Novel Regulatory Mechanisms of D1 Dopamine Receptor Maturation and Internalization

Total Page:16

File Type:pdf, Size:1020Kb

Novel Regulatory Mechanisms of D1 Dopamine Receptor Maturation and Internalization Novel Regulatory Mechanisms of D1 Dopamine Receptor Maturation and Internalization by Michael Ming Chuen Kong A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Pharmacology University of Toronto © Copyright by Michael Ming Chuen Kong (2008) Novel Regulatory Mechanisms of D1 Dopamine Receptor Maturation and Internalization Michael Ming Chuen Kong Degree of Doctor of Philosophy, 2008 Department of Pharmacology University of Toronto ABSTRACT Dopamine is the most abundant catecholamine neurotransmitter in the mammalian brain and controls various physiological processes. The D1 dopamine receptor (D1DR) is the predominant dopamine receptor in the brain and traditionally couples to stimulatory G proteins, such as Gs, to activate adenylyl cyclase and generate cAMP. Although the trafficking itinerary of ER/Golgi maturation, agonist-induced internalization, and recycling/degradation are features common to many G protein-coupled receptors (GPCRs), the molecular regulation of these individual processes for the D1DR is not fully elucidated. Many GPCRs have been shown to form homo-oligomers; the work presented in this thesis explores how multimerization of D1DR has a role in regulating how these receptors are trafficked to the plasma membrane. In addition, the regulation of D1DR internalization is investigated in the context of emerging evidence highlighting the importance of lipid rafts. Using strategically designed point mutations of the D1DR, specific receptor mutants were found to intracellularly sequester the wild-type receptor by oligomerization. This level of scrutiny by the quality control machinery in the cell could be circumvented by treatment with cell permeable dopaminergic agonists, but not antagonists or inverse agonists. This finding suggests that specific conformational requirements must be achieved before full ii maturation and anterograde trafficking of the D1DR can proceed. Furthermore, it was determined that cell surface bound D1DRs could internalize through a novel clathrin independent pathway that required binding to the scaffolding protein, caveolin-1. This interaction with caveolin-1 was identified in whole rat brain and was found to require a putative caveolin binding motif in transmembrane domain 7. Palmitoylation of D1DR was found to regulate the rate of agonist-induced caveolae mediated internalization. Finally, we determined that the integrity of caveolae was important in regulating cAMP signaling through D1DR. These findings provide novel insight into the trafficking requirements of newly synthesized D1DRs as well as alternative mechanisms of regulation of receptors after agonist activation. The oligomerization of GPCRs and the localization of GPCRs in lipid rafts represent two emerging concepts important to many aspects of GPCR function. Future work aimed at integrating these overlapping processes will further our understanding of this important group of cell surface receptors. iii ACKNOWLEDGEMENTS The compilation of work embodied in this thesis could not have been possible without the help of many individuals, all of whom I am indebted to. I’d first like to thank members of the examination committee: Dr. Stephane Angers, Dr. Peter Chidiac, and Dr. Denis Grant, for a very stimulating discussion and for providing unique perspectives on this work. I’d also like to thank Dr. Reinhart Reithmeier and Dr. Bernard Schimmer for all of their guidance and advice throughout my doctoral studies. I would like to thank all members of the lab for their outstanding expertise and for providing a congenial environment to work and learn in. In particular, I’d like to thank Theresa Fan, Ahmed Hasbi, Tuan Nguyen, and George Varghese for their technical skills and for sometimes saving me from the agony of troubleshooting. I’d also like to send a special thanks to Kevin Curley, Samuel Lee, Dennis Lee, Jason Juhasz, Jennifer Ng, Ryan Rajaram, Asim Rashid, Christopher So, and Vaneeta Verma for their banter, advice, and most importantly, their friendship, all of which has made graduate school go by so quickly. To my supervisors, Dr. Susan George and Dr. Brian O’Dowd, I am grateful for their outstanding mentorship and for giving me the independence to develop as a scientist. Your confidence in my abilities is highly valued and very much appreciated. To my parents, Robert and Vivian Kong, who have been so supportive and patient throughout every aspect of my life and for providing an endless source of encouragement and love. This work is dedicated to you. And to my wife and best friend, Siu Lan Lee, for not only her patience and understanding through this endeavour but for always having an open ear and an open heart. iv PREVIOUSLY COPYRIGHTED MATERIAL Some parts of this thesis have been reproduced in whole or in part from the following sources with permission: Gouldson PR, Higgs C, Smith RE, Dean MK, Gkoutos GV, Reynolds CA 2000. Dimerization and domain swapping in G protein-coupled receptors: a computational study. Neuropsychopharmacology, Oct;23(4 Suppl):S60-77. Copyright © by Macmillan Publishers. Bouvier M 2001. Oligomerization of G protein-coupled transmitter receptors. Nature Reviews Neuroscience, Apr; 2(4):274-86. Copyright © by Macmillan Publishers. Pierce KL, Premont RT, Lefkowitz RJ. 2002. Seven-transmembrane receptors. Nature Reviews Molecular Cell Biology, Sept:3(9):639-50. Copyright © by Macmillan Publishers. Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K. 2004. The G protein-coupled receptor rhodopsin in the native membrane. FEBS Letters, Apr 30; 564(3):281-8. Copyright © by Elsevier Limited. Kong MM, So CH, O’Dowd BF, and George SR. The Role of Oligomerization in G Protein-Coupled Receptor Maturation, The G Protein-Coupled Receptors Handbook; Humana Press, 2005. Copyright © by Springer Science and Business Media. Kong MM, O’Dowd BF, and George SR. The Oligomerization of G Protein-Coupled Receptors, The Cell Biology of Addiction; Cold Spring Harbor Press, 2005. Copyright © by Cold Spring Harbor Laboratory Press So CH, Varghese G, Curley KJ, Kong MM, Alijaniaram M, Ji X, Nguyen T, O'Dowd BF, and George SR. 2005. D1 and D2 dopamine receptors form heterooligomers and cointernalize after selective activation of either receptor. Molecular Pharmacology, Sept; 68(3): 568-78. Copyright © 2005 by the American Society for Pharmacology and Experimental Therapeutics. O'Dowd BF, Ji X, Alijaniaram M, Rajaram RD, Kong MM, Rashid A, Nguyen T, and George SR. 2005. Dopamine receptor oligomerization visualized in living cells. Journal of Biological Chemistry, Nov 4; 280 (44): 37225-35. Copyright © 2005 by the American Society for Biochemistry and Molecular Biology. Kong MM, Fan T, Varghese G, O’Dowd BF, and George SR. 2006. Agonist-induced cell surface trafficking of an intracellularly sequestered D1 dopamine receptor homo-oligomer. Molecular Pharmacology, Jul; 70(1): 78-89. Copyright © 2005 by the American Society for Pharmacology and Experimental Therapeutics. Rashid AJ, So CH, Kong MM, Furtak T, Cheng R, O’Dowd BF,and George SR. 2006. A D1-D2 dopamine receptor heterooligomer with unique pharmacology is coupled to rapid activation of Gq/11 in the striatum. Proceedings of the National Academy of Sciences, Jan 9; 104(2):654-9. Copyright © 2007 by the National Academy of Sciences v Parton RG and Simons K. 2007. The multiple faces of caveolae. Nature Reviews Molecular Cell Biology, Mar:8(3):185-94. Copyright © by Macmillan Publishers. Kong MM, Hasbi A, Mattocks M, Fan T, O’Dowd BF, George SR. Regulation of D1 Dopamine Receptor Trafficking and Signaling by Caveolin-1. Molecular Pharmacology in press. Copyright © 2007 by the American Society for Pharmacology and Experimental Therapeutics vi TABLE OF CONTENTS ABSTRACT ii ACKNOWLEDGEMENTS iv PREVIOUSLY COPYRIGHTED MATERIAL v LIST OF REFEREED AND NON-REFEREED PUBLICATIONS 1 LIST OF ABSTRACTS 2 ABBREVIATIONS 4 LIST OF FIGURES 8 LIST OF TABLES 11 1 GENERAL INTRODUCTION 14 1.1 G Protein-Coupled Receptor Overview 14 1.2 Traditional Classification of GPCRs 16 1.3 G protein and Effector Signaling 19 1.4 Biosynthesis of GPCRs 20 1.4.1 Molecular Chaperones and Anterograde Trafficking 21 1.5 Receptor Activation and Desensitization 22 1.6 Internalization of GPCRs 25 1.6.1 Post Endocytic Sorting 26 1.7 Palmitoylation of GPCRs 27 1.8 Dopamine Receptor Subfamily 29 1.8.1 D1 Dopamine Receptor Structure 30 1.8.2 Pharmacology of the D1 Dopamine Receptor 32 1.8.3 Signal Transduction of the D1 Dopamine Receptor 33 1.9 Dopamine Neurotransmission in the Brain 35 1.10 Anatomical Distribution of the D1 Dopamine Receptor 36 1.10.1 Physiological Role of D1 Dopamine Receptors 37 1.11 Introduction to G Protein-Coupled Receptor Oligomerization 39 1.12 Evidence for G Protein-Coupled Receptor Oligomerization 40 1.12.1 Receptor Complementation 40 1.12.2 Co-immunoprecipitation 41 1.12.3 Novel Pharmacology 44 1.12.4 Receptor Trafficking Studies 45 1.12.5 Resonance Energy Transfer 46 1.12.6 Atomic Force Microscopy 49 1.12.7 X-ray Crystallography 50 1.13 Structural Features of G Protein-Coupled Receptor Oligomers 50 1.13.1 Disulphide Bonds 51 1.13.2 Transmembrane Interactions 52 vii 1.13.3 Intracellular and Extracellular Domain Interactions 53 1.14 Mechanisms of Agonist-Induced Activation of G Protein-Coupled Receptor Oligomers 54 1.15 G Protein-Coupled Receptor Oligomers In Native Brain Tissue 56 1.16 Introduction to Lipid Rafts 58 1.17 Platforms for Signaling Complex Assembly 59 1.17.1 Nitric Oxide Synthase Signaling Pathway 61 1.17.2
Recommended publications
  • Hecate-Cgb Conjugate and Gonadotropin Suppression Shows Two Distinct Mechanisms of Action in the Treatment of Adrenocortical
    Endocrine-Related Cancer (2009) 16 549–564 Hecate-CGb conjugate and gonadotropin suppression shows two distinct mechanisms of action in the treatment of adrenocortical tumors in transgenic mice expressing Simian Virus 40 T antigen under inhibin-a promoter Susanna Vuorenoja1,2, Bidut Prava Mohanty1, Johanna Arola3, Ilpo Huhtaniemi1,4, Jorma Toppari1,2 and Nafis A Rahman1 Departments of 1Physiology and 2Pediatrics, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland 3Department of Pathology, University of Helsinki and HUSLAB, Helsinki, Finland 4Institute of Reproductive and Developmental Biology, Imperial College, London, UK (Correspondence should be addressed to N A Rahman; Email: nafis.rahman@utu.fi) Abstract Lytic peptide Hecate (23-amino acid (AA)) fused with a 15-AA fragment of human chorionic gonadotropin-b (CG-b), Hecate-CGb conjugate (H-CGb-c) selectively binds to and destroys tumor cells expressing LH/chorionic gonadotropin receptor (Lhcgr). Transgenic mice (6.5 month old) expressing SV40 T-antigen under the inhibin-a promoter (inha/Tag) presenting with Lhcgr expressing adrenal tumors were treated either with H-CGb-c, GnRH antagonist (GnRH-a), estradiol (E2; only females) or their combinations for 1 month. We expected that GnRH-a or E2 in combination with H-CGb-c could improve the treatment efficacy especially in females by decreasing circulating LH and eliminating the potential competition of serum LH with the H-CGb-c. GnRH-a and H-CGb-c treatments were successful in males (adrenal weights 14G2.8 mg and 60G26 vs 237G59 mg in controls; P!0.05). Histopathologically, GnRH-a apparently destroyed the adrenal parenchyma leaving only the fibrotic capsule with few necrotic foci.
    [Show full text]
  • Emerging Evidence for a Central Epinephrine-Innervated A1- Adrenergic System That Regulates Behavioral Activation and Is Impaired in Depression
    Neuropsychopharmacology (2003) 28, 1387–1399 & 2003 Nature Publishing Group All rights reserved 0893-133X/03 $25.00 www.neuropsychopharmacology.org Perspective Emerging Evidence for a Central Epinephrine-Innervated a1- Adrenergic System that Regulates Behavioral Activation and is Impaired in Depression ,1 1 1 1 1 Eric A Stone* , Yan Lin , Helen Rosengarten , H Kenneth Kramer and David Quartermain 1Departments of Psychiatry and Neurology, New York University School of Medicine, New York, NY, USA Currently, most basic and clinical research on depression is focused on either central serotonergic, noradrenergic, or dopaminergic neurotransmission as affected by various etiological and predisposing factors. Recent evidence suggests that there is another system that consists of a subset of brain a1B-adrenoceptors innervated primarily by brain epinephrine (EPI) that potentially modulates the above three monoamine systems in parallel and plays a critical role in depression. The present review covers the evidence for this system and includes findings that brain a -adrenoceptors are instrumental in behavioral activation, are located near the major monoamine cell groups 1 or target areas, receive EPI as their neurotransmitter, are impaired or inhibited in depressed patients or after stress in animal models, and a are restored by a number of antidepressants. This ‘EPI- 1 system’ may therefore represent a new target system for this disorder. Neuropsychopharmacology (2003) 28, 1387–1399, advance online publication, 18 June 2003; doi:10.1038/sj.npp.1300222 Keywords: a1-adrenoceptors; epinephrine; motor activity; depression; inactivity INTRODUCTION monoaminergic systems. This new system appears to be impaired during stress and depression and thus may Depressive illness is currently believed to result from represent a new target for this disorder.
    [Show full text]
  • Activation of the Dopaminergic Pathway from VTA to the Medial
    RESEARCH ARTICLE Activation of the dopaminergic pathway from VTA to the medial olfactory tubercle generates odor-preference and reward Zhijian Zhang1,2†, Qing Liu1†, Pengjie Wen1, Jiaozhen Zhang1, Xiaoping Rao1, Ziming Zhou3, Hongruo Zhang3, Xiaobin He1, Juan Li1, Zheng Zhou4, Xiaoran Xu3, Xueyi Zhang3, Rui Luo3, Guanghui Lv2, Haohong Li2, Pei Cao1, Liping Wang4, Fuqiang Xu1,2* 1Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China; 2Wuhan National Laboratory for Optoelectronics, Wuhan, China; 3College of Life Sciences, Wuhan University, Wuhan, China; 4Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China Abstract Odor-preferences are usually influenced by life experiences. However, the neural circuit mechanisms remain unclear. The medial olfactory tubercle (mOT) is involved in both reward and olfaction, whereas the ventral tegmental area (VTA) dopaminergic (DAergic) neurons are considered to be engaged in reward and motivation. Here, we found that the VTA (DAergic)-mOT pathway could be activated by different types of naturalistic rewards as well as odors in DAT-cre mice. Optogenetic activation of the VTA-mOT DAergic fibers was able to elicit preferences for space, location and neutral odor, while pharmacological blockade of the dopamine receptors in the *For correspondence: mOT fully prevented the odor-preference formation. Furthermore, inactivation of the mOT- [email protected] projecting VTA DAergic neurons eliminated the previously formed odor-preference and strongly †These authors contributed affected the Go-no go learning efficiency.
    [Show full text]
  • The Roles Played by Highly Truncated Splice Variants of G Protein-Coupled Receptors Helen Wise
    Wise Journal of Molecular Signaling 2012, 7:13 http://www.jmolecularsignaling.com/content/7/1/13 REVIEW Open Access The roles played by highly truncated splice variants of G protein-coupled receptors Helen Wise Abstract Alternative splicing of G protein-coupled receptor (GPCR) genes greatly increases the total number of receptor isoforms which may be expressed in a cell-dependent and time-dependent manner. This increased diversity of cell signaling options caused by the generation of splice variants is further enhanced by receptor dimerization. When alternative splicing generates highly truncated GPCRs with less than seven transmembrane (TM) domains, the predominant effect in vitro is that of a dominant-negative mutation associated with the retention of the wild-type receptor in the endoplasmic reticulum (ER). For constitutively active (agonist-independent) GPCRs, their attenuated expression on the cell surface, and consequent decreased basal activity due to the dominant-negative effect of truncated splice variants, has pathological consequences. Truncated splice variants may conversely offer protection from disease when expression of co-receptors for binding of infectious agents to cells is attenuated due to ER retention of the wild-type co-receptor. In this review, we will see that GPCRs retained in the ER can still be functionally active but also that highly truncated GPCRs may also be functionally active. Although rare, some truncated splice variants still bind ligand and activate cell signaling responses. More importantly, by forming heterodimers with full-length GPCRs, some truncated splice variants also provide opportunities to generate receptor complexes with unique pharmacological properties. So, instead of assuming that highly truncated GPCRs are associated with faulty transcription processes, it is time to reassess their potential benefit to the host organism.
    [Show full text]
  • Accelerated Resensitization of the D 1 Dopamine Receptor-Mediated
    The Journal of Neuroscience, October 1994, 74(10): 6260-6266 Accelerated Resensitization of the D 1 Dopamine Receptor-mediated Response in Cultured Cortical and Striatal Neurons from the Rat: Respective Role of CY1 -Adrenergic and /U-methybaspartate Receptors Fabrice Trovero, Philippe Marin, Jean-PO1 Tassin, JoQl Premont, and Jacques Glowinski INSERM U 114, Chaire de Neuropharmacologie, College de France, 75231 Paris Cedex, France As previously shown in vivo, noradrenergic and glutama- cortex. In the rat, bilateral electrolytic lesions of the mesence- tergic neurons can regulate the denervation supersensitivity phalic ventral tegmental area induce a complex and permanent of Dl dopaminergic (DA) receptors in the rat prefrontal cor- behavioral syndrome characterized by a locomotor hyperactiv- tex and striatum respectively. Therefore, the effects of meth- ity and the incapacity of the animal to focalize its attention (Le oxamine (an al-adrenergic agonist) and glutamate on the Moal et al., 1969). Some of the behavioral deficits observed in resensitization of Dl DA receptors were investigated in cul- the lesioned animals, particularly the locomotor hyperactivity, tured cortical and striatal neurons from the embryonic rat. have been attributed for a large part to the selective destruction In the presence of sulpiride and propranolol, DA stimulated of the cortical dopaminergic (DA) innervation (Tassin et al., the Dl DA receptor-mediated conversion of 3H-adenine into 1978). This locomotor hyperactivity was markedly reduced in 3H-cAMP in both intact cortical and striatal cells and these rats with 6-hydroxydopamine (6-OHDA) lesions,which destroy responses were markedly desensitized in cells preexposed not only the ascendingDA neurons but also the ascendingnor- for 15 min to DA (50 AM).
    [Show full text]
  • Long-Range Gabaergic Projections Contribute to Cortical Feedback
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.19.423599; this version posted December 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Long-range GABAergic projections contribute to cortical feedback control of sensory processing. Camille Mazo1,2, *, Soham Saha1, Antoine Nissant1, Enzo Peroni1, Pierre-Marie Lledo1, # and Gabriel Lepousez1,#,* 1 Laboratory for Perception and Memory, Institut Pasteur, F-75015 Paris, France; Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR-3571), F-75015 Paris, France. * Corresponding authors to whom correspondence should be addressed: Laboratory for Perception and Memory, Institut Pasteur, 25 rue du Dr. Roux, 75 724 Paris Cedex 15, France. Tel: (33) 1 45 68 95 23 E-mail: [email protected] E-mail: [email protected] # Jointly supervised this work 2 now at Champalimaud Research, Champalimaud Center for the Unknown, Lisbon, Portugal Keywords: Sensory circuits, Top-down, Inhibitory, Centrifugal, Olfactory system, Barrel cortex 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.19.423599; this version posted December 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract In sensory systems, cortical areas send excitatory projections back to subcortical areas to dynamically adjust sensory processing.
    [Show full text]
  • Determination of Biological Activity of Gonadotropins Hcg and FSH By
    www.nature.com/scientificreports OPEN Determination of biological activity of gonadotropins hCG and FSH by Förster resonance energy transfer Received: 14 October 2016 Accepted: 06 January 2017 based biosensors Published: 09 February 2017 Olga Mazina1,2, Anni Allikalt1, Juha S. Tapanainen3, Andres Salumets2,3,4,5 & Ago Rinken1 Determination of biological activity of gonadotropin hormones is essential in reproductive medicine and pharmaceutical manufacturing of the hormonal preparations. The aim of the study was to adopt a G-protein coupled receptor (GPCR)-mediated signal transduction pathway based assay for quantification of biological activity of gonadotropins. We focussed on studying human chorionic gonadotropin (hCG) and follicle-stimulating hormone (FSH), as these hormones are widely used in clinical practice. Receptor-specific changes in cellular cyclic adenosine monophosphate (cAMP, second messenger in GPCR signalling) were monitored by a Förster resonance energy transfer (FRET) biosensor protein TEpacVV in living cells upon activation of the relevant gonadotropin receptor. The BacMam gene delivery system was used for biosensor protein expression in target cells. In the developed assay only biologically active hormones initiated GPCR-mediated cellular signalling. High assay sensitivities were achieved for detection of hCG (limit of detection, LOD: 5 pM) and FSH (LOD: 100 pM). Even the small- scale conformational changes caused by thermal inactivation and reducing the biological activity of the hormones were registered. In conclusion, the proposed assay is suitable for quantification of biological activity of gonadotropins and is a good alternative to antibody- and animal-testing-based assays used in pharmaceutical industry and clinical research. Gonadotropin medications are widely used in controlled ovarian stimulation and induction of ovulation as key components of infertility treatment.
    [Show full text]
  • Luteinizing Hormonereleasing Hormone (LHRH) Receptor Agonists Vs Antagonists
    Review Luteinizing hormone-releasing hormone (LHRH) receptor agonists vs antagonists: a matter of the receptors? Yuri Tolkach, Steven Joniau* and Hendrik Van Poppel* Urology Clinic, Military Medical Academy, Saint-Petersburg, Russia, and *Department of Urology, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium Luteinizing hormone-releasing hormone (LHRH) agonists and antagonists are commonly used androgen deprivation therapies prescribed for patients with advanced prostate cancer (PCa). Both types of agent target the receptor for LHRH but differ in their mode of action: agonists, via pituitary LRHR receptors (LHRH-Rs), cause an initial surge in luteinizing hormone (LH), follicle-stimulating hormone (FSH) and, subsequently, testosterone. Continued overstimulation of LHRH-R down-regulates the production of LH and leads to castrate levels of testosterone. LHRH antagonists, however, block LHRH-R signalling causing a rapid and sustained inhibition of testosterone, LH and FSH. The discovery and validation of the presence of functional LHRH-R in the prostate has led to much work investigating the role of LHRH signalling in the normal prostate as well as in the treatment of PCa with LHRH agonists and antagonists. In this review we discuss the expression and function of LHRH-R, as well as LH/human chorionic gonadotropin receptors and FSH receptors and relate this to the differential clinical responses to agonists and antagonists used in the hormonal manipulation of PCa. Keywords androgen deprivation therapy, LHRH agonist, GnRH antagonist, LHRH receptor, prostate cancer Introduction the last 30 years. LHRH agonists, by continually stimulating The most common type of treatment prescribed for the LHRH-R, down-regulate receptor expression in the patients with advanced prostate cancer (PCa) is LHRH pituitary leading to decreased levels of LH, and to a lesser agonists and these are increasingly being used in patients extent, FSH.
    [Show full text]
  • Estrogen Receptors Α, Β and GPER in the CNS and Trigeminal System - Molecular and Functional Aspects Karin Warfvinge1,2, Diana N
    Warfvinge et al. The Journal of Headache and Pain (2020) 21:131 The Journal of Headache https://doi.org/10.1186/s10194-020-01197-0 and Pain RESEARCH ARTICLE Open Access Estrogen receptors α, β and GPER in the CNS and trigeminal system - molecular and functional aspects Karin Warfvinge1,2, Diana N. Krause2,3†, Aida Maddahi1†, Jacob C. A. Edvinsson1,4, Lars Edvinsson1,2,5* and Kristian A. Haanes1 Abstract Background: Migraine occurs 2–3 times more often in females than in males and is in many females associated with the onset of menstruation. The steroid hormone, 17β-estradiol (estrogen, E2), exerts its effects by binding and activating several estrogen receptors (ERs). Calcitonin gene-related peptide (CGRP) has a strong position in migraine pathophysiology, and interaction with CGRP has resulted in several successful drugs for acute and prophylactic treatment of migraine, effective in all age groups and in both sexes. Methods: Immunohistochemistry was used for detection and localization of proteins, release of CGRP and PACAP investigated by ELISA and myography/perfusion arteriography was performed on rat and human arterial segments. Results: ERα was found throughout the whole brain, and in several migraine related structures. ERβ was mainly found in the hippocampus and the cerebellum. In trigeminal ganglion (TG), ERα was found in the nuclei of neurons; these neurons expressed CGRP or the CGRP receptor in the cytoplasm. G-protein ER (GPER) was observed in the cell membrane and cytoplasm in most TG neurons. We compared TG from males and females, and females expressed more ER receptors. For neuropeptide release, the only observable difference was a baseline CGRP release being higher in the pro-estrous state as compared to estrous state.
    [Show full text]
  • Thyrotropin-Luteinizing Hormone/Chorionic Gonadotropin
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 902-905, February 1991 Medical Sciences Thyrotropin-luteinizing hormone/chorionic gonadotropin receptor extracellular domain chimeras as probes for thyrotropin receptor function (hormone binding/signal transduction) Yuji NAGAYAMA, HARRY L. WADSWORTH, GREGORIO D. CHAZENBALK, DIEGO Russo, Pui SETO, AND BASIL RAPOPORT Thyroid Molecular Biology Unit, Veterans Administration Medical Center, San Francisco, CA 94121; and the University of California, San Francisco, CA 94143-0534 Communicated by William J. Rutter, November 2, 1990 ABSTRACT To define the sites in the extracellular domain site(s) involved in ligand binding or the region(s) important in of the human thyrotropin (TSH) receptor that are involved in signal transduction. TSH binding and signal transduction we constructed chimeric Recent studies indicate that ligand- and antibody-binding thyrotropin-luteinizing hormone/chorionic gonadotropin sites in folded globular proteins are conformational and may (TSH-LH/CG) receptors. The extracellular domain of the consist of discontinuous regions of the linear amino acid human TSH receptor was divided into five regions that were sequence (13-17). In studies defining ligand-binding sites in replaced, either singly or in various combinations, with ho- native proteins it is therefore important to conserve the mologous regions of the rat LH/CG receptor. The chimeric three-dimensional structure of the protein. The considerable receptors were stably expressed in Chinese hamster ovary cells. (30-50%) homology in the extracellular domains of the gly- The data obtained suggest that the carboxyl region of the coprotein hormone receptors together with the presence of 10 extracellular domain (amino acid residues 261418) and par- conserved extracellular cysteine residues [some ofwhich are ticularly the middle region (residues 171-260) play a role in thought to form disulfide bonds (12)] suggest a similar three- signal transduction.
    [Show full text]
  • Investigations Into Neuronal Cilia Utilizing Mouse Models
    INVESTIGATIONS INTO NEURONAL CILIA UTILIZING MOUSE MODELS OF BARDET-BIEDL SYNDROME Dissertation Presented In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Nicolas F. Berbari, BS ***** The Ohio State University 2008 Dissertation Committee: Approved by: Kirk Mykytyn, PhD, Adviser Virginia Sanders, PhD __________________________________________ Georgia Bishop, PhD Adviser Michael Robinson, PhD Integrated Biomedical Sciences Graduate Program ABSTRACT Cilia are hair-like microtubule based cellular appendages that extend 5-30 microns from the surface of most vertebrate cells. Since their initial discovery over a hundred years ago, cilia have been of interest to microbiologists and others studying the dynamics and physiological relevance of their motility. The more recent realization that immotile or primary cilia dysfunction is the basis of several human genetic disorders and diseases has brought the efforts of the biomedical research establishment to bear on this long overlooked and underappreciated organelle. Several human genetic disorders caused by cilia defects have been identified, and include Bardet-Biedl syndrome, Joubert syndrome, Meckel-Gruber syndrome, Alstrom syndrome and orofaciodigital syndrome. One theme of these disorders is their multitude of clinical features such as blindness, cystic kidneys, cognitive deficits and obesity. The fact that many of these cilia disorders present with several features may be due to the ubiquitous nature of the primary cilium and their unrecognized roles in most tissues and cell types. The lack of known function for most primary cilia is no more apparent than in the central nervous system. While it has been known for some time that neurons throughout the brain have primary cilia, their functions remain unknown.
    [Show full text]
  • Does the Kappa Opioid Receptor System Contribute to Pain Aversion?
    UC Irvine UC Irvine Previously Published Works Title Does the kappa opioid receptor system contribute to pain aversion? Permalink https://escholarship.org/uc/item/8gx6n97q Authors Cahill, Catherine M Taylor, Anna MW Cook, Christopher et al. Publication Date 2014 DOI 10.3389/fphar.2014.00253 Peer reviewed eScholarship.org Powered by the California Digital Library University of California REVIEW ARTICLE published: 17 November 2014 doi: 10.3389/fphar.2014.00253 Does the kappa opioid receptor system contribute to pain aversion? Catherine M. Cahill 1,2,3 *, Anna M. W. Taylor1,4 , Christopher Cook1,2 , Edmund Ong1,3 , Jose A. Morón5 and Christopher J. Evans 4 1 Department of Anesthesiology and Perioperative Care, University of California Irvine, Irvine, CA, USA 2 Department of Pharmacology, University of California Irvine, Irvine, CA, USA 3 Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada 4 Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA 5 Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA Edited by: The kappa opioid receptor (KOR) and the endogenous peptide-ligand dynorphin have Dominique Massotte, Institut des received significant attention due the involvement in mediating a variety of behavioral Neurosciences Cellulaires et Intégratives, France and neurophysiological responses, including opposing the rewarding properties of drugs of abuse including opioids. Accumulating evidence indicates this system is involved in Reviewed by: Lynn G. Kirby, University of regulating states of motivation and emotion. Acute activation of the KOR produces an Pennsylvania, USA increase in motivational behavior to escape a threat, however, KOR activation associated Clifford John Woolf, Boston Children’s with chronic stress leads to the expression of symptoms indicative of mood disorders.
    [Show full text]