The Basics About Tornadoes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wind Speed-Damage Correlation in Hurricane Katrina
JP 1.36 WIND SPEED-DAMAGE CORRELATION IN HURRICANE KATRINA Timothy P. Marshall* Haag Engineering Co. Dallas, Texas 1. INTRODUCTION According to Knabb et al. (2006), Hurricane Katrina Mehta et al. (1983) and Kareem (1984) utilized the was the costliest hurricane disaster in the United States to concept of wind speed-damage correlation after date. The hurricane caused widespread devastation from Hurricanes Frederic and Alicia, respectively. In essence, Florida to Louisiana to Mississippi making a total of three each building acts like an anemometer that records the landfalls before dissipating over the Ohio River Valley. wind speed. A range of failure wind speeds can be The storm damaged or destroyed many properties, determined by analyzing building damage whereas especially near the coasts. undamaged buildings can provide upper bounds to the Since the hurricane, various agencies have conducted wind speeds. In 2006, WSEC developed a wind speed- building damage assessments to estimate the wind fields damage scale entitled the EF-scale, named after the late that occurred during the storm. The National Oceanic Dr. Ted Fujita. The author served on this committee. and Atmospheric Administration (NOAA, 2005a) Wind speed-damage correlation is useful especially conducted aerial and ground surveys and published a when few ground-based wind speed measurements are wind speed map. Likewise, the Federal Emergency available. Such was the case in Hurricane Katrina when Management Agency (FEMA, 2006) conducted a similar most of the automated stations failed before the eye study and produced another wind speed map. Both reached the coast. However, mobile towers were studies used a combination of wind speed-damage deployed by Texas Tech University (TTU) at Slidell, LA correlation, actual wind measurements, as well as and Bay St. -
Rotating Storms: Supercells, Tornadoes, and Tropical Storms
RotatingRotating Storms:Storms: SupercellsSupercells,, Tornadoes,Tornadoes, andand TropicalTropical StormsStorms AT 351 Lab 12 April 14, 2008 SupercellsSupercells ! Characterized by rotating updrafts (called a mesocyclone) ! Differ from multicell cluster because smaller updrafts merge into a main rotated updraft rather than developing separate and competing cells ! Can persist for 12 hours and travel hundreds of miles ! Forms in environments of strong winds aloft ! Winds veer with height from the surface ! Can be classified as either High Precipitation (HP) or Low Precipitation (LP) SupercellSupercell HPHP SupercellsSupercells •Dark rain and hail core •Prolific producers of lightning and flash floods LPLP SupercellsSupercells ! Typically associated with a dry line ! Typically small and lacking in rainfall TornadoesTornadoes ! Formation ! Life Cycle ! Definition ! Types ! Damage ! EF-scale FormationFormation ! We know relatively little about the formation of tornadoes, known as tornadogenesis ! However, we do know the basic steps along the way ! It is the details we are missing, but they are very crucial details VorticityVorticity ! Vorticity is the name we give to a natural spin in the air ! Caused mainly by wind shear ! Just like a pinwheel Non-SupercellNon-Supercell TornadoTornado FormationFormation ! Vertical wind shear crucial VorticityVorticity TiltingTilting ! After horizontal rotation is established, the storm’s updraft works to tilt it upright ! Now the storm has a vertically rotating component SuctionSuction VorticesVortices -
Causes and Behavior of a Tornadic Fire-Whirlwind
61 §OUTHWJE§T FOJRJE§T & JRANGJE JEXlPJEJREMlE '"'"T § TAT1,o~ 8 e r k e I e y , C a I i f o '{"1'~qiNNT':l E_ ;:;;~"~~~1 ,;i,.,. ..t"; .... ~~ :;~ ·-:-; , r~-.fi... .liCo)iw:;-;sl- Central Reference File II ....·~ 0 ........................................(). 7 ;s_ .·············· ··········· Causes and Behavior of a Tornadic Fire-Whirlwind ARTHUR R.PIRSKO, LEO M.SERGIUS, AND CARL W.HICKERSON ABSTRACT: A destructive whirlwind of tor Normally an early March nadic force was formed in a 600-acre brush fire burning on the lee side o f a ridge brush fire would not be much near Santa Barbara on March 7, 1964. The of a problem for experienced fire whirlwind, formed in a post-frontal unstable air mass, cut a mile long path, firefighters in the Santa Bar- injured 4 people, destroyed 2 houses, a barn, · bara area of the Los Padres and 4 automobiles, and wrecked a 100-tree avocado orchard. National Forest in southern California. But the Polo fire of March 7, 1964, spread several times faster than expected and culminated in a fire -whirl wind of tornadic violence (fig. 1). It represents a classic case of such fire behavior and was unusually well documented by surface and upper air observations. This fire damaged 600 acres of prime watershed land, and the fire -induced tornado injured 4 persons; destroyed 2 homes, a barn, and 3 automobiles; and toppled almost 100 avocado trees. BURNING CONDITIONS FUELS The fire area was predominantly 50-year old ceanothus (Cea nothus sp.) that stood 10 to 15 feet high (fig. 2). Minor amounts of California sagebrush (Artemisia californica) and scrub oak (Quer cus dumosa) were intermixed with the ceanothus. -
A Climatology and Comparison of Parameters for Significant Tornado
106 WEATHER AND FORECASTING VOLUME 27 A Climatology and Comparison of Parameters for Significant Tornado Events in the United States JEREMY S. GRAMS AND RICHARD L. THOMPSON NOAA/NWS/Storm Prediction Center, Norman, Oklahoma DARREN V. SNIVELY Department of Geography, Ohio University, Athens, Ohio JAYSON A. PRENTICE Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa GINA M. HODGES AND LARISSA J. REAMES School of Meteorology, University of Oklahoma, Norman, Oklahoma (Manuscript received 18 January 2011, in final form 30 August 2011) ABSTRACT A sample of 448 significant tornado events was collected, representing a population of 1072 individual tornadoes across the contiguous United States from 2000 to 2008. Classification of convective mode was assessed from radar mosaics for each event with the majority classified as discrete cells compared to quasi- linear convective systems and clusters. These events were further stratified by season and region and com- pared with a null-tornado database of 911 significant hail and wind events that occurred without nearby tornadoes. These comparisons involved 1) environmental variables that have been used through the past 25– 50 yr as part of the approach to tornado forecasting, 2) recent sounding-based parameter evaluations, and 3) convective mode. The results show that composite and kinematic parameters (whether at standard pressure levels or sounding derived), along with convective mode, provide greater discrimination than thermodynamic parameters between significant tornado versus either significant hail or wind events that occurred in the absence of nearby tornadoes. 1. Introduction severe thunderstorms and tornadoes (e.g., Bluestein 1999; Davies-Jones et al. 2001; Wilhelmson and Wicker Severe weather forecasting has evolved considerably 2001). -
Ttu Fujita 000088.Pdf (5.624Mb)
An Interpretation of the Probable Cause of Chronic Intolerable Pain at the Base of my Feet Special Report Requested by Dr. Robert F. Abbey, Jr. Associate Director for Integration Ocean, Atmosphere, and Space S&T Department Office of Naval Research and Supported by ONR Grant N00014-91-J1136 and University of Chicago Account 6-31562 June 1997 Delayed Delivery Tetsuya Theodore Fujita, Director Wind Research Laboratory Department of Geophysical Sciences The University of Chicago 5734 S. Ellis Avenue Chicago, Illinois 60637 U. S.A. 1 Preface I have been feeling extremely sorry to the sponsors of my Wind Research Laboratory and to Dean Oxtoby of The Division of Physical Sciences for not achieving my promised research, as originally planned. As you know, I began working on the research being encouraged by the 17 January 1996 letter stating, in effect, that my blood sugar control is wonderful and my diabetes will not influence my health or longevity. The letter was used for my grant negotiation, in support of my health. Unexpectedly and coincidentally, seven months thereafter, on 17 August 1996, I began suffering from the chronic severe pain at the base of my feet, resulting in ambulatory difficulty. Furthermore, neither the cause of pain nor treatment method has been established. Now the intolerable pain is accompanied by my cold feet, feeling like cold blooded Homosapiens. I am, hereby submitting you "An Interpretation of the Probable Cause of the Pain" written to the best of my meteorology-oriented analyses, which could be different from the medical analyses by each doctor. 3 REFERENCES dd .... -
Twisters in Two Cities: Stuctural Ritualization
TWISTERS IN TWO CITIES: STUCTURAL RITUALIZATION THEORY AND DISASTERS By KEVIN M. JOHNSON Bachelor of Arts in Psychology Northeastern State University Tahlequah, Oklahoma 2011 Master of Science in Sociology Oklahoma State University Stillwater, Oklahoma 2013 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 2019 TWISTERS IN TWO CITIES: STRUCTURAL RITUALIZATION THEORY AND DISASTERS Dissertation Approved: Dr. Duane A. Gill Dissertation Adviser Dr. J. David Knottnerus Dr. Monica Whitham Dr. Alex Greer ii ACKNOWLEDGEMENTS I would first like to thank my committee members – Dr. Duane Gill, Dr. J. David Knottnerus, Dr. Monica Whitham, and Dr. Alex Greer – for their insight and support throughout the writing of this dissertation. I am particularly grateful for Dr. Gill and Dr. Knottnerus, who have invested tremendous time and energy in mentoring and helping me develop as a sociologist and a thinker. I have had the privilege of working with some of my academic heroes on this project, and feel very fortunate to be able to make that claim. I would also like to thank my fellow graduate colleagues, Dr. Dakota Raynes, Christine Thomas, and many others, who were always willing to discuss various issues related to this research and countless other topics when needed. Your contributions to this work extend beyond the words on the page – thank you! Finally, I would like to acknowledge my family for their unwavering support and confidence in me throughout this process. Kasey, Gabriel, Ewok, and Leia: you have been my foundation, particularly in the toughest times, and I hope you all feel the joy of this accomplishment because it could not have happened without you. -
Tornado Preparedness Checklist
Tornado Preparedness Checklist A tornado is one of nature’s most destructive storms. Unlike a hurricane or tropical storm, a tornado can develop with little warning, sometimes within minutes of the start of a thunderstorm, leaving little time to react. "e wind associated with a tornado can exceed 300 miles per hour, which can cause catastrophic damage. Every area in the United States has the potential of being impacted by a tornado. Tornadoes peak in the southern states from March to May, and from late spring to early summer in the northern states. "e importance of being prepared for a tornado cannot be overstated. "e following checklist can help you to prepare your business for the e#ects of a tornado. 9 BEFORE THE TORNADO Have a plan to provide emergency noti$cations (warning system) to all employees, clients, visitors and customers in the event of a tornado. Assign the responsibility of monitoring external weather conditions to several employees. Be sure to have adequate coverage for all hours of operation, including accommodations for when these individuals will be out of the o%ce. Determine multiple reliable sources (weather websites, weather blogs, etc.) and tools to monitor real-time weather conditions. Locate multiple locations that can be used for shelter by employees during a tornado. Typically, an interior room with concrete or masonry walls is the safest. Most local $re departments will assist companies in the identi$cation of suitable tornado shelters. Post tornado shelter and evacuation maps in common areas throughout your facility. Identify a separate and unique alarm tone/siren/announcement to notify employees and guests to proceed to the designated tornado shelter. -
Statistical Analysis of Sub-Synoptic Meteorological Patterns
ILLINOIS STATE WATER SURVEY ATMOSPHERIC SCIENCES SECTION at the University of Illinois Urbana, Illinois STATISTICAL ANALYSIS OF SUB-SYNOPTIC METEOROLOGICAL PATTERNS by Pieter J. Feteris Principal Investigator Glenn E. Stout Project Director FINAL REPORT National Science Foundation GA-1321 October 15, 1968 CONTENTS Page Introduction 1 Background 1 Objectives 2 Source of data 4 Data editing 4 Problems encountered 8 Acknowledgments 8 Reports written during period of the grants 8 Results of various phases of the work , . 9 Relationships between stability and vertical velocity 9 Influence of windshear on low and medium level convection .... 21 Relationships between synoptic scale flow characteristics and low level circulation patterns 25 Interpretation of the time dependence of the vertical motion field from nephanalyses 34 Feasibility of displaying synoptic data as the time dependence of space averages and standard deviations 40 Summary and conclusions ..... 44 References 46 Appendix A Lightning and rain in relation to sub-synoptic flow parameters, by John W. Wilson and Pieter J. Feteris . 49 Appendix B Computation of kinematic vertical velocities, by Pieter J. Feteris and John W. Wilson 68 Appendix C Synoptic repunch program, by Parker T. Jones III and Robert C. Swaringen 72 INTRODUCTION Background This paper is the last in a series of research reports covering a three-year period during which the National Science Foundation, under Grants GP-5196 and GA-1321, has supported the research. A complete list of reports appears elsewhere in this paper. The first two Progress Reports have dealt mainly with techniques, data preparation, and selected case studies; in this Final Report are presented the results of the past year's efforts. -
RTAP Fact Sheet
Spring 2009 Kansas RTAP Fact Sheet A Service of The University of Kansas Transportation Center for Rural Transit Providers New Preparedness Guide by Kelly Heavey tied down. On the road, a bus driver should have discussed the weather conditions with a supervisor prior to beginning a shift. Open communication should be maintained, especially if the weather worsens. A bus should not accept riders if there is a tornado warning in effect, said Iowa’s State Transportation Director Terry Voy, cited in a North Carolina School Bus Safety’s Web site resource called Tornado Preparedness. If a tornado touches down en route, Voy says the driver should be aware of any possible shelters on the route, such as buildings, caves or any other strong ansas is smack-dab in the conditions outside. Be aware of the structure to protect people. Do not take middle of tornado alley, due to alerts that may occur around you, such shelter under an overpass. Kthe collision of winds from the as sirens or radio broadcasts. If a shelter cannot be found, the arctic North and from the balmy Gulf In the office, designate a shelter in rider should locate a ditch on the side of Mexico. It is prime ground for which to seek cover. The safest place is of the road and instruct riders to take billowing super-cell thunderstorms, in an interior hallway on the lowest cover in it. The bus should be parked which may produce tornadoes. Many possible level, under a staircase, or in a far away from the people to prevent Kansas residents recognize this and designated shelter area. -
Illinois Tornadoes Prior to 1916
Transactions of the Illinois State Academy of Science (1993), Volume 86, 1 and 2, pp. 1 - 10 Illinois Tornadoes Prior to 1916 Wayne M. Wendland Illinois State Water Survey Champaign IL Herbert Hoffman National Weather Service Romeoville IL ABSTRACT An effort to chronicle Illinois tornadoes occurring prior to 1916 is summarized. From the more than 440 total Illinois tornado occurrences identified in the literature from that period, the list was culled to 325 individual events. Annual and mean monthly frequencies are shown and discussed relative to the modern record. The present tornado data set includes location, time, and to a lesser extent, number injured, number killed and damage for each tornado event. Prominent tornadoes from the record are discussed, as data are available. INTRODUCTION The history of tornadoes in Illinois is rather well known since the mid-1950s (e.g., see Wilson & Changnon, 1971; and Wendland & Guinan, 1988). That record is believed to be essentially complete since the U.S. Weather Bureau inaugurated a concerted effort to record all such events at that time. Earlier,tornado accounts may be suspect since a record of such a small scale event is largely dependent on population density, awareness, and maintenance of a continuous record. Although the U.S. Army Signal Corps and U.S. Weather Bureau accepted tornado information for archival purposes through the years, a complete and continuous record only exists since the mid-1950s. In spite of the incomplete nature of earlier tornado records, useful information of a climatological nature can be gleaned. This paper represents an initial attempt to document the record of Illinois tornadoes prior to 1916. -
Observations and Laboratory Simulations of Tornadoes in Complex Topographical Regions Christopher D
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 Observations and Laboratory Simulations of Tornadoes in Complex Topographical Regions Christopher D. Karstens Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Atmospheric Sciences Commons, and the Meteorology Commons Recommended Citation Karstens, Christopher D., "Observations and Laboratory Simulations of Tornadoes in Complex Topographical Regions" (2012). Graduate Theses and Dissertations. 12778. https://lib.dr.iastate.edu/etd/12778 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Observations and laboratory simulations of tornadoes in complex topographical regions by Christopher Daniel Karstens A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Meteorology Program of Study Committee: William A. Gallus, Jr., Major Professor Partha P. Sarkar Bruce D. Lee Catherine A. Finley Raymond W. Arritt Xiaoqing Wu Iowa State University Ames, Iowa 2012 Copyright © Christopher Daniel Karstens, 2012. All rights reserved. ii TABLE OF CONTENTS LIST OF FIGURES .............................................................................................. -
Workshop on Weather Ready Nation: Science Imperatives for Severe Thunderstorm Research, Held 24-26 April, 2012 in Birmingham AL
Workshop on Weather Ready Nation: Science Imperatives for Severe Thunderstorm Research, Held 24-26 April, 2012 in Birmingham AL Sponsored by National Oceanic and Atmospheric Administration and National Science Foundation Final Report Edited by Michael K. Lindell, Texas A&M University and Harold Brooks, National Severe Storms Laboratory Hazard Reduction & Recovery Center Texas A&M University College station TX 77843-3137 17 September 2012 Executive Summary The National Oceanic and Atmospheric Administration (NOAA) and the National Science Foundation (NSF) workshop sponsored a workshop entitled Weather Ready Nation: Science Imperatives for Severe Thunderstorm Research on 24-26 April, 2012 in Birmingham Alabama. Prior to the workshop, teams of authors completed eight white papers, which were read by workshop participants before arriving at the conference venue. The workshop’s 63 participants—representing the disciplines of civil engineering, communication, economics, emergency management, geography, meteorology, psychology, public health, public policy, sociology, and urban planning—participated in three sets of discussion groups. In the first set of discussion groups, participants were assigned to groups by discipline and asked to identify any research issues related to tornado hazard response that had been overlooked by the 2011 Norman Workshop report (UCAR, 2012) or the white papers (see Appendix A). In the second set of discussion groups, participants were distributed among interdisciplinary groups and asked to revisit the questions addressed in the disciplinary groups, identify any interdependencies across disciplines, and recommend criteria for evaluating prospective projects. In the third set of discussion groups, participants returned to their initial disciplinary groups and were asked to identify and describe at least three specific research projects within the research areas defined by their white paper(s) and to assess these research projects in terms of the evaluation criteria identified in the interdisciplinary groups.