27 Oct 2008 Masaki Kashiwara and Algebraic Analysis

Total Page:16

File Type:pdf, Size:1020Kb

27 Oct 2008 Masaki Kashiwara and Algebraic Analysis Masaki Kashiwara and Algebraic Analysis Pierre Schapira Abstract This paper is based on a talk given in honor of Masaki Kashiwara’s 60th birthday, Kyoto, June 27, 2007. It is a brief overview of his main contributions in the domain of microlocal and algebraic analysis. It is a great honor to present here some aspects of the work of Masaki Kashiwara. Recall that Masaki’s work covers many fields of mathematics, algebraic and microlocal analysis of course, but also representation theory, Hodge the- ory, integrable systems, quantum groups and so on. Also recall that Masaki had many collaborators, among whom Daniel Barlet, Jean-Luc Brylinski, Et- surio Date, Ryoji Hotta, Michio Jimbo, Seok-Jin Kang, Takahiro Kawai, Tet- suji Miwa, Kiyosato Okamoto, Toshio Oshima, Mikio Sato, myself, Toshiyuki Tanisaki and Mich`ele Vergne. In each of the domain he approached, Masaki has given essential contri- butions and made important discoveries, such as, for example, the existence of crystal bases in quantum groups. But in this talk, I will restrict myself to describe some part of his work related to microlocal and algebraic analysis. The story begins long ago, in the early sixties, when Mikio Sato created a new branch of mathematics now called “Algebraic Analysis”. In 1959/60, arXiv:0810.4875v1 [math.HO] 27 Oct 2008 M. Sato published two papers on hyperfunction theory [24] and then devel- oped his vision of analysis and linear partial differential equations in a series of lectures at Tokyo University (see [1]). If M is a real analytic manifold and X is a complexification of M, hyperfunctions on M are cohomology classes supported by M of the sheaf X of holomorphic functions on X. It is difficult O to realize now how Sato’s point of view was revolutionary at that time. Sato’s hyperfunctions are constructed using tools from sheaf theory and complex analysis, when people were totally addicted to functional analysis, and when the separation between real and complex analysis was very strong. 1 Figure 1: Mikio Sato around 1972 and with Masaki Kashiwara more recently Then came Kashiwara’s thesis, dated December 1970 (of course written in Japanese, but translated in English and published by the French Mathe- matical Society [7]) in which he settles the foundations of analytic -module theory and obtains almost all basic results of the theory (compare withD [13]). With -module theory (also constructed independently in the algebraic set- tings byD J. Bernstein [3]), one finally has the tools to treat general systems of linear partial differential equations, as opposed to one equation with one unknown, or to some very particular overdetermined systems. In particular, Kashiwara succeeds in formulating (and solving, but the difficult problem is the functorial formulation) the Cauchy problem for -modules, obtaining D what is now called the Cauchy-Kowalesky-Kashiwara theorem. After the first revolution of hyperfunction theory, Sato made a second one, ten years later, by creating microlocal analysis, a way to analyse objects of a manifold X in the cotangent bundle T ∗X. With Kashiwara and Kawai, they wrote a long paper [25], quoted everywhere as SKK, whose influence has been considerable during the whole seventies among the analysts (and not only the analysts), although very few of them even tried to read the paper. The SKK paper contains Sato’s construction of the sheaf M of mi- C crofunctions, and as a byproduct, the definition of the wave front set. This is essentially what the analysts, led by H¨ormander, remember of this theory (see [6]). But, to my opinion, this is certainly not the only key point of 2 the SKK paper. Another essential fact is that all constructions are made functorially. For example, microfunctions are obtained by first constructing the microlocalization functor µM , and then applying it to the sheaf X of holomorphic functions on a complex manifold X. When you take forOM a real analytic manifold of whom X is a complexification, you get the sheaf M ∗ C (living on TM X, the cornormal bundle to M in X), but if you replace the embedding M ֒ X by the diagonal embedding ∆ ֒ X X, then you get → ∗ → ×∗ the sheaf of microdifferential operators (on T∆(X X) T X) whose theory was developed by Kashiwara and Kawai. With this× approach,≃ you can adapt the six Grothendieck operations to Analysis and obtain a completely new point of view to classical problems (e.g. the Fourier-Sato transformation). Moreover, the SKK paper contains at least two fundamental and ex- tremely deep results, first the involutivity of characteristics, second the struc- ture of systems of microdifferential equations at the generic points of the characteristic variety. More precisely, let X be a complex manifold and let X be the sheaf of rings of microdifferential operators (a kind of localization E of the sheaf X of differential operators). A microdifferential system on D ∗ M an open subset U of T X is a coherent X U -module. Then E | the support char( ) of , also called its characteristic variety, is a • M M closed complex analytic involutive (that is, co-isotropic) subset of U. Of course, the involutivity theorem has a longer history, including the previous work of Guillemin-Quillen-Sternberg [5], and culminating with the purely algebraic proof of Gabber [4]. At generic points of char( ), (after using complex quantized contact • M transformations and infinite order microdifferential operators) is isomorphic to a partial de Rham system: M ∂xi u =0, (i =1,...,p). In the real case, is isomorphic to a mixture of de Rham, Dolbeault M and Hans Lewy systems: ∂x u =0, (i =1,...,p) i (∂y + √ 1∂y )u =0, (j =1,...,q) j − j+1 (∂tk + √ 1tk∂tk+1 )u =0, (k =1,...,r). − From 1970 to 1980, Kashiwara solved almost all fundamental questions of -module theory, proving in particular the rationality of the zeroes of D 3 Figure 2: Masaki Kashiwara, Teresa Monteiro Fernandes and myself around 1975 b-functions [10] and also stating and solving almost all questions related to regular holonomic modules, in particular the Riemann-Hilbert problem. Let us give some details on this part of Kashiwara’s work. In 1975, he proved that the complex F = R om D( , X ) of holomorphic solutions of a holonomic -module has constructibleH M O cohomology and satisfies proper- D M ties which are now translated by saying that F is perverse [9]. Moreover, two years before [8], in 1973, he calculated the local Euler-Poincar´eindex of F using the characteristic cycle associated to and in fact, defining first what M is now called the local Euler obstruction, or equivalently, the intersection of Lagrangian cycles. In 1977 he gave a precise statement of what should be the Riemann-Hilbert correspondence (see [23, p. 287]), the difficulty being to de- fine a suitable class of holonomic -modules, the so-called regular holonomic modules, what he does in the microlocalD setting with Kawai [15] (after re- lated work with Oshima [16]). Then, in 1979, he announces at the 1979/1980 Seminar of Ecole Polytechnique [11] the theorem, giving with some details 4 the main steps of the proof. (1975) b op b C Dhol( X ) / DC−c( X ) DO kkk ∼ kkk (1977) kkk kkk ? kk (1979−80) b opu D ( X ) holreg D Unfortunately, Masaki did not publish the whole proof before 1984 [12] and some people tried to make his result their own. As everyone knows, if the platonic world of Mathematics is pure and rigorous, these qualities definitely do not apply to the world of mathematicians. Of course, Kashiwara did a lot of other things during this period 1970/80, in particular in the theory of microdifferential equations, but he did not always take the time to publish his results. I remember that I had once in 1978 at Oberwolfach the opportunity to explain to H¨ormander the so-called “watermelon cut theorem” and you can now find it in [6, Th. 9.6.6]. This beautiful theorem asserts in particular that if a hyperfunction u is supported by a half space f 0, then the analytic wave front set of u above the ≥ boundary f = 0 is invariant by the Hamiltonian vector field Hf . After that, essentially from 1980 to 1990, came another period in which I am more involved. Indeed, we developed together the microlocal theory of sheaves (see [18]). To a sheaf F (not necessarily constructible) on a real manifold M, we asso- ciate a closed conic subset SS(F )1 of the cotangent bundle, the microsupport of F , which describes the directions of non propagation of F . The idea of microsupport emerged when, on one side, Masaki noticed that it was possi- ble to recover the characteristic variety of a holonomic -module from the knowledge of the complex of its holomorphic solutionsD by using the van- ishing cycle functor, and when, on my side, I was lead to this notion by remarking that our previous results on propagation for hyperbolic systems was of purely geometrical nature and had almost nothing to do with partial differential equations. One of the main result of the theory asserts that the microsupport of a sheaf F is an involutive subset of the cotangent bundle, but now we are working on real manifolds. In case one works on a complex manifold and F is the sheaf of solutions of a coherent -module , the microsupport of F D M 1SS(F ) stands for singular support. 5 Figure 3: Masaki Kashiwara and myself around 1980 coincides with the characteristic variety of . This gives an alternative proof M of the involutivity of characteristics of -modules.
Recommended publications
  • Fifty Years of Mathematics with Masaki Kashiwara
    Introduction D-modules SKK R-H correspondence Microlocal sheaf theory Others Fifty years of Mathematics with Masaki Kashiwara Pierre Schapira Sorbonne Universit´e,Paris, France ICM 2018 Rio de Janeiro, August 1st 1 / 26 Introduction D-modules SKK R-H correspondence Microlocal sheaf theory Others Before Kashiwara Masaki Kashiwara was a student of Mikio Sato and the story begins long ago, in the late fifties, when Sato created a new branch of mathematics, now called \Algebraic Analysis" by publishing his papers on hyperfunction theory and developed his vision of analysis and linear partial differential equations (LPDE) in a series of lectures at Tokyo University. 2 / 26 Introduction D-modules SKK R-H correspondence Microlocal sheaf theory Others Hyperfunctions on a real analytic manifold M are cohomology classes supported by M of the sheaf OX of holomorphic functions on a complexification X of M. In these old times, trying to understand real phenomena by complexifying a real manifold and looking at what happens in the complex domain was a totally new idea. The use of cohomology of sheaves in analysis was definitely revolutionary. 3 / 26 Introduction D-modules SKK R-H correspondence Microlocal sheaf theory Others Figure : ¿藤幹d and Á原正樹 4 / 26 Introduction D-modules SKK R-H correspondence Microlocal sheaf theory Others Kashiwara's thesis and D-module theory Then came Masaki Kashiwara. In his master's thesis, Tokyo University, 1970, Kashiwara establishes the foundations of analytic D-module theory, a theory which is now a fundamental tool in many branches of mathematics, from number theory to mathematical physics. (Soon after and independently, Joseph Bernstein developed a similar theory in the algebraic setting.) 5 / 26 Introduction D-modules SKK R-H correspondence Microlocal sheaf theory Others On a complex manifold X , one has the non commutative sheaf of rings DX of holomorphic partial differential operators.
    [Show full text]
  • Algebraic Analysis of Rotation Data
    11 : 2 2020 Algebraic Statistics ALGEBRAIC ANALYSIS OF ROTATION DATA MICHAEL F. ADAMER, ANDRÁS C. LORINCZ˝ , ANNA-LAURA SATTELBERGER AND BERND STURMFELS msp Algebraic Statistics Vol. 11, No. 2, 2020 https://doi.org/10.2140/astat.2020.11.189 msp ALGEBRAIC ANALYSIS OF ROTATION DATA MICHAEL F. ADAMER, ANDRÁS C. LORINCZ˝ , ANNA-LAURA SATTELBERGER AND BERND STURMFELS We develop algebraic tools for statistical inference from samples of rotation matrices. This rests on the theory of D-modules in algebraic analysis. Noncommutative Gröbner bases are used to design numerical algorithms for maximum likelihood estimation, building on the holonomic gradient method of Sei, Shibata, Takemura, Ohara, and Takayama. We study the Fisher model for sampling from rotation matrices, and we apply our algorithms to data from the applied sciences. On the theoretical side, we generalize the underlying equivariant D-modules from SO.3/ to arbitrary Lie groups. For compact groups, our D-ideals encode the normalizing constant of the Fisher model. 1. Introduction Many of the multivariate functions that arise in statistical inference are holonomic. Being holonomic roughly means that the function is annihilated by a system of linear partial differential operators with polynomial coefficients whose solution space is finite-dimensional. Such a system of PDEs can be written as a left ideal in the Weyl algebra, or D-ideal, for short. This representation allows for the application of algebraic geometry and algebraic analysis, including the use of computational tools, such as Gröbner bases in the Weyl algebra[28; 30]. This important connection between statistics and algebraic analysis was first observed by a group of scholars in Japan, and it led to their development of the holonomic gradient method (HGM) and the holonomic gradient descent (HGD).
    [Show full text]
  • Lecture Notes in Mathematics a Collection of Informal Reports and Seminars Edited by A
    Lecture Notes in Mathematics A collection of informal reports and seminars Edited by A. Dold, Heidelberg and B. Eckmann, Z(Jrich 287 Hyperfunctions and Pseudo-Differential Equations Proceedings of a Conference at Katata, 1971 Edited by Hikosaburo Komatsu, University of Tokyo, Tokyo/Japan Springer-Verlag Berlin. Heidelberg New York 1973 AMS Subject Classifications 1970): 35 A 05, 35 A 20, 35 D 05, 35 D 10, 35 G 05, 35 N t0, 35 S 05, 46F 15 ISBN 3-540-06218-1 Springer-Verlag Berlin- Heidelberg" New York ISBN 0-387-06218-1 Springer-Verlag New York • Heidelberg • Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. © by Springer Verlag Berlin . Heidelberg 1973. Library of Congress Catalog Card Number 72-88782. Printed in Germany. Offsetdruck: Jutius Beltz, Hemsbach/Bergstr. Dedicated to the memory of the late professor Andre MARTINEAU, who had originally planned to attend this conference. He appreciated the importance of hyperfunctions for the first time and has made the most profound contributions to the theory of hyperfunctions. LIST OF PARTICIPANTS Y. AKIZUKI (Gunma University) H. HIRONAKA (Harvard University) A. KANEKO (University of Tokyo) M. KASHIWARA (RIMS, Kyoto University) T.
    [Show full text]
  • MASAKI KASHIWARA PIERRE SCHAPIRA Ind-Sheaves
    Astérisque MASAKI KASHIWARA PIERRE SCHAPIRA Ind-sheaves Astérisque, tome 271 (2001) <http://www.numdam.org/item?id=AST_2001__271__R1_0> © Société mathématique de France, 2001, tous droits réservés. L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l’accord avec les conditions générales d’uti- lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ ASTÉRISQUE 271 IND-SHEAVES Masaki Kashiwara Pierre Schapira Société Mathématique de France 2001 M. Kashiwara Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan. E-mail : [email protected] P. Schapira Institut de Mathématiques, Analyse Algébrique, Université P & M Curie, Case 82, 4, place Jussieu F-75252, Paris Cedex 05, France. E-mail : [email protected] Url : http://www.math.jussieu.fr/"schapira 2000 Mathematics Subject Classification. — 18F20, 32C38, 32S60. Key words and phrases. — Sheaves, Grothendieck topologies, ind-objects, D-modules, moderate cohomology, integral transforms. The first named author benefits by a "Chaire Internationale de Recherche Blaise Pascal de l'Etat et de la Région d'Ile-de-France, gérée par la Fondation de l'Ecole Normale Supérieure". IND-SHEAVES Masaki Kashiwara, Pierre Schapira Abstract. — Sheaf theory is not well suited to the study of various objects in Analysis which are not defined by local properties. The aim of this paper is to show that it is possible to overcome this difficulty by enlarging the category of sheaves to that of ind-sheaves, and by extending to ind-sheaves the machinery of sheaves.
    [Show full text]
  • Mikio Sato, a Visionary of Mathematics, Volume 54, Number 2
    Mikio Sato, a Visionary of Mathematics Pierre Schapira Like singularities in mathematics and physics, ideas People were essentially looking for existence propagate, and the speed of propagation depends theorems for linear partial differential equations highly on the energy put into promoting them. (PDE), and most of the proofs were reduced to Mikio Sato did not spend a great deal of time or finding “the right functional space”, to prove some energy popularizing his ideas. We can hope that a priori estimate and apply the Hahn-Banach his receipt of the 2002/2003 Wolf Prize1 will help theorem. make better known his deep work, which is perhaps It was in this environment that Mikio Sato too original to be immediately accepted. Sato does defined hyperfunctions in 1959–1960 as boundary not write a lot, does not communicate easily, and values of holomorphic functions, a discovery that attends very few meetings. But he invented a new allowed him to obtain a position at Tokyo Univer- way of doing analysis, “Algebraic Analysis”, and sity thanks to the clever patronage of Shokichi created a school, “the Kyoto school”. Iyanaga, an exceptionally open-minded person 2 Born in 1928 , Sato became known in mathe- and a great friend of French culture. Next, Sato matics only in 1959–1960 with his theory of spent two years in the USA, in Princeton, where he hyperfunctions. Indeed, his studies had been unsuccessfully tried to convince André Weil of the seriously disrupted by the war, particularly by relevance of his cohomological approach to the bombing of Tokyo. After his family home analysis.
    [Show full text]
  • Algebraic Analysis of Differential Equations
    T. Aoki· H. Majima- Y. Takei· N. Tose (Eds.) Algebraic Analysis of Differential Equations from Microlocal Analysis to Exponential Asymptotics Festschrift in Honor of Takahiro Kawai ~ Springer Editors Takashi Aoki Department of Mathematics Kinki University Higashi-Osaka 577-8502, Japan e-mail: [email protected] Hideyuki Majima Department of Mathematics Ochanomizu University Tokyo 112-8610, Japan e-mail: [email protected] Yoshitsugu Takei Research Institute for Mathematical Sciences Kyoto University Kyoto 606-8502, Japan e-mail: [email protected] Nobuyuki Tose Faculty of Economics Keio University Yokohama 223-8521, Japan e-mail: [email protected] Library of Congress Control Number: 2007939560 ISBN 978-4-431-73239-6 Springer Tokyo Berlin Heidelberg New York Springer is a part of Springer Science+Business Media springer.com c Springer 2008 This work is subject to copyright. All rights are reserved, whether the whole or a part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Camera-ready copy prepared from the authors’ LATEXfiles. Printed and bound by Shinano Co. Ltd., Japan. SPIN: 12081080 Printed on acid-free paper Dedicated to Professor Takahiro Kawai on the Occasion of His Sixtieth Birthday Preface This is a collection of articles on algebraic analysis of differential equations and related topics.
    [Show full text]
  • An Introduction to Constructive Algebraic Analysis and Its Applications Alban Quadrat
    An introduction to constructive algebraic analysis and its applications Alban Quadrat To cite this version: Alban Quadrat. An introduction to constructive algebraic analysis and its applications. [Research Report] RR-7354, INRIA. 2010, pp.237. inria-00506104 HAL Id: inria-00506104 https://hal.inria.fr/inria-00506104 Submitted on 27 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE Une introduction à l’analyse algébrique constructive et à ses applications Alban Quadrat N° 7354 July 2010 Algorithms, Certification, and Cryptography apport de recherche ISSN 0249-6399 ISRN INRIA/RR--7354--FR+ENG Une introduction à l’analyse algébrique constructive et à ses applications Alban Quadrat ∗ Theme : Algorithms, Certification, and Cryptography Équipe-Projet AT-SOP Rapport de recherche n° 7354 — July 2010 — 237 pages Résumé : Ce texte est une extension des notes de cours que j’ai préparés pour les Journées Nationales de Calcul Formel qui ont eu lieu au CIRM, Luminy (France) du 3 au 7 Mai 2010. Le but principal de ce cours était d’introduire la communauté française du calcul formel à l’analyse algébrique constructive, et particulièrement à la théorie des D-modules algébriques, à ses applications à la théorie mathématique des systèmes et à ses implantations dans des logiciels de calcul formel tels que Maple ou GAP4.
    [Show full text]
  • Holonomic Systems of Linear Differential Equations and Feynman Integrals
    Publ. RIMS, Kyoto Univ. 12 Suppl. (1977), 131-140. Holonomic Systems of Linear Differential Equations and Feynman Integrals by Masaki KASHIWARA* and Takahiro KAWAI** The purpose of this report is to show that the (generalized) Feynman integral should satisfy a holonomic system***' of linear differential equa- tions. We also discuss the analyticity of the defining functiont} of the Feynman amplitude in complex domain as a corollary of this result. Our main result, i.e. the existence of holonomic system, gives an affirma- tive answer to the conjecture of Regge [15], who first understood and emphasized the importance of the role of systems of differential equations in the investigation of Feynman integrals. In his report a homological approach to this problem is suggested. It is very illuminating but seems to be accompanied with many technical difficulties, as Professor Regge himself points out in the report. This important property of the Feynman integral has also been conjectured and proved in simple cases by Sato [16] independently and in a little different context See also Barucchi- Ponzano [1], Kawai-Stapp [11], [12] and references cited there. Note that Kawai-Stapp ([11], [12]) discusses the ^-matrix itself, not the indi- vidual Feynman integral, as Sato [16] originally proposed. We also give the diagramatic description of the characteristic variety of the system involved. It enjoys a nice physical interpretation as is shown by Kashi- Received August 28, 1976. * Mathematical Institute, Nagoya University and Department of Mathematics, Harvard University. Supported by the National Science Foundation. ** Research Institute for Mathematical Sciences, Kyoto University and Department of Mathematics, University of California, Berkeley.
    [Show full text]
  • Nonlinear Generalized Functions: Their Origin, Some Developments and Recent Advances
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Cadernos Espinosanos (E-Journal) S~aoPaulo Journal of Mathematical Sciences 7, 2 (2013), 201{239 Nonlinear Generalized Functions: their origin, some developments and recent advances Jean F. Colombeau Institut Fourier, Universit´ede Grenoble (retired) Abstract. We expose some simple facts at the interplay between math- ematics and the real world, putting in evidence mathematical objects " nonlinear generalized functions" that are needed to model the real world, which appear to have been generally neglected up to now by mathematicians. Then we describe how a "nonlinear theory of gen- eralized functions" was obtained inside the Leopoldo Nachbin group of infinite dimensional holomorphy between 1980 and 1985 **. This new theory permits to multiply arbitrary distributions and contains the above mathematical objects, which shows that the features of this theory are natural and unavoidable for a mathematical description of the real world. Finally we present direct applications of the theory such as existence-uniqueness for systems of PDEs without classical so- lutions and calculations of shock waves for systems in non-divergence form done between 1985 and 1995 ***, for which we give three examples of different nature (elasticity, cosmology, multifluid flows). * work done under support of FAPESP, processo 2011/12532-1, and thanks to the hospitality of the IME-USP. ** various supports from Fapesp, Finep and Cnpq between 1978 and 1984. *** support of "Direction des Recherches, Etudes´ et Techniques", Minist`ere de la D´efense,France, between 1985 and 1995. [email protected] 1. Mathematics and the real world.
    [Show full text]
  • Elements of Computer-Algebraic Analysis 2 G
    Operator algebras, partial classification Operator algebras, partial classification More general framework: G-algebras More general framework: G-algebras Recommended literature (textbooks) 1 J. C. McConnell, J. C. Robson, ”Noncommutative Noetherian Rings”, Graduate Studies in Mathematics, 30, AMS (2001) Elements of Computer-Algebraic Analysis 2 G. R. Krause and T. H. Lenagan, ”Growth of Algebras and Gelfand-Kirillov Dimension”, Graduate Studies in Mathematics, 22, AMS (2000) Viktor Levandovskyy 3 S. Saito, B. Sturmfels and N. Takayama, “Gr¨obner Lehrstuhl D f¨urMathematik, RWTH Aachen, Germany Deformations of Hypergeometric Differential Equations”, Springer, 2000 4 J. Bueso, J. G´omez–Torrecillas and A. Verschoren, 22.07. Tutorial at ISSAC 2012, Grenoble, France ”Algorithmic methods in non-commutative algebra. Applications to quantum groups”, Kluwer , 2003 5 H. Kredel, ”Solvable polynomial rings”, Shaker Verlag, 1993 6 H. Li, ”Noncommutative Gr¨obnerbases and filtered-graded transfer”, Springer, 2002 VL Elements of CAAN VL Elements of CAAN Operator algebras, partial classification Operator algebras, partial classification More general framework: G-algebras More general framework: G-algebras Recommended literature (textbooks and PhD theses) Software D-modules and algebraic analysis: 1 V. Ufnarovski, ”Combinatorial and Asymptotic Methods of Algebra”, Springer, Encyclopedia of Mathematical Sciences 57 kan/sm1 by N. Takayama et al. (1995) D-modules package in Macaulay2 by A. Leykin and H. Tsai 2 F. Chyzak, ”Fonctions holonomes en calcul formel”, Risa/Asir by M. Noro et al. PhD. Thesis, INRIA, 1998 OreModules package suite for Maple by D. Robertz, 3 V. Levandovskyy, ”Non-commutative Computer Algebra for A. Quadrat et al. polynomial algebras: Gr¨obner bases, applications and Singular:Plural with a D-module suite; by V.
    [Show full text]
  • Nonlinear Generalized Functions: Their Origin, Some Developments and Recent Advances
    Nonlinear Generalized Functions: their origin, some developments and recent advances J.F. Colombeau*, Institut Fourier, Universit´ede Grenoble (retired). Abstract We expose some simple facts at the interplay between mathemat- ics and the real world, putting in evidence mathematical objects " nonlinear generalized functions" that are needed to model the real world, which appear to have been generally neglected up to now by mathematicians. Then we describe how a "nonlinear theory of gen- eralized functions" was obtained inside the Leopoldo Nachbin group of infinite dimensional holomorphy between 1980 and 1985 **. This new theory permits to multiply arbitrary distributions and contains the above mathematical objects, which shows that the features of this theory are natural and unavoidable for a mathematical description of the real world. Finally we present direct applications of the theory such as existence-uniqueness for systems of PDEs without classical so- lutions and calculations of shock waves for systems in non-divergence form done between 1985 and 1995 ***, for which we give three exam- ples of different nature (elasticity, cosmology, multifluid flows). * work done under support of FAPESP, processo 2011/12532-1, and thanks to the hospitality of the IME-USP. ** various supports from Fapesp, Finep and Cnpq between 1978 and 1984. *** support of "Direction des Recherches, Etudes´ et Techniques", Minist`ere de la D´efense,France, between 1985 and 1995. arXiv:1401.4755v1 [math.FA] 19 Jan 2014 [email protected] 1. Mathematics and the real world. Let H be the Heaviside function. It is a function equal to 0 if x < 0, to 1 if x > 0 and not defined if x = 0.
    [Show full text]
  • Kashiwara's Masters Thesis
    MÉMOIRES DE LA S. M. F. MASAKI KASHIWARA Algebraic study of systems of partial differential equations. (Master’s thesis, Tokyo University, December 1970. Translated by Andrea D’Agnolo and Pierre Schneiders. With a foreword by Pierre Schapira) Mémoires de la S. M. F. 2e série, tome 63 (1995), p. I-XIV+1-72. <http://www.numdam.org/item?id=MSMF_1995_2_63__R1_0> © Mémoires de la S. M. F., 1995, tous droits réservés. L’accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html), implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute uti- lisation commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Societe Mathematique de France Memoire 63 Supplement au Bulletin de la S.M.F. Tome 123, 1995, fascicule 4 Algebraic Study of Systems of Partial Differential Equations (Master's Thesis, Tokyo University, December 1970) Masaki KASHIWARA Translated by Andrea D'AGNOLO and Jean-Pierre SCHNEIDERS Abstract - This Memoire is a translation of M. Kashiwara's thesis. In this pio- neering work, the author initiates the study of systems of linear partial differen- tial equations with analytic coefficients from the point of view of modules over the ring V of differential operators. Following some preliminaries on good filtrations and non-commutative localization, the author introduces the notion of character- istic variety and of multiplicity of a P-module.
    [Show full text]