Novel Regulatory Mechanisms of D1 Dopamine Receptor Maturation and Internalization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hecate-Cgb Conjugate and Gonadotropin Suppression Shows Two Distinct Mechanisms of Action in the Treatment of Adrenocortical
Endocrine-Related Cancer (2009) 16 549–564 Hecate-CGb conjugate and gonadotropin suppression shows two distinct mechanisms of action in the treatment of adrenocortical tumors in transgenic mice expressing Simian Virus 40 T antigen under inhibin-a promoter Susanna Vuorenoja1,2, Bidut Prava Mohanty1, Johanna Arola3, Ilpo Huhtaniemi1,4, Jorma Toppari1,2 and Nafis A Rahman1 Departments of 1Physiology and 2Pediatrics, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland 3Department of Pathology, University of Helsinki and HUSLAB, Helsinki, Finland 4Institute of Reproductive and Developmental Biology, Imperial College, London, UK (Correspondence should be addressed to N A Rahman; Email: nafis.rahman@utu.fi) Abstract Lytic peptide Hecate (23-amino acid (AA)) fused with a 15-AA fragment of human chorionic gonadotropin-b (CG-b), Hecate-CGb conjugate (H-CGb-c) selectively binds to and destroys tumor cells expressing LH/chorionic gonadotropin receptor (Lhcgr). Transgenic mice (6.5 month old) expressing SV40 T-antigen under the inhibin-a promoter (inha/Tag) presenting with Lhcgr expressing adrenal tumors were treated either with H-CGb-c, GnRH antagonist (GnRH-a), estradiol (E2; only females) or their combinations for 1 month. We expected that GnRH-a or E2 in combination with H-CGb-c could improve the treatment efficacy especially in females by decreasing circulating LH and eliminating the potential competition of serum LH with the H-CGb-c. GnRH-a and H-CGb-c treatments were successful in males (adrenal weights 14G2.8 mg and 60G26 vs 237G59 mg in controls; P!0.05). Histopathologically, GnRH-a apparently destroyed the adrenal parenchyma leaving only the fibrotic capsule with few necrotic foci. -
Emerging Evidence for a Central Epinephrine-Innervated A1- Adrenergic System That Regulates Behavioral Activation and Is Impaired in Depression
Neuropsychopharmacology (2003) 28, 1387–1399 & 2003 Nature Publishing Group All rights reserved 0893-133X/03 $25.00 www.neuropsychopharmacology.org Perspective Emerging Evidence for a Central Epinephrine-Innervated a1- Adrenergic System that Regulates Behavioral Activation and is Impaired in Depression ,1 1 1 1 1 Eric A Stone* , Yan Lin , Helen Rosengarten , H Kenneth Kramer and David Quartermain 1Departments of Psychiatry and Neurology, New York University School of Medicine, New York, NY, USA Currently, most basic and clinical research on depression is focused on either central serotonergic, noradrenergic, or dopaminergic neurotransmission as affected by various etiological and predisposing factors. Recent evidence suggests that there is another system that consists of a subset of brain a1B-adrenoceptors innervated primarily by brain epinephrine (EPI) that potentially modulates the above three monoamine systems in parallel and plays a critical role in depression. The present review covers the evidence for this system and includes findings that brain a -adrenoceptors are instrumental in behavioral activation, are located near the major monoamine cell groups 1 or target areas, receive EPI as their neurotransmitter, are impaired or inhibited in depressed patients or after stress in animal models, and a are restored by a number of antidepressants. This ‘EPI- 1 system’ may therefore represent a new target system for this disorder. Neuropsychopharmacology (2003) 28, 1387–1399, advance online publication, 18 June 2003; doi:10.1038/sj.npp.1300222 Keywords: a1-adrenoceptors; epinephrine; motor activity; depression; inactivity INTRODUCTION monoaminergic systems. This new system appears to be impaired during stress and depression and thus may Depressive illness is currently believed to result from represent a new target for this disorder. -
Activation of the Dopaminergic Pathway from VTA to the Medial
RESEARCH ARTICLE Activation of the dopaminergic pathway from VTA to the medial olfactory tubercle generates odor-preference and reward Zhijian Zhang1,2†, Qing Liu1†, Pengjie Wen1, Jiaozhen Zhang1, Xiaoping Rao1, Ziming Zhou3, Hongruo Zhang3, Xiaobin He1, Juan Li1, Zheng Zhou4, Xiaoran Xu3, Xueyi Zhang3, Rui Luo3, Guanghui Lv2, Haohong Li2, Pei Cao1, Liping Wang4, Fuqiang Xu1,2* 1Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China; 2Wuhan National Laboratory for Optoelectronics, Wuhan, China; 3College of Life Sciences, Wuhan University, Wuhan, China; 4Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China Abstract Odor-preferences are usually influenced by life experiences. However, the neural circuit mechanisms remain unclear. The medial olfactory tubercle (mOT) is involved in both reward and olfaction, whereas the ventral tegmental area (VTA) dopaminergic (DAergic) neurons are considered to be engaged in reward and motivation. Here, we found that the VTA (DAergic)-mOT pathway could be activated by different types of naturalistic rewards as well as odors in DAT-cre mice. Optogenetic activation of the VTA-mOT DAergic fibers was able to elicit preferences for space, location and neutral odor, while pharmacological blockade of the dopamine receptors in the *For correspondence: mOT fully prevented the odor-preference formation. Furthermore, inactivation of the mOT- [email protected] projecting VTA DAergic neurons eliminated the previously formed odor-preference and strongly †These authors contributed affected the Go-no go learning efficiency. -
The Roles Played by Highly Truncated Splice Variants of G Protein-Coupled Receptors Helen Wise
Wise Journal of Molecular Signaling 2012, 7:13 http://www.jmolecularsignaling.com/content/7/1/13 REVIEW Open Access The roles played by highly truncated splice variants of G protein-coupled receptors Helen Wise Abstract Alternative splicing of G protein-coupled receptor (GPCR) genes greatly increases the total number of receptor isoforms which may be expressed in a cell-dependent and time-dependent manner. This increased diversity of cell signaling options caused by the generation of splice variants is further enhanced by receptor dimerization. When alternative splicing generates highly truncated GPCRs with less than seven transmembrane (TM) domains, the predominant effect in vitro is that of a dominant-negative mutation associated with the retention of the wild-type receptor in the endoplasmic reticulum (ER). For constitutively active (agonist-independent) GPCRs, their attenuated expression on the cell surface, and consequent decreased basal activity due to the dominant-negative effect of truncated splice variants, has pathological consequences. Truncated splice variants may conversely offer protection from disease when expression of co-receptors for binding of infectious agents to cells is attenuated due to ER retention of the wild-type co-receptor. In this review, we will see that GPCRs retained in the ER can still be functionally active but also that highly truncated GPCRs may also be functionally active. Although rare, some truncated splice variants still bind ligand and activate cell signaling responses. More importantly, by forming heterodimers with full-length GPCRs, some truncated splice variants also provide opportunities to generate receptor complexes with unique pharmacological properties. So, instead of assuming that highly truncated GPCRs are associated with faulty transcription processes, it is time to reassess their potential benefit to the host organism. -
Accelerated Resensitization of the D 1 Dopamine Receptor-Mediated
The Journal of Neuroscience, October 1994, 74(10): 6260-6266 Accelerated Resensitization of the D 1 Dopamine Receptor-mediated Response in Cultured Cortical and Striatal Neurons from the Rat: Respective Role of CY1 -Adrenergic and /U-methybaspartate Receptors Fabrice Trovero, Philippe Marin, Jean-PO1 Tassin, JoQl Premont, and Jacques Glowinski INSERM U 114, Chaire de Neuropharmacologie, College de France, 75231 Paris Cedex, France As previously shown in vivo, noradrenergic and glutama- cortex. In the rat, bilateral electrolytic lesions of the mesence- tergic neurons can regulate the denervation supersensitivity phalic ventral tegmental area induce a complex and permanent of Dl dopaminergic (DA) receptors in the rat prefrontal cor- behavioral syndrome characterized by a locomotor hyperactiv- tex and striatum respectively. Therefore, the effects of meth- ity and the incapacity of the animal to focalize its attention (Le oxamine (an al-adrenergic agonist) and glutamate on the Moal et al., 1969). Some of the behavioral deficits observed in resensitization of Dl DA receptors were investigated in cul- the lesioned animals, particularly the locomotor hyperactivity, tured cortical and striatal neurons from the embryonic rat. have been attributed for a large part to the selective destruction In the presence of sulpiride and propranolol, DA stimulated of the cortical dopaminergic (DA) innervation (Tassin et al., the Dl DA receptor-mediated conversion of 3H-adenine into 1978). This locomotor hyperactivity was markedly reduced in 3H-cAMP in both intact cortical and striatal cells and these rats with 6-hydroxydopamine (6-OHDA) lesions,which destroy responses were markedly desensitized in cells preexposed not only the ascendingDA neurons but also the ascendingnor- for 15 min to DA (50 AM). -
Long-Range Gabaergic Projections Contribute to Cortical Feedback
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.19.423599; this version posted December 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Long-range GABAergic projections contribute to cortical feedback control of sensory processing. Camille Mazo1,2, *, Soham Saha1, Antoine Nissant1, Enzo Peroni1, Pierre-Marie Lledo1, # and Gabriel Lepousez1,#,* 1 Laboratory for Perception and Memory, Institut Pasteur, F-75015 Paris, France; Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR-3571), F-75015 Paris, France. * Corresponding authors to whom correspondence should be addressed: Laboratory for Perception and Memory, Institut Pasteur, 25 rue du Dr. Roux, 75 724 Paris Cedex 15, France. Tel: (33) 1 45 68 95 23 E-mail: [email protected] E-mail: [email protected] # Jointly supervised this work 2 now at Champalimaud Research, Champalimaud Center for the Unknown, Lisbon, Portugal Keywords: Sensory circuits, Top-down, Inhibitory, Centrifugal, Olfactory system, Barrel cortex 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.19.423599; this version posted December 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract In sensory systems, cortical areas send excitatory projections back to subcortical areas to dynamically adjust sensory processing. -
Determination of Biological Activity of Gonadotropins Hcg and FSH By
www.nature.com/scientificreports OPEN Determination of biological activity of gonadotropins hCG and FSH by Förster resonance energy transfer Received: 14 October 2016 Accepted: 06 January 2017 based biosensors Published: 09 February 2017 Olga Mazina1,2, Anni Allikalt1, Juha S. Tapanainen3, Andres Salumets2,3,4,5 & Ago Rinken1 Determination of biological activity of gonadotropin hormones is essential in reproductive medicine and pharmaceutical manufacturing of the hormonal preparations. The aim of the study was to adopt a G-protein coupled receptor (GPCR)-mediated signal transduction pathway based assay for quantification of biological activity of gonadotropins. We focussed on studying human chorionic gonadotropin (hCG) and follicle-stimulating hormone (FSH), as these hormones are widely used in clinical practice. Receptor-specific changes in cellular cyclic adenosine monophosphate (cAMP, second messenger in GPCR signalling) were monitored by a Förster resonance energy transfer (FRET) biosensor protein TEpacVV in living cells upon activation of the relevant gonadotropin receptor. The BacMam gene delivery system was used for biosensor protein expression in target cells. In the developed assay only biologically active hormones initiated GPCR-mediated cellular signalling. High assay sensitivities were achieved for detection of hCG (limit of detection, LOD: 5 pM) and FSH (LOD: 100 pM). Even the small- scale conformational changes caused by thermal inactivation and reducing the biological activity of the hormones were registered. In conclusion, the proposed assay is suitable for quantification of biological activity of gonadotropins and is a good alternative to antibody- and animal-testing-based assays used in pharmaceutical industry and clinical research. Gonadotropin medications are widely used in controlled ovarian stimulation and induction of ovulation as key components of infertility treatment. -
Luteinizing Hormonereleasing Hormone (LHRH) Receptor Agonists Vs Antagonists
Review Luteinizing hormone-releasing hormone (LHRH) receptor agonists vs antagonists: a matter of the receptors? Yuri Tolkach, Steven Joniau* and Hendrik Van Poppel* Urology Clinic, Military Medical Academy, Saint-Petersburg, Russia, and *Department of Urology, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium Luteinizing hormone-releasing hormone (LHRH) agonists and antagonists are commonly used androgen deprivation therapies prescribed for patients with advanced prostate cancer (PCa). Both types of agent target the receptor for LHRH but differ in their mode of action: agonists, via pituitary LRHR receptors (LHRH-Rs), cause an initial surge in luteinizing hormone (LH), follicle-stimulating hormone (FSH) and, subsequently, testosterone. Continued overstimulation of LHRH-R down-regulates the production of LH and leads to castrate levels of testosterone. LHRH antagonists, however, block LHRH-R signalling causing a rapid and sustained inhibition of testosterone, LH and FSH. The discovery and validation of the presence of functional LHRH-R in the prostate has led to much work investigating the role of LHRH signalling in the normal prostate as well as in the treatment of PCa with LHRH agonists and antagonists. In this review we discuss the expression and function of LHRH-R, as well as LH/human chorionic gonadotropin receptors and FSH receptors and relate this to the differential clinical responses to agonists and antagonists used in the hormonal manipulation of PCa. Keywords androgen deprivation therapy, LHRH agonist, GnRH antagonist, LHRH receptor, prostate cancer Introduction the last 30 years. LHRH agonists, by continually stimulating The most common type of treatment prescribed for the LHRH-R, down-regulate receptor expression in the patients with advanced prostate cancer (PCa) is LHRH pituitary leading to decreased levels of LH, and to a lesser agonists and these are increasingly being used in patients extent, FSH. -
Estrogen Receptors Α, Β and GPER in the CNS and Trigeminal System - Molecular and Functional Aspects Karin Warfvinge1,2, Diana N
Warfvinge et al. The Journal of Headache and Pain (2020) 21:131 The Journal of Headache https://doi.org/10.1186/s10194-020-01197-0 and Pain RESEARCH ARTICLE Open Access Estrogen receptors α, β and GPER in the CNS and trigeminal system - molecular and functional aspects Karin Warfvinge1,2, Diana N. Krause2,3†, Aida Maddahi1†, Jacob C. A. Edvinsson1,4, Lars Edvinsson1,2,5* and Kristian A. Haanes1 Abstract Background: Migraine occurs 2–3 times more often in females than in males and is in many females associated with the onset of menstruation. The steroid hormone, 17β-estradiol (estrogen, E2), exerts its effects by binding and activating several estrogen receptors (ERs). Calcitonin gene-related peptide (CGRP) has a strong position in migraine pathophysiology, and interaction with CGRP has resulted in several successful drugs for acute and prophylactic treatment of migraine, effective in all age groups and in both sexes. Methods: Immunohistochemistry was used for detection and localization of proteins, release of CGRP and PACAP investigated by ELISA and myography/perfusion arteriography was performed on rat and human arterial segments. Results: ERα was found throughout the whole brain, and in several migraine related structures. ERβ was mainly found in the hippocampus and the cerebellum. In trigeminal ganglion (TG), ERα was found in the nuclei of neurons; these neurons expressed CGRP or the CGRP receptor in the cytoplasm. G-protein ER (GPER) was observed in the cell membrane and cytoplasm in most TG neurons. We compared TG from males and females, and females expressed more ER receptors. For neuropeptide release, the only observable difference was a baseline CGRP release being higher in the pro-estrous state as compared to estrous state. -
Thyrotropin-Luteinizing Hormone/Chorionic Gonadotropin
Proc. Natl. Acad. Sci. USA Vol. 88, pp. 902-905, February 1991 Medical Sciences Thyrotropin-luteinizing hormone/chorionic gonadotropin receptor extracellular domain chimeras as probes for thyrotropin receptor function (hormone binding/signal transduction) Yuji NAGAYAMA, HARRY L. WADSWORTH, GREGORIO D. CHAZENBALK, DIEGO Russo, Pui SETO, AND BASIL RAPOPORT Thyroid Molecular Biology Unit, Veterans Administration Medical Center, San Francisco, CA 94121; and the University of California, San Francisco, CA 94143-0534 Communicated by William J. Rutter, November 2, 1990 ABSTRACT To define the sites in the extracellular domain site(s) involved in ligand binding or the region(s) important in of the human thyrotropin (TSH) receptor that are involved in signal transduction. TSH binding and signal transduction we constructed chimeric Recent studies indicate that ligand- and antibody-binding thyrotropin-luteinizing hormone/chorionic gonadotropin sites in folded globular proteins are conformational and may (TSH-LH/CG) receptors. The extracellular domain of the consist of discontinuous regions of the linear amino acid human TSH receptor was divided into five regions that were sequence (13-17). In studies defining ligand-binding sites in replaced, either singly or in various combinations, with ho- native proteins it is therefore important to conserve the mologous regions of the rat LH/CG receptor. The chimeric three-dimensional structure of the protein. The considerable receptors were stably expressed in Chinese hamster ovary cells. (30-50%) homology in the extracellular domains of the gly- The data obtained suggest that the carboxyl region of the coprotein hormone receptors together with the presence of 10 extracellular domain (amino acid residues 261418) and par- conserved extracellular cysteine residues [some ofwhich are ticularly the middle region (residues 171-260) play a role in thought to form disulfide bonds (12)] suggest a similar three- signal transduction. -
Investigations Into Neuronal Cilia Utilizing Mouse Models
INVESTIGATIONS INTO NEURONAL CILIA UTILIZING MOUSE MODELS OF BARDET-BIEDL SYNDROME Dissertation Presented In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Nicolas F. Berbari, BS ***** The Ohio State University 2008 Dissertation Committee: Approved by: Kirk Mykytyn, PhD, Adviser Virginia Sanders, PhD __________________________________________ Georgia Bishop, PhD Adviser Michael Robinson, PhD Integrated Biomedical Sciences Graduate Program ABSTRACT Cilia are hair-like microtubule based cellular appendages that extend 5-30 microns from the surface of most vertebrate cells. Since their initial discovery over a hundred years ago, cilia have been of interest to microbiologists and others studying the dynamics and physiological relevance of their motility. The more recent realization that immotile or primary cilia dysfunction is the basis of several human genetic disorders and diseases has brought the efforts of the biomedical research establishment to bear on this long overlooked and underappreciated organelle. Several human genetic disorders caused by cilia defects have been identified, and include Bardet-Biedl syndrome, Joubert syndrome, Meckel-Gruber syndrome, Alstrom syndrome and orofaciodigital syndrome. One theme of these disorders is their multitude of clinical features such as blindness, cystic kidneys, cognitive deficits and obesity. The fact that many of these cilia disorders present with several features may be due to the ubiquitous nature of the primary cilium and their unrecognized roles in most tissues and cell types. The lack of known function for most primary cilia is no more apparent than in the central nervous system. While it has been known for some time that neurons throughout the brain have primary cilia, their functions remain unknown. -
Does the Kappa Opioid Receptor System Contribute to Pain Aversion?
UC Irvine UC Irvine Previously Published Works Title Does the kappa opioid receptor system contribute to pain aversion? Permalink https://escholarship.org/uc/item/8gx6n97q Authors Cahill, Catherine M Taylor, Anna MW Cook, Christopher et al. Publication Date 2014 DOI 10.3389/fphar.2014.00253 Peer reviewed eScholarship.org Powered by the California Digital Library University of California REVIEW ARTICLE published: 17 November 2014 doi: 10.3389/fphar.2014.00253 Does the kappa opioid receptor system contribute to pain aversion? Catherine M. Cahill 1,2,3 *, Anna M. W. Taylor1,4 , Christopher Cook1,2 , Edmund Ong1,3 , Jose A. Morón5 and Christopher J. Evans 4 1 Department of Anesthesiology and Perioperative Care, University of California Irvine, Irvine, CA, USA 2 Department of Pharmacology, University of California Irvine, Irvine, CA, USA 3 Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada 4 Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA 5 Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA Edited by: The kappa opioid receptor (KOR) and the endogenous peptide-ligand dynorphin have Dominique Massotte, Institut des received significant attention due the involvement in mediating a variety of behavioral Neurosciences Cellulaires et Intégratives, France and neurophysiological responses, including opposing the rewarding properties of drugs of abuse including opioids. Accumulating evidence indicates this system is involved in Reviewed by: Lynn G. Kirby, University of regulating states of motivation and emotion. Acute activation of the KOR produces an Pennsylvania, USA increase in motivational behavior to escape a threat, however, KOR activation associated Clifford John Woolf, Boston Children’s with chronic stress leads to the expression of symptoms indicative of mood disorders.