: G-algebras Recommended literature (textbooks and PhD theses) Software D-modules and algebraic analysis: 1 V. Ufnarovski, ”Combinatorial and Asymptotic Methods of Algebra”, Springer, Encyclopedia of Mathematical Sciences 57 kan/sm1 by N. Takayama et al. (1995) D-modules package in Macaulay2 by A. Leykin and H. Tsai 2 F. Chyzak, ”Fonctions holonomes en calcul formel”, Risa/Asir by M. Noro et al. PhD. Thesis, INRIA, 1998 OreModules package suite for Maple by D. Robertz, 3 V. Levandovskyy, ”Non-commutative Computer Algebra for A. Quadrat et al. polynomial algebras: Gr¨obner bases, applications and Singular:Plural with a D-module suite; by V.
    [Show full text]
  • Nonlinear Generalized Functions: Their Origin, Some Developments and Recent Advances
    Nonlinear Generalized Functions: their origin, some developments and recent advances J.F. Colombeau*, Institut Fourier, Universit´ede Grenoble (retired). Abstract We expose some simple facts at the interplay between mathemat- ics and the real world, putting in evidence mathematical objects " nonlinear generalized functions" that are needed to model the real world, which appear to have been generally neglected up to now by mathematicians. Then we describe how a "nonlinear theory of gen- eralized functions" was obtained inside the Leopoldo Nachbin group of infinite dimensional holomorphy between 1980 and 1985 **. This new theory permits to multiply arbitrary distributions and contains the above mathematical objects, which shows that the features of this theory are natural and unavoidable for a mathematical description of the real world. Finally we present direct applications of the theory such as existence-uniqueness for systems of PDEs without classical so- lutions and calculations of shock waves for systems in non-divergence form done between 1985 and 1995 ***, for which we give three exam- ples of different nature (elasticity, cosmology, multifluid flows). * work done under support of FAPESP, processo 2011/12532-1, and thanks to the hospitality of the IME-USP. ** various supports from Fapesp, Finep and Cnpq between 1978 and 1984. *** support of "Direction des Recherches, Etudes´ et Techniques", Minist`ere de la D´efense,France, between 1985 and 1995. arXiv:1401.4755v1 [math.FA] 19 Jan 2014 [email protected] 1. Mathematics and the real world. Let H be the Heaviside function. It is a function equal to 0 if x < 0, to 1 if x > 0 and not defined if x = 0.
    [Show full text]
  • Kashiwara's Masters Thesis
    MÉMOIRES DE LA S. M. F. MASAKI KASHIWARA Algebraic study of systems of partial differential equations. (Master’s thesis, Tokyo University, December 1970. Translated by Andrea D’Agnolo and Pierre Schneiders. With a foreword by Pierre Schapira) Mémoires de la S. M. F. 2e série, tome 63 (1995), p. I-XIV+1-72. <http://www.numdam.org/item?id=MSMF_1995_2_63__R1_0> © Mémoires de la S. M. F., 1995, tous droits réservés. L’accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html), implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute uti- lisation commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Societe Mathematique de France Memoire 63 Supplement au Bulletin de la S.M.F. Tome 123, 1995, fascicule 4 Algebraic Study of Systems of Partial Differential Equations (Master's Thesis, Tokyo University, December 1970) Masaki KASHIWARA Translated by Andrea D'AGNOLO and Jean-Pierre SCHNEIDERS Abstract - This Memoire is a translation of M. Kashiwara's thesis. In this pio- neering work, the author initiates the study of systems of linear partial differen- tial equations with analytic coefficients from the point of view of modules over the ring V of differential operators. Following some preliminaries on good filtrations and non-commutative localization, the author introduces the notion of character- istic variety and of multiplicity of a P-module.
    [Show full text]
  • Some Highlights in the Development of Algebraic Analysis
    ALGEBRAIC ANALYSIS AND RELATED TOPICS BANACH CENTER PUBLICATIONS, VOLUME 53 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2000 SOME HIGHLIGHTS IN THE DEVELOPMENT OF ALGEBRAIC ANALYSIS JOHN A. SYNOWIEC Department of Mathematics, Indiana University The Northwest Campus, 3400 Broadway Gary, Indiana 46408-1197, U.S.A. E-mail: [email protected] The term \algebraic analysis" has had, and continues to have, various meanings re- flecting several different areas of study and approaches for over 200 years. The current definition, as given by Professor Przeworska-Rolewicz [1988], is: algebraic analysis is the theory of right invertible operators in linear spaces, in general without topology. As she points out in her encyclopedia article [1997], an essential distinction between algebraic analysis and operational calculus is that in the former, the notion of convolution is not necessary, there is no need for a field structure, and right inverses and initial operators are not commutative. Here, the discussion will be very wide-ranging, in order to include many meanings of the term algebraic analysis. In addition to work which actually uses the term, we will briefly consider what it should, or might, mean. That is, algebraic analysis will be taken to mean the study of analysis using algebraic methods either exclusively, or at least, predominantly. This paper is to be viewed as a work mainly of synthesis, rather than of new explo- ration. The work of many historians of mathematics will be cited. Of special note are the works of Bottazzini [1986], Deakin [1981, 1982], Grabiner [1981, 1990], Grattan-Guinness [1994], and L¨utzen[1979]; also, Davis [1936], although not a historical work, has much historical information.1 1.
    [Show full text]
  • Regularity, Local and Microlocal Analysis in Theories of Generalized Functions Jean-André Marti
    Regularity, Local and Microlocal Analysis in Theories of Generalized Functions Jean-André Marti To cite this version: Jean-André Marti. Regularity, Local and Microlocal Analysis in Theories of Generalized Functions. 2007. hal-00190006 HAL Id: hal-00190006 https://hal.archives-ouvertes.fr/hal-00190006 Preprint submitted on 22 Nov 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Regularity, Local and Microlocal Analysis in Theories of Generalized Functions Jean-Andr´eMarti Equipe Analyse Alg´ebrique Non Lin´eaire-Laboratoire G T S I Universit´eAntilles-Guyane November 23, 2007 Abstract We introduce a general context involving a presheaf A and a subpresheaf B of A. We show that all previously considered cases of local analysis of generalized functions (defined from duality or algebraic techniques) can be interpretated as the B-local analysis of sections of A. But the microlocal analysis of the sections of sheaves or presheaves under consideration is dissociated into a ”frequential microlocal analysis ” and into a ”microlocal asymptotic anal- ysis”. The frequential microlocal analysis based on the Fourier transform leads to the study of propagation of singularities under only linear (including pseudodifferential) operators in the theories described here, but has been extended to some non linear cases in classical the- ories involving Sobolev techniques.
    [Show full text]
  • Algebraic Study of Systems of Partial Differential Equations Mémoires De La S
    MÉMOIRES DE LA S. M. F. MASAKI KASHIWARA Algebraic study of systems of partial differential equations Mémoires de la S. M. F. 2e série, tome 63 (1995) <http://www.numdam.org/item?id=MSMF_1995_2_63__R1_0> © Mémoires de la S. M. F., 1995, tous droits réservés. L’accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Societe Mathematique de France Memoire 63 Supplement au Bulletin de la S.M.F. Tome 123, 1995, fascicule 4 Algebraic Study of Systems of Partial Differential Equations (Master's Thesis, Tokyo University, December 1970) Masaki KASHIWARA Translated by Andrea D'AGNOLO and Jean-Pierre SCHNEIDERS Abstract - This Memoire is a translation of M. Kashiwara's thesis. In this pio- neering work, the author initiates the study of systems of linear partial differen- tial equations with analytic coefficients from the point of view of modules over the ring V of differential operators. Following some preliminaries on good filtrations and non-commutative localization, the author introduces the notion of character- istic variety and of multiplicity of a P-module. Then he shows that the classical Cauchy-Kovalevskaya theorem may be generalized as a formula for the solutions of non-characteristic inverse images of D-modules.
    [Show full text]
  • Foundations of Algebraic Analysis, by Masaki Kashiwara, Takahiro Kawai, and Tatsuo Kimura
    104 BOOK REVIEWS BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 18, Number 1, January 1988 ©1988 American Mathematical Society 0273-0979/88 $1.00 + $.25 per page Foundations of algebraic analysis, by Masaki Kashiwara, Takahiro Kawai, and Tatsuo Kimura. Translated by Goro Kato. Princeton Mathematical Series, vol. 37, Princeton University Press, Princeton, 1986, xii + 254 pp., $38.00. ISBN 0-691-08413-0 "Algebraic analysis" is a term coined by Mikio Sato. It encompasses a variety of algebraic methods to study analytic objects; thus, an "algebraic analyst" would establish some properties of a function or a distribution by investigating some linear partial differential operators which annihilate it. Here is a concrete example: let ƒ be a polynomial in n complex variables s Xi,X2,..., xn; if s is a complex number, with Re(s) > 0, |ƒ| is a well-defined continuous function on Cn. Bernstein [2] showed that \f\s extends to a mero- morphic function of s with values in distributions on Cn. The key step is the abstract derivation of the following equation: (B-S) F(x,5,|-,^,/r=6(s).|/r2, where b(s) is a nonzero polynomial in s, and P is a partial differential operator with polynomial coeflBcients involving both the variables Xi and their complex conjugates x~i. This gives immediately the desired meromorphic continuation, with poles located at À — 2, A - 4,..., for À a zero of the polynomial b. (B-S) is the so-called Bernstein-Sato differential equation; b(s), if chosen of the form sk + ak-is*"1 -\ h ao with k minimal, is the Bernstein-Sato polynomial.
    [Show full text]